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ABSTRACT
This research evaluated the changes on populations of culturable N-fixing free bacteria (NFFB) and P-solubilizing bacteria (PSB), as 
well as on the root nodulation by native rhizobia, the root colonization and spore number of arbuscular mycorrhizal fungi (AMF), in 
the rhizosphere of Clitoria ternatea and Brachiaria brizantha grown in mesocosms contaminated with crude oil (0, 3000, 6000, 9000, 
and 12000 mg kg-1), for 240 days. After 24 h of soil contamination, the highest populations of NFFB and PSB (5.5 and 4.9 LogUFC, 

respectively) were found in control, and the lowest populations were obtained at 12000 mg kg-1 (5.1 and 4.2 LogUFC, respectively). 

In contrast, at 60 and 240 days, the control showed lower populations of NFFB and PSB (5.4 and 4.8 LogUFC, respectively) than 

contaminated treatments. The highest number of root nodules in C. ternatea was quantified in control at 60 and 240 days (25 and 
27 nodules, respectively) in comparison to those observed at the treatment with 12000 mg kg-1 (7 and 1 nodule, respectively). At 
60 days, AMF colonization in both plant species, and the number of spores significantly decreased as the crude oil concentration 
increased; however, at 240 days, the highest number of AMF spores was recorded at treatments with 6000 and 12000 mg kg-1. 
The dry weight of both plant species significantly decreased as crude oil concentrations increased. Although C. ternatea was more 
susceptible to the toxic effects of crude oil, this plant species showed greater content of total chlorophyll than B. brizantha.
Keywords: Arbuscular mycorrhizal fungi, crude oil, N-fixing free bacteria, P-solubilizing bacteria, root nodulation, soil contamination.

RESUMEN
Esta investigación evaluó los cambios en la población cultivable de bacterias de vida libre fijadoras de nitrógeno (BVLFN) y de 
bacterias solubilizadoras de fósforo (BSP), así como en la nodulación de raíces por rizobios nativos, y en la colonización y número de 
esporas de hongos micorrízicos arbusculares (HMA) en la rizósfera de Clitoria ternatea y Brachiaria brizantha cultivadas en mesocosmos 
contaminados con petróleo crudo (0, 3000, 6000, 9000 y 12000 mg kg-1), durante 240 días. A las 24 h de la contaminación del 
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INTRODUCTION 

Plant rhizosphere harbors several microbial groups whose 
physiological activity significantly influences soil fertility, 
quality, and health properties (De Ridder-Duine et al., 
2005; Sanon et al., 2009; Nie et al., 2011), and stimulates 
the proliferation and abundance of microorganisms able 
to detoxify or degrade soil contaminants (Sanon et al., 
2009; Sun et al., 2015). This rhizosphere interaction not 
only benefits the microbial communities but also influences 
positively both plant growth and adaptation (Walker et al., 
2003; Harrier and Watson, 2004; Hayat et al., 2010).

Soil microflora is mainly represented by bacteria and 
fungi (Dajoz et al., 2002; Weidmann et al., 2004). Bacteria 
may release organic compounds, some of them may 
establish symbiosis with plants, and others may inhibit 
the proliferation of plant pathogens due to secretion of 
antibiotic compounds (Barea, 1998; Ferrera-Cerrato and 
Alarcón, 2007; Mitter et al., 2013). Microorganisms play a 
significant role in nutrient cycling in soil such as biological 
atmospheric nitrogen fixation or solubilization of inorganic 
phosphates, whose deficiency typically impairs plant 
growth and development (Barea, 1998). Also, arbuscular 
mycorrhizal fungi (AMF) are obligated biotrophic symbionts 
that colonize cortical cells of roots of most of the extant 
terrestrial plants, and enhance plant nutrition and growth, 
as well as plant adaptation against stressful soil conditions, 
water deficiency, contamination, or pathogens (Linderman, 
2000; Jeffries et al., 2003; Liu et al., 2004; Hernández-
Ortega et al., 2012). These fungi have important effects 
during the phytoremediation of soils contaminated with 
petroleum hydrocarbons (Cabello, 2001) by enhancing 
plant adaptation, growth, nutrition or by stimulating the 
proliferation of petroleum-degrading microorganisms in the 
rhizosphere (Joner and Leyval, 2003; Alarcón et al., 2008; 
Hernández-Ortega et al., 2012). The later benefits highlight 
the crucial role of rhizosphere microorganisms by improving 
physical and chemical properties in the surrounding edaphic 
environment (Zhang et al., 2006; Bento et al., 2012). 

