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ABSTRACT
The present review investigated the sources of energy for detritivorous fish species in floodplains. Recent studies have shown that 
environmental changes that alter the terrestrial vegetation affect essentially the resource base in these areas, such as the detritus. 
In aquatic environments, especially floodplains, a major part of metabolic processes is supported by terrestrial detritus, which 
accounts for maintaining the detritivorous food chain. Thus, one way to evaluate environments changes is through isotopic studies 
of organic matter, which allows acquiring information about the quantity and quality of organic matter. This approach is required 
for understanding the interactions between the organic matter dynamics and its ecological effects, allowing the monitoring of these 
resources. However, researches on the energy flow in food chains should also employ an approach that quantifies the magnitude of 
these food subsidies, as also the access routes of aquatic consumers, in watersheds of different sizes and in diverse land uses.
Keywords: environmental changes, detritus, microbial biomass, stable isotopes.

RESUMEN
Esta revisión procuró investigar las fuentes de energía para las especies de peces detritívoras en la llanura de inundación. Los estudios 
han demostrado que las transformaciones ambientales que causan los cambios en la vegetación terrestre afectan principalmente 
la base de los recursos en estos planos inundables, tales como el detritus. En los ambientes acuáticos, especialmente las llanuras 
de inundación, la mayoría de los procesos metabólicos están sustentados por el detritus terrestre, y esta función es responsable de 
mantener las redes detritívoras. Una forma de evaluar estos cambios es a través de estudios isotópicos de la materia orgánica, los 
cuales permiten obtener información sobre su cantidad y su calidad mediante el análisis de la biomasa microbiana. Este enfoque es 
necesario para comprender las interacciones entre la dinámica de la materia orgánica y sus efectos ecológicos, lo que permite a su 
vez la valoración de estos recursos. Sin embargo, se concluye que los estudios futuros también deben cuantificar la magnitud de estos 
subsidios energéticos, asícomo las vías de acceso de los consumidores acuáticos, lo cual debe evaluarse en cuencas hidrográficas de 
diferentes tamaños y con diversos usos de la tierra.
Palabras claves: cambios ambientales, detritus, biomasa microbiana, isótopos estables

INTRODUCTION
Recent studies have demonstrated the importance of detritus in aquatic environments as a source that contributes to 

metabolic processes of these ecosystems, and the relevance of organic matter dynamics and microbial influence to predict 
future changes on the energy stability in food chains (Kominoski and Rosemond, 2012).
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In aquatic environments, the food chain relationships 
frequently are maintained by different sources of detritus, 
due to the large input of allochthonous matter, as also to 
the decay of aquatic macrophytes (Vannote et al., 1980). 
Several authors have considered the detritus food chain as 
the main source maintaining the fish biomass in tropical and 
subtropical aquatic environments (Araujo-Lima et al., 1986, 
Benedito-Cecilio et al., 2000, Benedito-Cecilio and Araujo-
Lima, 2002, Manetta et al., 2003). In this way, up to 80 % 
of fish biomass in floodplains is made up by detritivorous 
species, i.e., dependent on sources of detritus (Agostinho 
and Zalewski, 1996). However, environmental changes 
such as modifications in biogeochemical cycles, climate, 
human activities and changes in the terrestrial ve-getation 
may affect the amount of detritus and the quality of water, 
organic matter, and nutrients of these ecosystems, which is 
reflected in the structure of aquatic webs (Kominoski and 
Rosemond, 2012).

Floodplains represent areas with high input of organic 
matter from several origins, and are highly dynamic 
environments, with well-defined terrestrial, aquatic and 
transitional environments (Junk et al., 1989). However, 
Agostinho and Zalewski (1996), Agostinho et al. (2000) 
and Agostinho et al., (2004) stated that the environmental 
quality of these areas has experienced a sharp decrease 
due to deforestation, agriculture, livestock, construction of 
dams, sand mining and activities of leisure and fishing.

