Cuadro 2 b
Frecuencias alélicas de 19 STRs en una muestra poblacional de Bucaramanga, Santander, Colombia

<table>
<thead>
<tr>
<th>Alelo</th>
<th>FGA</th>
<th>LPL</th>
<th>F13B</th>
<th>FESFPS</th>
<th>F13A01</th>
<th>D21S11</th>
<th>D18S51</th>
<th>D5S818</th>
<th>PENTA D</th>
<th>PENTA E</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.241</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.109</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.191</td>
<td></td>
<td></td>
<td></td>
<td>0.006</td>
<td>0.033</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td>0.094</td>
<td>0.173</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.001</td>
</tr>
<tr>
<td>7</td>
<td>0.001</td>
<td>0.029</td>
<td>0.007</td>
<td>0.261</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.027</td>
<td>0.006</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>0.149</td>
<td>0.014</td>
<td>0.006</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.009</td>
<td>0.013</td>
</tr>
<tr>
<td>9</td>
<td>0.029</td>
<td>0.300</td>
<td>0.013</td>
<td>0.001</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.070</td>
<td>0.187</td>
</tr>
<tr>
<td>9.3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.473</td>
<td>0.417</td>
<td>0.251</td>
<td></td>
<td></td>
<td>0.001</td>
<td>0.053</td>
<td>0.177</td>
<td>0.051</td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 2 b
Frecuencias alélicas de 19 STRs en una muestra poblacional de Bucaramanga, Santander, Colombia
(continuación)

<table>
<thead>
<tr>
<th>Alelo</th>
<th>FGA</th>
<th>LPL</th>
<th>F13B</th>
<th>FESFPS</th>
<th>F13A01</th>
<th>D21S11</th>
<th>D18S51</th>
<th>D5S818</th>
<th>PENTA D</th>
<th>PENTA E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>0.201</td>
<td>0.011</td>
<td>0.473</td>
<td>–</td>
<td>–</td>
<td>0.004</td>
<td>0.391</td>
<td>0.211</td>
<td>0.106</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.249</td>
<td>–</td>
<td>0.160</td>
<td>0.001</td>
<td>–</td>
<td>0.093</td>
<td>0.330</td>
<td>0.164</td>
<td>0.217</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>–</td>
<td>0.046</td>
<td>–</td>
<td>0.079</td>
<td>0.004</td>
<td>–</td>
<td>0.089</td>
<td>0.109</td>
<td>0.150</td>
<td>0.070</td>
</tr>
<tr>
<td>14</td>
<td>0.199</td>
<td>–</td>
<td>–</td>
<td>0.003</td>
<td>0.001</td>
<td>–</td>
<td>0.011</td>
<td>0.057</td>
<td>0.103</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.069</td>
<td>–</td>
<td>–</td>
<td>0.006</td>
<td>–</td>
<td>0.169</td>
<td>–</td>
<td>0.021</td>
<td>0.104</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.003</td>
<td>0.111</td>
<td>–</td>
<td>0.003</td>
<td>0.051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.001</td>
<td>0.171</td>
<td>–</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>0.016</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.073</td>
<td>–</td>
<td>0.027</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>0.063</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.036</td>
<td>–</td>
<td>0.041</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.080</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.027</td>
<td>–</td>
<td>–</td>
<td>0.033</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>0.121</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.020</td>
<td>–</td>
<td>0.020</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>0.154</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.004</td>
<td>–</td>
<td>–</td>
<td>0.009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22.2</td>
<td>0.003</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>0.141</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.003</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>0.157</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.003</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>0.146</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>0.099</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>0.017</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.021</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.057</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.243</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.320</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.026</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.049</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.093</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.020</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>32.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.120</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.040</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cuadro 2 b
Frecuencias alélicas de 19 STRs en una muestra poblacional de Bucaramanga, Santander, Colombia
(continuación)

<table>
<thead>
<tr>
<th>Alelo</th>
<th>FGA</th>
<th>LPL</th>
<th>F13B</th>
<th>FESFPS</th>
<th>F13A01</th>
<th>D21S11</th>
<th>D18S51</th>
<th>D5S818</th>
<th>PENTA D</th>
<th>PENTA E</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>34.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.006</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>35</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.001</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Ho</td>
<td>0.877</td>
<td>0.671</td>
<td>0.680</td>
<td>0.654</td>
<td>0.783</td>
<td>0.803</td>
<td>0.849</td>
<td>0.723</td>
<td>0.834</td>
<td>0.889</td>
</tr>
<tr>
<td>He</td>
<td>0.876</td>
<td>0.672</td>
<td>0.705</td>
<td>0.682</td>
<td>0.796</td>
<td>0.808</td>
<td>0.867</td>
<td>0.718</td>
<td>0.837</td>
<td>0.900</td>
</tr>
<tr>
<td>P</td>
<td>0.241</td>
<td>0.667</td>
<td>0.000</td>
<td>0.013</td>
<td>0.085</td>
<td>0.445</td>
<td>0.061</td>
<td>0.574</td>
<td>0.800</td>
<td>0.649</td>
</tr>
</tbody>
</table>

Ho: heterocigosidad observada, He: heterocigosidad esperada, p: test exacto de equilibrio HW, basado en 2000 permutaciones, error standard <0.01. Corrección de Bonferroni (0.05/19= 0.00263)