Soil pollution by accidental oil spills is an environmental 
issue that has received special attention worldwide. These 

contaminants modify soil properties by forming a layer 
covering the surface and the pore space, thus affecting 
oxygen diffusion (Franco et al., 2004; Nageswara-Rao et al., 
2007; Sun et al., 2015). Likewise, hydrocarbons decrease 
water retention due to their hydrophobic properties, 
and significantly increase the amount of carbon, induce 
acidification processes, and decrease the cation exchange 
capacity (Li et al., 2000; Châineau et al., 2003; Rivera-Cruz et 
al., 2005; Nie et al., 2011). 

When hydrocarbons accumulate in the rhizosphere 
the most affected physiological process in the plant is 
photosynthesis so that the chlorophyll content decreases in 
leaves (Adenipekun et al., 2008; Baruah et al., 2014) and the  
synthesis of proteins, sugars, and lipids are affected, 
thus, plant development is limited (Nageswara-Rao et al., 
2007). These contaminants exert pressures on the floristic 
composition, favoring the selection of well-adapted plant 
species. Part of this adaptation consists in their association 
with soil microorganisms as a mechanism to withstand 
the adverse conditions caused by contaminants (Franco 
et al., 2004; Nageswara-Rao et al., 2007). Besides causing 
toxic effects to many microorganisms, some oil fractions 
are utilized as a source or carbon and energy for satisfying 
microbial growth (Franco et al., 2004; Gerdes et al., 2005, 
Labud et al., 2007; Essien et al., 2013; Dellagnezze et al., 2014). 
These are evident on culture-dependent microorganisms, 
by which is possible the characterization and the selection  
of microorganisms with potential use for bioremediation of  
soils contaminated with several compounds (Alkorta et 
al., 2004; Hubalek et al., 2007; Zhuang et al., 2007; Singh, 
2008; Chibuike, 2013; Zhou et al., 2013; Dellagnezze et 
al., 2014; Ullah et al., 2015). Thus, certain physiological/
functional microbial groups have significance relevance 
under contaminated environments since they may contribute 
on nutrient cycling such as nitrogen (N), phosphorus (P) or 
more importantly on promoting plant growth (Ramirez-
Elías et al., 2014; Morales-Guzmán et al., 2017; Alejandro-
Córdova et al., 2017).

The responses of AMF to petroleum hydrocarbons 
are related to reducing root colonization. However, AMF 

suelo, las poblaciones más altas de BVLFN y BSP (5,5 y 4,9 LogUFC, respectivamente) se encontraron en el control, mientras que las 

poblaciones más bajas se obtuvieron a 12000 mg kg-1 (5,1 y 4,2 LogUFC, respectivamente). En contraste, a los 60 y 240 días, el control 

mostró bajas poblaciones de BVLFN y BSP (5,4 y 4,8 LogUFC, respectivamente) que los tratamientos contaminados. El mayor número 
de nódulos en raíz de C. ternatea se cuantificó en el control a los 60 y 240 días (25 y 27 nódulos, respectivamente) en comparación 
con el tratamiento con 12000 mg kg-1 (7 y 1 nódulos, respectivamente). A los 60 días, la colonización de HMA en ambas especies 
vegetales y el número de esporas disminuyeron significativamente al aumentar la concentración de petróleo crudo; sin embargo, a 
los 240 días, se registró el mayor número de esporas de HMA en los tratamientos con 6000 y 12000 mg kg-1. El peso seco vegetal 
disminuyó significativamente al aumentar las concentraciones de petróleo crudo. Clitoria ternatea fue más susceptible a la toxicidad 
del petróleo, aunque esta especie vegetal mostró mayor contenido de clorofila total que B. brizantha.