For Agostinho et al., (2000) and Agostinho et al., (2004) 
a major impact on these ecosystems is the hydrological 
control by upstream reservoirs, which significantly modifies 
the flood periods, by changing the intensity, duration and 
timing of these events. With this, fish assemblages have been 
negatively affected, mainly the migratory species (Gomes 
and Agostinho, 1997; Agostinho et al., 2004).

Migratory fish species play a key role in artisanal and 
recreational fishing. Thus, the lack of flooding periods 
prevents migratory juveniles to reach marginal lakes to spend 
the first years of life. This has hindered their reproduction 
and consequently reduced the fish stock in the region 
(Gomes and Agostinho, 1997).

The migratory species Prochilodus lineatus (Valenciennes, 
1836), popularly known as curimba, in Brazil, is a species 
of commercial interest and detritivorous with essential role 
in nutrient cycling, working in the clearance of watercourses 
subjected to organic pollution (Agostinho, 1985) and in 
general is a good biondicator by being more sensitive to 
pollutants (Martinez and Cólus, 2002).

Thus, detritivorous and migratory species are harmed 
both in relation to detritus sources affected and water 
resources regulated by reservoirs. Given this, although 
floodplains have a high biodiversity, these areas are under 
high environmental disturbances, such as deforestation, 
and construction of reservoirs. In this case are fundamental 

studies aiming to examine the microbial community of 
organic matter, both of allochthonous and autochthonous 
origin, for understand the importance of these resources 
for detritivorous fish. This can be assessed, by possible 
variations in detritus in different environments. In this way, 
it can be investigated which energy sources (food resources 
derived from allochthonous and autochthonous matter) are 
essential to preserve the fish stock, and to analyze possible 
changes in detritus of the soil and sediment in floodplains.

For these reasons, the focus of this review is an investigative 
work about the sources of energy for detritivorous fish 
species in the tropical floodplain.

DETRITUS
Decomposition of Organic Matter
In general, the organic detritus can arise from dead plants 
or animals with microrganisms action (Mann, 1972). For 
Swift et al., (1979), it is broadly defined through physical 
and chemical attributes and interactions with organisms 
as being any kind of non-living organic matter, including 
different types of tissues of plants and animals, as well as 
products secreted and excreted by organisms.

The decomposition of organic matter is based on 
three stages: leaching, conditioning or catabolism, and 
fragmentation. Leaching is the process with abiotic removal 
of organic and inorganic compounds from the material to 
be decomposed by environmental agents (Davis et al., 2006; 
Davis and Childers, 2007). In this case, aquatic organisms 
rapidly incorporate the soluble compounds released as 
dissolved organic matter, enhancing their utilization by 
microorganisms (Wetzel, 1995).

The conditioning or catabolism consists in the colonization 
of the organic matter by fungi and bacteria responsible for 
the mineralization of the decomposing material (Gonçalves 
et al., 2006). Thus, this stage prepares the organic matter be 
consumed by the invertebrate organisms, while the detritus 
fragmentation enlarges the surface susceptible to the action 
of microorganisms, resulting in the material degradation 
(Cunha-Santino and Bianchini Jr, 2006).

In this way, the dissolved organic matter from both 
autochthonous or allochthonous origin is responsible for 
microbial production, can be autotrophic, heterotrophic 
and mixotrophic prokaryotes and eukaryotes, which 
together make up the microbial food chain (Sherr and 
Sherr, 2008). Pomeroy (1974) and Azam et al., (1983) have 
proposed the existence of multiple trophic levels (bacteria, 
flagellate and ciliate) in the microbial community and 
outlined important implications for the trophic chain and 
biogeochemical cycles. This trophic structure is known as 
microbial loop (Azam et al., 1983), which described the role of 
bacteria in the absorption and recovery of dissolved organic 
matter and its transfer to higher trophic levels.
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In some studies has been reported that only a small part of 
the bacterial carbon is passed along the food chain (Cole et 
al., 2006). It is estimated that the total carbon of prokaryotic 
cells worldwide corresponds to about 60% carbon estimated 
for plants (Whitman et al., 1998), evidencing the importance 
and efficiency of microorganisms in cycling and storage of 
this element in ecosystems. This efficiency is a result of the 
balance between bacterial production and respiration that 
varies widely among aquatic ecosystems. In general, only a 
very small fraction (< 30%) of the organic matter is converted 
to microbial biomass (Del Giorgio and Cole, 1998).