Palabras clave: Bacterias fijadoras de N de vida libre, bacterias solubilizadoras de P, contaminación de suelo, hongos micorrízicos 
arbusculares, nodulación en raíz.
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may stimulate plant survival growing at contaminated 
conditions, and allow the proliferation of microorganisms 
able to degrade organic compounds (Binet et al., 2001; Liu 
et al., 2004; Franco-Ramírez et al., 2007; Labud et al., 2007; 
Alarcón et al., 2008; García et al., 2013; Kuo et al., 2014; 
Alejandro-Córdova et al., 2017).

The ability of plants to grow at contaminated media varies 
from one species to another, and this variation is the key 
for the remediation of soils contaminated with petroleum 
hydrocarbons (Akutam et al., 2014). Clitoria ternatea (L.), 
and Brachiaria brizantha (A. Rich) are plant species of tropical 
regions, easy to establish, resistant to drought, and tolerant 
to organic contaminants (Sangabriel et al., 2006; FAO, 2015). 
However, the rhizosphere microbial populations in both plant 
species under contaminated soils are not well studied. 

Thus, the present study evaluated the effects of crude oil 
contaminated soil on the culture-dependent population of 
rhizosphere microorganisms, whose physiological activity is 
related to the incorporation of atmospheric nitrogen, the  
solubilization of inorganic phosphates in the soil, and  
the promotion of growth of two plant species established in 
mesocosms under greenhouse conditions. 

MATERIALS AND METHODS

Soil collection and mesocosms establishment

The soil was collected from the municipality of Rodriguez 
Clara, Veracruz (Mexico) at coordinates 18º00’ N and 
95º24’ W, 95 m.a.s.l., without the previous problem of 
petroleum hydrocarbon pollution. The soil sample was 
collected (20 cm depth), and analyzed to determine cation 
exchange capacity (CIC), organic matter content (OMC), 
and content of P, N, and C. The main soil physical and 
chemical characteristics were: sandy-loam texture (71 % 
sand, 17 % silt); 5.7 meq CEC, 1.5 % OMC, 0.07 % total N, 
6 mg P kg-1 (Olsen), and 0.02 meq K L-1.

Eight kilograms of dry sieved soil (2 mm mesh) were 
placed in each of the 15 plastic containers (36 x 30 x 14 cm) 
used as mesocosms. The soil was artificially contaminated 
with crude oil at the following concentrations: 3000, 6000, 
9000, and 12000 mg kg-1, respectively. A treatment without 
oil pollution was included as a control. The crude oil was 
dissolved with 300 mL of dichloromethane (Baker®) to 
reduce oil viscosity and facilitate the soil impregnation. 
This solvent is quickly volatilized (< 0.002 % of residue after 
evaporation) and do not exert significant effects on soil 
microorganisms (Alarcón et al., 2008); thus, there was no 
need to establish control with the application of this solvent.

One week after contamination, 15 seeds of Clitoria ternatea 
L. (Fabaceae) and 15 of Brachiaria brizantha (Hochst. ex Rich.) 
(Gramineae) were planted in combination in each mesocosm 
evenly distributed in the substrate at one-centimeter depth. 

Throughout the experiment (240 days) under greenhouse 
conditions, the mesocosms were irrigated with tap 
water as needed. The temperature and relative humidity  
(maximum and minimum) prevailing during this research 
were 35.4+5.4 and 13.7+1.6 °C, and 82.9+7 and 28.8+ 
11.1 %, respectively (Data logger WatchDog, model 450).

The population of functional groups of culturable bacteria 
and root colonization of symbiotic microorganisms 

24 hours after soil contamination samples were taken to 
estimate the culturable bacterial populations as described 
in the following paragraph and to compare them with the 
two further sampling times (60 and 240 days) described  
as follow.

Soil sampling was collected at 60 and 240 days. For each 
mesocosm, a composite soil sample was prepared from 
five sampled points (300 g rhizosphere soil each). Thus, 
three composite samples per treatment were obtained. 
From these composite samples, 10 g of soil were used for 
determining culturable microorganisms according to serial 
dilutions and agar plate counting technique (Lorch et al., 
1995) using the following growth media: combined carbon 
(Rennie, 1981) to assess the colony forming units (CFU) of 
nitrogen-fixing free-living bacteria (NFFLB), and Pikovskaya 
(Subba-Rao, 1993) to assess the total P-solubilizing 
bacteria (PSB). For C. ternatea, the number of root nodules 
formed by native rhizobia was evaluated.

The mycorrhizal colonization in both C. ternatea and B. 
brizantha (three plants of each species per treatment were 
harvested at each sampling time) was quantified through 
the root clearing and dyeing method (Phillips and Hayman, 
1970). Once the roots were dyed and mounted on slides, 
the frequency of AMF structures (hyphae, vesicles, and 
arbuscules) in each root fragment was estimated using a 
clear field optical microscope (Reichert, Microstar Model 
410) at 40 X magnification, and to calculate the percentage 
of colonization. The extraction of AMF spores was performed 
by the wet sieving and decanting method (Gerdemann and 
Nicolson, 1963), followed by centrifugation in 70 % sucrose 
(Castillo et al., 2008). The undamaged spore counting 
was done under a stereomicroscope (Reichert, StereoStar 
Zoom), and results were expressed as a number of spores 
per 100 g dry soil.

Assessment of phytotoxicity of oil in Clitoria ternatea and 
Brachiaria brizantha

At the end of the experiment (240 days), the toxicity of 
the crude oil to plants was evaluated by quantifying the dry 
biomass and the total chlorophyll content in leaves of both 
species. The total dry weight of C. ternatea and B. brizantha 
was determined by harvesting three individuals per species of 
each mesocosm and then drying the harvested plant material 
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at 70 °C for three days. The total chlorophyll content was 
determined by the method described by Dere et al., (1998). 
One leaf of C. ternatea, and two square centimeters of leaf 
tissue from B. brizantha were used for pigment extraction, 
from which the fresh weight was obtained. Leaf samples from  
each plant were placed in test tubes with 5 mL 80 % acetone 
and kept at 4 °C for one week. Subsequently, from the 
obtained solution, absorbance readings were taken, 470, 
645, and 662 nm, in a spectrophotometer (Hewlett Packard, 
model 8453).

Experimental design and statistical analysis

The experiment consisted of five treatments with three 
replicates each, distributed in a completely randomized 
experimental design. Data obtained from each sampling 
(60 and 240 days) were analyzed using analysis of variance 
and the mean comparison test (LSD, =0.05) using  
the SAS version 8 for Windows (SAS Institute, 2002). The 
percentages of mycorrhizal colonization were transformed 
to arcsine units, while the values from the quantification of 
bacterial CFU were transformed to log units for subsequent 
statistical analysis.

RESULTS

The population of functional groups of culturable bacteria 
and root colonization of symbiotic microorganisms

In response to crude oil concentrations, the NFFLB and 
PSB populations decreased significantly (p<0.001) at the 
beginning of the experiment (time zero) in comparison to  
the control (Fig. 1a-b). After 60 days, a significant increase of 
NFFLB and PSB populations was detected due to the crude 
oil, in comparison to the control (Fig. 1a-b). At 240 days, 
the NFFLB population was significantly higher in treatments 
with 9000 and 12000 mg kg-1 than the control (Fig. 1a), 
while the PSB population was similar among treatments 
(Fig. 1b).