Autochthonous and Allochthonous Sources
The energy in food chains of aquatic ecosystems depends 

on sources of organic matter, both from allochthonous and 
autochthonous origin, and resources from allochthonous 
origin are considered essential for aquatic communities, 
because great part of consumers use the soil organic carbon 
and submerged letter as a food resources, among them 
bacteria and protozoa (Berggren et al., 2010), zooplankton 
(Cole et al., 2011), benthic invertebrates (Solomon et 
al. 2011) and fish (Weidel et al., 2008; Medeiros and 
Arthington, 2011; Solomon et al., 2011).

Allochthonous resources can stem from vertical 
movements, i.e. through falling branches, leaves, flowers, 
fruit, peels and seeds, as from lateral movements comprising 
the input of organic matter deposited on the soil into 
aquatic systems through wind, rainfall, flooding, ground 
movement and other agents (Lamberti and Gregory, 2007). 
These sources provide a great part of energy and during 
dry periods frequently represent the main energy source for 
aquatic ecosystems (Trevisan and Hepp, 2007).

Studies of the feeding of Characiformes have indicated 
that these are dependent on food derived from riparian 
vegetation and changes in the vegetation composition and 
structure can modify the food availability and hence the 
feeding habit of the species (Dufech et al., 2003). Other 
researches, have also pointed out that the allochthonous 
organic matter especially from the soil taken to the water, 

is an important food resource for fish (Pusey and Artington 
2003; Melo et al., 2004; Weidel et al., 2008; Solomon et al., 
2011). This occurs especially, in lotic ecosystems, and has 
been an important research issue for aquatic ecologists 
since the beginning of the last century. Only the Journal of 
the North American Benthological Society encompasses over 158 
publications on the subject, since its creation in 1986 until 
2010 (Tank et al., 2010).

Autochthonous sources of organic matter include 
phytoplankton and especially aquatic macrophytes, which 
are very important in the decomposition stage, when there 
is transfer of carbon and nutrients to upper trophic levels 
(Cunha-Santino et al., 2008). Numerous studies have shown 
the importance of autochthonous sources for aquatic 
communities (Bunn et al., 2006, Medeiros and Arthington, 
2011), highlighting those performed in the Orinoco River 
that showed that phytoplankton and periphyton were the 
major sources of carbon for invertebrates and fish (Lewis et 
al., 2001). Likewise, Araújo-Lima et al. (1986) observed that 
detritivorous fish of the Amazon River floodplain have used 
detritus derived from phytoplankton production.

When examining the importance of carbon source, 
from allochthonous and autochthonous origin, for aquatic 
organisms, it was verified that in certain situations one 
becomes more important than the other (Table 1.).

Given this, it is important to take into account physical 
characteristics of water systems for this analysis. Trevisan 
and Hepp (2007) mentioned that in rivers with vegetated 
banks, the allochthonous material is the main energy source 
for aquatic communities, whereas the autochthonous 
represents in this case only a small part of energy of rivers with 
vegetated banks (Abelho, 2001). This is due to the shading 
of the river by the vegetation that reduces the penetration 
of solar radiation, reducing the aquatic primary production 
(Abelho, 2001; Graça and Canhoto, 2006; Hauer and Hill, 
2007). However, as the order of the river increases, the 
input of allochthonous material reduces, prevailing thus the 
autochthonous primary production (Vannote et al., 1980).

Table 1. Influence of riparian vegetation on allochthonous or autochthonous resources in aquatic environments. (Own figure, Santana ARA)

Author Environment Allochthonous Autochthonous

Trevisan and Hepp 
(2007) 

vegetated bank   ↑ ↓

 Hauer and Hill (2007) vegetated bank ↑ ↓

Abelho (2001) vegetated bank ↑ ↓

Vannote et al., (1980) non-vegetated bank ↓ ↑

Graça and Canhoto 
(2006) 

non-vegetated bank ↓ ↑
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In this way, further studies are required to clarify under 
what conditions the input of organic matter depends on 
the allochthonous or autochthonous source, aiming to not 
only delineate their influence on the carbon cycle of aquatic 
food chains but also to protect, preserve and implement the 
biomass of aquatic organisms.

Perspective on the Allochthonous Input in Aquatic 
Ecosystems
Global environmental changes produce modifications in 
terrestrial vegetation, which affect diverse aquatic processes 
because the adjacent vegetation has direct influence on the 
functioning of these ecosystems (Fig. 1) (Kominoski and 
Rosemond, 2012).

A basic principle for dynamic changes is the increase 
in atmospheric CO2 that stimulates the terrestrial primary 
production and consequently increases the availability of detritus 
for aquatic ecosystems (Norby et al., 2010). Nevertheless, 
probably there is also a reduction in the quality of this resource 
due to the production of secondary compounds (Adams et al., 
2003; Adams et al., 2005). These compounds can speed up or 
slow down the decomposition (Rodrigues, 2006). In this case, 
the terrestrial primary production can present a greater number 
of rapid-growth species, predominating vegetation with high 
photosynthetic efficiency, leading to a significant decrease in 
the species number, making the ecosystem functionally simple, 
with few links in trophic chains.

Another effect is due to human activities that change 
the riparian vegetation or the channel morphology. These 
activities increase the atmospheric CO2 that affect the aquatic 

biota owing the high transport of sediment, reduction in 
allochthonous material, increased temperature and reduced 
habitat diversity (Poff et al., 2007; Estes et al., 2011).

It has been predicted that food webs of riverine systems 
will have a low flow rate of permanent organic matter and the 
detritus quality will be balanced by the carbon lability and 
amount of nutrients in the ecosystem, environments with 
high carbon turnover rate will predominate on microbial 
processes (Kominoski and Rosemond, 2012). Authors still 
report the importance of future studies to quantify and 
analyze the basis of the organic matter, and to determine 
different effects of global changes on allochthonous 
resources and on microbial processes and adaptations. For 
this, they predict the importance to associate the community 
structure with nutrient availability and climatic variations.

In this way, stands out the relevance of flooding areas as 
ecosystems with significant input of organic matter owing to 
the inherent feature of seasonal floods. These environments 
are dynamic and rich in species diversity, and although 
there are many studies addressing that their preservation 
also suffer a strong anthropogenic influence, reflected on 
biotic communities.

Currently there are numerous scientific studies in 
floodable environments that show the concern on the 
effect of human activities (Kominoski and Rosemond, 
2012). These effects lead to environmental changes that 
modify the terrestrial vegetation, and promote the increase 
in atmospheric CO2. This fact influences the dynamics of 
organic matter and consequently the quantity and quality of 
allochthonous matter for aquatic communities.

Figure 1. The vegetation influence on the functioning of aquatic ecosystems (Own figure, Santana ARA)
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Microbial Biomass of Soil and Sediment
The microbial biomass of soil or sediment is defined as the 
living fraction of organic matter, excluding plant roots and 
animal larger than 5 x 10-3μm3, and contributes with 2-5% 
organic carbon (Jenkinson and Ladd, 1981), besides being 
an important pool of nutrients for the plants (De-Polli and 
Guerra, 1996).