The number of nodules in C. ternatea significantly 
decreased (p<0.001) at contaminated soils (Fig. 2a). At 60 
days, control plants had in average 25 nodules, whereas at 
contaminated treatments, plants had in average four nodules 
(Fig. 2a). At 240 days, control plants showed 27 nodules, 
while concentrations of 3000 and 6000 mg kg-1 resulted in a 
low number of nodules (7) (Fig. 2a). In contrast, treatments 
with 9000 and 12000 mg kg-1, resulted in the lowest number 
of nodules (Fig. 2a).

Mycorrhizal colonization at 60 days in B. brizantha and 
C. ternatea grew at control treatment was 52.6 and 64 %, 
respectively, showing significant differences to treatments 
with crude oil (15 and 18 % colonization in average, for both 
plat species, respectively) (Fig. 3a-c). At 240 days, B. brizantha 
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Figure 1. Populations of (a) N-fixing free-living bacteria (N2-
FFLB) and (b) P-solubilizing bacteria in the rhizosphere of Clitoria 
ternatea and Brachiaria brizantha grown in mesocosms contaminated 
with four concentrations of crude oil, at an initial time (24 h after 
contamination), 60 and 240 days. Means ± standard error. Mean 
comparison test (LSD, =0.05). n=5.
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at control treatment showed high colonization (63.8 %), 
which significantly decreased as crude oil concentration 
increased, especially at 12000 mg kg-1 (Fig. 3b). At 240 
days, C. ternatea grown at control treatment showed the 
highest colonization (53 %), but plants at 12000 mg kg-1 
had mycorrhizal colonization as low as 10 % (Fig. 3d). 

After 60 days, control treatment had the highest number 
of AMF spores (165 spores in 100 g dry soil), but in 
contaminated treatments, the number of spores ranged from 
55 to 28, without presenting statistical differences among 
treatments (Fig. 2b). In contrast, the number of spores at 
240 days was significantly higher at the concentration of 
6000 mg kg-1 (140 spores) than that from 3000 mg kg-1 (45 
spores) (Fig. 2b).

Phytotoxic effects of crude oil on Clitoria ternatea and 
Brachiaria brizantha

The total dry weight of B. brizantha at 60 days was 
significantly higher in the treatment with 3000 mg kg-1 when 
compared to the control and the remaining contaminated 
treatments (Fig. 4a). At 240 days, the highest dry weight was 
obtained in control plants and the lowest in plants grown 
under 12000 mg kg-1 (Fig. 4b). For C. ternatea no significant 
differences were observed among treatments at 60 days  

(Fig. 4c), but at 240 days, the total plant dry weight decreased 
significantly (p<0.001) as the crude oil concentrations 
increased (Fig. 4d).

For B. brizantha, total chlorophyll content at 60 days was 
significantly higher in the treatment with 12000 mg kg-1 
when compared to the remaining treatments (a). However, 
after 240 days, the total chlorophyll content significantly 
decreased in all treatments, although the significant highest 
content was obtained in plants exposed to 9000 mg kg-1 
(Fig. 5b). For C. ternatea, at 60 days, chlorophyll content 
decreased significantly as the crude oil concentration 
increased (Fig. 5c). In contrast, at 240 days, plants grown 
in treatments with 6000 and 9000 mg kg-1 had significantly 
higher chlorophyll content than the remaining treatments 
(Fig. 5d).

DISCUSSION
Increasing concentrations of crude oil caused significant 

reduction of bacterial populations at initial sampling time, 
thus, proving the negative effects of this contaminant, which 
also acts as a selective toxic agent. Chikere et al., (2009) 
indicated that the reduction of bacterial populations is 
an adaptive response to petroleum hydrocarbons because 
of their hydrophobic properties that reduce the enzyme 
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since the aim of this research was focused on the expression 
of nodules in roots due to the recovery of native rhizobia in 
the soil.