In aquatic environments, microorganisms inhabit all 
surfaces and in low order rivers, the microbial biomass of 
sediment exceeds the planktonic microbial biomass, but 
the microbial contribution for the energy flow can change 
according to seasons (Edwards et al., 1990). For Findlay et 
al., (2002), in aquatic environments, the accumulation of 
organic matter in the sediment shelters a high amount of 
microbial biomass (100-500 mg microbial Cm-2).

The microbial community is known by its ability to 
decompose organic matter, with a key role in nutrient 
cycling (Lindemann, 1942; Begon et al., 1996). Meantime, 
in recent decades it has been assumed that the microbial 
components play a relevant role in the food webs (Azam et 
al., 1983, Tranvik, 1989a). Several studies have observed 
that the biomass and production of microorganisms can 
be greater than of phytoplankton (Hessen, 1985; Simon 
et al., 1992; Abreu et al., 1992), and that the carbon 
flow via microbial trophic interactions can explain the 
high secondary productivity in ecosystems rich in humic 
compounds (Edwards, 1987; Tranvik, 1989a).

The participation of microorganisms in the surroundings 
of aquatic ecosystems in the secondary production can be 
by up to eight times more than the phytoplankton primary 
production (Tranvik, 1989b).

The importance of microbiota in aquatic ecosystems is 
noted, but owing methodological difficulties little is known 
about microorganisms. However, in recent years ecologists 
have searched new methods applicable to the microbiota, 
among them the use of stable isotopes combined with 
chloroform fumigation-extraction. These tools have been 
frequently, used in ecology, in the rhizosphere of plants, aiming 
to estimate and evaluate the microbial biomass (Werth and 
Kuzyakov, 2009; Werth and Kuzyakov, 2010). Other studies 
have employed crops and vegetal covers to investigate changes 
in microbial biomass of soils and to determine how the quality 
and quantity of vegetation can affect the microorganisms of 
soil and consequently the carbon turnover (Jin et al., 2010), as 
well as to examine the impacts caused by preparation systems 
of soils (Cunha et al., 2012).

QUANTIFICATION OF MICROBIAL BIOMASS IN THE 
DETRITUS
The use of Stable Isotopes
The conception on the direct contribution of microbial 
biomass for food chains underwent significant changes over 
the last 25 years. Nowadays, the question is no longer about 
the importance of microorganisms in nutrient cycling, but to 

ask about when, where and why the microbial contribution 
is so relevant to higher trophic levels (Findlay, 2010).

The first experimental demonstration on the possibility of 
microorganisms to play a fundamental role in the flow of food 
webs was developed over 40 years ago by Kaushik and Hynes 
(1971). The authors observed that the growth of fungi on 
leaf litter accounted for a significant increase in the quality of 
this resource. Furthermore, they concluded that the microbial 
growth in the litter was the main prerequisite for its use by 
consumers and that the microbial biomass was essentially the 
only comestible part derived from the leaf litter.

In the same context, Cummins (1974) drew an analogy 
Peanut butter and crackers when suggested that the microbial 
biomass is the peanut butter and the substrate leaves are an 
indigestible cracker. This effective analogy led to a paradigm 
widely accepted in scientific circles that only microorganisms 
were available for consumers and the contribution of leaves 
was insignificant.

Many studies have shown the relationship between the 
microbial colonization and the nutritional quality of the 
food (Arsuffi and Suberkropp, 1984; Lawson et al., 1984; 
Graça et al., 2001). Nevertheless, responses related to the 
microbial importance vs. the substrate, the leaves in this 
case, became more complex. Once estimated the microbial 
biomass, it was possible to determine this relationship 
(Findlay et al., 1986). For Methvin and Suberkropp (2003), 
the microbial biomass carbon in the detritus was only a small 
percentage of the leaf mass. Thus, the absolute mass of the 
substrate is much greater than the mass of the microbial 
carbon, in this case, the leaf mass contributed more as food 
for the consumer. However, the assimilation efficiency of 
the microbial carbon cold be higher than that obtaining 
through the plant substrate.