Either AMF colonization or number of spores decreased 
significantly as crude oil concentrations increased, which 
concurs with negative effects of petroleum hydrocarbons 
on AMF (Cabello, 1997; Gaspar et al., 2002; Franco-
Ramírez et al., 2007; Bento et al., 2012; García et al., 2013; 
Driai et al., 2015). However, our results denote that AMF 
sporulation showed a recovery at 240 days (Figure 2b), and 
AMF colonization also increased in roots of Brachiaria when 
grown in treatments with 6000 to 12000 mg kg-1, at 240 
days (Figure 3b). The sporulation represents an AMF strategy 
to ensure their progeny under environmentally stressful 
conditions; moreover, AMF colonization may increase plant 
resistance to abiotic stresses (Harrier and Watson, 2004).

Phytotoxicity of crude oil resulted in decreased dry 
biomass of Brachiaria, and more dramatically in Clitoria, 
which was more susceptible to contamination, excepting at 
60 days at 3000 mg kg-1 when its biomass increased, probably 
due to the nutrient availability provided for the proliferation 
of PSB, for instance. Excepting this, the results concur to 
those effects described for several plant species including 
non-legume or legume species under contaminated soils at 
greenhouse conditions (Adenipekun et al., 2008; Bento et al., 
2012; Baruah et al., 2014; Kuo et al., 2014). Furthermore, 
legumes have been described as highly sensitive species 
than grasses to organic contaminants (Spiares et al., 2001; 
Pilon-Smits, 2005). Moreover, the presence of AMF and 
rhizobia in roots of legume species allows better tolerance 
and growth when grown under oil-contaminated soil, 
showing high AMF colonization and number of nodules. 
Our results suggest that effects of crude oil on microbial 
populations in the rhizosphere of grasses and legumes are 
time depending, because meanwhile the NFFLB, PSB, and 
AMF showed a stabilization and recovery tendencies along 
experimentation, but the nodule formation for rhizobia was 
depressed at 240 days.

Moreover, petroleum hydrocarbons result in positive 
impacts on symbiotic microorganisms in plants. The 
beneficial effects of culturable bacteria and symbiotic 
microorganisms on plant species also resulted in diminishing 
the content of petroleum hydrocarbons in mesocosms. 
Overall, petroleum degradation in the mesocosms ranged 
from 53 % at mesocosms contaminated with 3000 mg kg-1 
to ~ 33 % in average for mesocosms with 9000 and 12000 
mg kg-1, at the end of experimentation (data not shown).

Conversely, the total chlorophyll content was higher in 
Clitoria when compared to Brachiaria, denoting that Clitoria 
despite being highly sensitive to contamination, establishes 
symbiosis with rhizobia by which both N-assimilation 
and total chlorophyll content are improved, especially 
at concentrations below 12000 mg kg-1. Although the 
biomass of Brachiaria was greater than that achieved for 

activity and the ability of plants and microorganisms  
to absorb water and nutrients (Van Hamme et al., 2003; Osuji 
and Nwoye, 2007; Nie et al., 2011). Also, microorganisms 
compete for available nutrients and energy sources; thereby 
the microbial population is restricted (Miranda-Martínez 
et al., 2007). Nevertheless, after 60 days, the recovery of 
NFFLB and PSB was observed since their populations were 
higher than the control. The growth of bacterial populations 
may be due to the selective effects of crude oil on soil 
microorganisms, favoring those with the ability to degrade 
or utilize petroleum hydrocarbons as a source of carbon 
and energy (Delille et al., 2003; García et al., 2013; Trujillo-
Narcia et al., 2014) which prevailed over time. For example, 
Proteobacteria and Actinobacteria are dominant bacterial 
groups in contaminated soils and able to metabolize 
hydrocarbons (Yang et al., 2014). Delille et al., (2003) and 
Kaplan and Kitts, (2004) mentioned that when an event of 
oil pollution occurs there is a first microbial process of fast 
degradation of labile or less toxic fractions of hydrocarbons; 
as these fractions are consumed, a second degradation 
phase starts in which the remaining toxic compounds are 
attacked.

Furthermore, these processes are regulated by both 
physicochemical properties of hydrocarbons and 
environmental conditions (Stroud et al., 2007). Although no 
analyses of hydrocarbon degradation were performed, the 
described microbial processes explain in part the significant 
recovery of bacterial populations after 60 days. 

Undoubtedly, tap water irrigation may contribute with 
the addition of some microorganisms to mesocosms, but 
petroleum hydrocarbons acted as a selective agent from 
the beginning of experimentation, so at the end time 
(240 days), this contaminant acted on the recovery and 
stabilization of well-adapted NFFLB and PSB populations, 
and on the increased colonization of AMF and nodule-
forming rhizobacteria. This phenomenon was described by 
Liste and Felgentreu, (2006) with legumes and grasses in 
fields exposed to petroleum hydrocarbons. 

Crude oil significantly affected the formation of nodules 
by native rhizobia in roots of C. ternatea. Few studies have 
described the negative effects of petroleum hydrocarbons 
on rhizobial nodulation; overall nodulation decreases in 
those legumes exposed to petroleum hydrocarbons, either 
at controlled or natural conditions (Lindström et al., 2003; 
Rivera-Cruz et al., 2005; De Farias et al., 2009). At 240 
days, nodulation in Clitoria plants showed certain recovery 
at 6000 mg kg-1. In this regard, petroleum hydrocarbons 
may promote the N-fixation by rhizobial nodules in legumes 
grown in contaminated boreal soils (Yan et al., 2015); 
however, further studies are needed to evaluate the effects of 
hydrocarbons on the nitrogenase activity under petroleum 
contamination. In this regard, the functionality of nodules 
in terms of leghemoglobin content (pink coloration) or 
nitrogenase activity was considered in the present study 
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Clitoria, the high content of total chlorophyll in this legume 
may be in part explained due to the accumulation of this 
photosynthetic pigment in reduced leaf area, whereas in 
Brachiaria this accumulation may be diluted in greater leaf 
area. In this regard, the symbiosis between nitrogen-fixers 
may promote the growth of legumes in contaminated soils 
with crude oil, in which the C/N ratio is generally high 
(Adam and Duncan, 2003). This bacterial benefit was 
additionally improved by AMF colonization over time, which 
could contribute on improving N and P plant uptake and 
consequently on plant growth (Tang et al., 2009; Wang et al., 
2017). The chlorophyll content is a critical parameter used 
as an indicator of plant stress under adverse conditions (Dai 
et al., 2009). Nevertheless, total chlorophyll content may not 
be a suitable indicator of plant toxicity, but some reports 
indicate that organic contaminants may affect the content 
of photosynthetic pigments in plant species from terrestrial 
and marine ecosystems (Odjegba and Sadiq, 2002; Catriona 
et al., 2003; Njoku et al., 2008; Tanee and Akonye, 2009; 
Naidoo et al., 2010; Bento et al., 2012). However, crude oil 
concentrations impaired growth of both plant species.

CONCLUSIONS
The crude oil did not modify the populations of NFB 

and PSB along experimentation until 240 days. In contrast, 
at the beginning of the experiment, the contaminant 
significantly decreased the population of both rhizobia and 
AMF in the rhizosphere of C. ternatea and B. brizantha, but 
these microorganisms showed significant recovery at 240 
days. Also, crude oil induced phytotoxic effects in both plant 
species, then limiting their growth. All microbial populations 
assessed in this research tend to increase over time, to show 
certain resilience to the contaminant, and thus, to sustain 
plant growth and fitness under these stressful conditions.
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