The microbiota play a clear relevant role in the alteration 
of the nutritional quality of the detritus, generating several 
ecological effects, besides its contribution to the carbon 
requirement by consumers. Aquatic hyphomycetes fungi, for 
example, present different capacities to degrade polymers 
in leaves (Arsuffi and Suberkropp, 1984). Moreover, they 
can raise the palatability of submerged plant substrate for 
detritivorous organisms (Bärlocher, 1992).

This basic observation that consumers of leaf detritus 
prefer attached microorganisms was confirmed in several 
studies. Thus, detritus with high microbial biomass can be 
considered as a resource with high nutritional values not 
only as storage of microbial carbon (Findlay, 2010).

Studies showed that benthic algae could 
disproportionately contribute to upper trophic le vels 
(McCutchan and Lewis, 2002). This study was conducted 
with stable isotopes, consi dered a fundamental tool to 
measure the relative contribution of resources, both from 
allochthonous and autochthonous origin, which maintain 
the aquatic food chain and could not be evaluated only from 
the carbon of the organic matter (Carpenter et al., 2005).
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Then, a safe way to identify the importance of these 
items is to follow the matter flow in food chains using stable 
isotopes (Kling et al., 1992; France and Peters, 1997), which 
considers that the stable isotope 13C is passed along the food 
chain, indicating that the consu mer isotopically reflects its 
diet (DeNiro and Epstein, 1978; Martinelli et al., 1988).

Current isotopic studies have discussed about what 
carbon source, autochthonous or allochthonous, has 
contributed more for the feeding of the American 
detritivorous fish Dorosoma cepedianum (Lesueur, 1818), 
popularly known as gizzard shad. The authors observed 
that the autochthonous resources were responsible for 
most of production of the detritivorous (Babler et al., 
2011). Researchers comment that this species uses both 
food sources, but at different proportions. The study 
verified that Dorosoma cepedianum uses more than 50% 
autochthonous resources, and approximately 15% of its 
production is maintained by allochthonous sources. In 
other studies, the preferential item of this fish species was 
detritus with high concentration of carbon and nutrients, 
and indirectly ingested particles including detritus 
from terrestrial plants and directly ingested algae and 
heterotrophic bacteria (Smoot and Findlay, 2010).

On the other hand, Zeug and Winemiller (2008), using 
13C isotopic signatures, have shown that allochthonous 
detritus were responsible for over 80% biomass of Dorosoma 
cepedianum in main channels of the Brazos River, and both 
autochthonous and allochthonous resources have similarly 
contributed in the floodplain system of this area. The authors 
related this result to the hydrology, because according 
to Wetzel (1990), the proportion of terrestrial inputs is 
more intense in floodable areas, while the autochthonous 
production is higher in rivers.

Given these controversies, the authors suggest that future 
studies should employ an eco-hydrological approach that 
quantifies the magnitude of these subsidies, as well as the 
access routes to aquatic consumers, in different sizes of 
watersheds and land uses.

The Extraction of Microbial Carbon
Among methods combined with stable isotopes is the 
chloroform fumigation-extraction, which consists in the 
quantification of microbial biomass of soils and sediments. 
Vance et al., (1987) affirmed that it is possible to estimate the 
carbon contained in the microbial biomass and mentioned 
that it is proportional to the increase of organic carbon 
extracted from the soil after chloroform fumigation.

The determination of microbial biomass of soil or 
sediment is not an estimate of microorganism activity but 
of the total living microbial biomass of the soil, considered 
an indicator sensitive to the changes in the organic matter 
storage (Sparling and Ross, 1993; Matsuoka et al., 2003). 
This occurs especially in environments under human 
influence (Insam and Domsch, 1988; Matsuoka et al., 2003).

The evaluation of the microbial biomass of soil is 
considered an ecological parameter, because it obtains 
rapid information on the organic changes of soil and allows 
detecting changes caused by cultivations or deforestations, 
and measures the soil restoration after removing the surface 
layer, and evaluated the effects of pollutants (Frighetto, 
2000). Moreover, in the floodplain, it is essential to know the 
origin of carbon sources, because these data can contribute 
with information about the resources that compose the 
organic matter and detritus available to food chains. Among 
the studies on the microbial biomass of soil and sediment, 
we highlight the use of δ13C, the fact that the bodies reflect, 
isotopically, its carbon source (DeNiro and Epstein, 1978; 
Peterson and Fry, 1987). Thus, the composition of the 
microbiota δ13C indicates the origin of the carbon assimilated 
by it, revealing the origin of the sources that make up the 
substrate for microbial production (Peterson and Fry 1987; 
Pelz et al., 1998; Boschker and Middelburg, 2002), and 
therefore, the detritus that will be used by detritivorous fish.

The quantification of the percentage of microbial carbon 
(Cmic) relative to the total organic carbon allows monitoring 
the disturbances caused by the ecological imbalance, through 
variations in organic matter. When this ratio increases or 
decreases rapidly, it is observed instability of the organic 
matter, may be an increase or a reduction of organic matter 
of the soil. On the other hand, with a constant ratio, a new 
balance is reached by this ecological system (Anderson and 
Domsch, 1989).

Thus the microbial biomass of soil or sediment can be 
estimated by the concentration of the microbial carbon (Cmic) 
which is calculated as the difference of the carbon extracted 
(CF) from the fumigated soil and that of the soil not fumigated 
(CNF), using the following equation (Vance et al., 1987).

Cmic = (CF–CNF) / KCE

Where for the KCE (extraction coefficient) is used the value 
of 0.45, according to Wu et al., (1990) and is presented per 
gram of dry weight.

These tools are widely applied in ecology primarily 
because the values of microbial carbon and isotopic values 
of microbial mass enable to identify changes in soils and 
sediments, long before detecting through physical and 
chemical alterations (Brookes et al., 1982).

From obtaining the carbon of microbial biomass, it is 
also possible to determine the isotope value, δ13C, but is 
necessary to calculate the mass balance according to the 
equation (Werth and Kuzyakov, 2009)

δ13C mic = (δ13CF x CF–δ13CNF x CNF)/(CF–CNF)

In this way, we can obtain both the value of microbial 
carbon and, using the stable isotopes of 13C, the isotopic value 
of microbial biomass, can address the trophic role of microbial 



Use of food resources by detritivorous fish in floodplains: a synthesis

Acta biol. Colomb., 20(1):5-14, enero - abril de 2015   - 11

carbon which are essential for ecological studies and for 
monitoring and application of models (Leal and De-Polli, 1999; 
Turner et al., 2001; Wang et al., 2003; Caraballo et al., 2012).

FINAL CONSIDERATIONS
Considering the above exposed, information about the 
microbial biomass are fundamental for ecological studies. 
In recent years, studies at the level of natural microbial 
communities have revolutionized the microbial ecology 
and this fact has allowed more accurate identification of 
organisms that were previously considered as small dots in 
the microscope.

For many years, ecological studies have assigned to the 
macrobiota the role of just decomposers of organic matter, 
but in recent years microorganisms, have been considered, 
essential for the energy flow in aquatic ecosystems.

Therefore, microorganisms have been the subject of 
diverse studies. According to the Web of Science® the 
number of articles in ecology related to microorganisms has 
increased significantly in the last decades. A research using 
the combination of the terms microbial biomass and ecology 
listed 687 articles published between 1990 and 2011.

These data show a significant increase in number of 
microbial ecological studies. This is especially due to the 
emergence of new techniques and methods that provided 
new perspectives in researches on diversity and function of 
microbial communities in aquatic environments.

Currently, researchers have stated that although 
challenging, microbial studies are no longer limited by 
methodological difficulties, and is relevant the inclusion 
of microorganisms in discussions on ecological subjects. 
Thus, current and future studies will enable a greater 
understanding of the role played by microbial processes in 
aquatic ecosystems.
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