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ABSTRACT
Chlorophyta and Cyanophyta are photosynthetic organisms characterized by their biochemical plasticity, which has allowed them 
to develop in different environments and have a faster growth rate than plants. Depending on the species and environmental 
conditions, these organisms can produce nitrogenous enzymes, for atmospheric nitrogen fixation; phosphatases, that solubilize 
phosphorus; phytohormones, that promote plant growth; and hygroscopic polysaccharides, that prevent erosion and improve 
soil characteristics. In this sense, the aim of this review was to analyze the available information on the use of Chlorophyta and 
Cyanophyta as biofertilizers and their potential application in organic food production. Multiple studies and researches were found 
demonstrating the advantages of these microorganisms when being used to improve plants productivity, and also at the same time, 
leading to sustainable agriculture that is respectful to the environment. However, their high production cost has become a limiting 
factor for their commercialization.
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RESUMEN
Clorófitas y cianófitas son organismos fotosintéticos que se caracterizan por su plasticidad bioquímica, lo que les ha permitido 
desarrollarse en diferentes ambientes y tener una tasa de crecimiento más rápida que las plantas. Dependiendo de la especie y 
las condiciones ambientales, estos organismos pueden producir enzimas nitrogenadas para la fijación del nitrógeno atmosférico; 
fosfatasas que solubilizan el fósforo; fitohormonas que promueven el crecimiento de las plantas; y polisacáridos higroscópicos 
que evitan la erosión y mejoran las características del suelo. En este sentido, el objetivo de esta revisión fue analizar la información 
disponible sobre el uso de cianófitas y clorófitas como biofertilizantes, y su posible aplicación en la producción de alimentos 
orgánicos. Múltiples estudios e investigaciones fueron encontrados demostrando las ventajas del uso de estos microorganismos para 
mejorar la productividad de las plantas, y que a su vez conducen a una agricultura sostenible respetuosa con el medio ambiente. Sin 
embargo, su alto costo de producción se ha convertido en un factor limitante para su comercialización.
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INTRODUCTION

Chlorophytes and cyanophytes are photosynthetic 
organisms characterized by their biochemical plasticity, 
which has allowed them to develop in different environments 
and have a faster growth rate than plants. Both chlorophytes 
and cyanophytes, do not have tissue-specific biochemistry 
activity, meaning that each cell produces all the necessary 
substances for photosynthesis, development, and 
reproduction. Therefore, interest in the biotechnological 
potential of these organisms has increased, given their 
adaptability to large scale production technologies. Some 
of these microalgae main biotechnological applications 
are high nutritional value and healthy food production, 
hydrogen production as biofuel, ecosystem restoration, 
and crops biofertilization (Guedes et al., 2011; Berg et al., 
2014; Nyberg et al., 2015; Verseux et al., 2016; Chamizo et 
al., 2018).

According to the species and environmental conditions, 
these organisms can produce nitrogenous enzymes, for 
atmospheric nitrogen fixation; phosphatases, for phosphorus 
solubilization; phytohormones similar to cytokinins for 
plant growth, such as iso-pentenyladenine and zeatin; 
and, hygroscopic polysaccharides that prevent erosion and 
improve soil characteristics (Osman et al., 2010; Lu and 
Xu, 2015; de Siqueira Castro et al., 2017). These features 
have awakened interest in chlorophytes and cyanophytes 
investigation as alternatives for organic crops fertilization. 
Multiple laboratory and field experiments had evaluated 
these organisms’ application in crops like rice, corn, wheat, 
tomatoes, and others, especially in countries with limited 
access to chemical fertilizers (Coppens et al., 2016; Renuka 
et al., 2016; Chittapun et al., 2018; Dineshkumar et al., 2018; 
Dineshkumar et al., 2019). Thus, this review aims to analyze 
the available information on chlorophytes, and cyanophytes 
use as biofertilizers for organic food production, being an 
alternative to products obtained from chemical syntheses, 
such as conventional fertilizers and pesticides. 

BIOFERTILIZATION WITH CHLOROPHYTA AND 
CYANOPHYTA AS AN ALTERNATIVE IN AGRICULTURE

Soil fertilization is a relevant and limiting factor for 
crops growth and productivity due to crops that extract 
large amounts of nutrients, and agricultural practices that 
decrease organic matter (OM) content, which is essential 
for soil structure, soil biodiversity, buffer capacity, thermal 
conductivity and soil fertility (Nain et al., 2010; Lin et al., 
2013); and can also affect soil’s water retention (Lehmann 
and Kleber, 2015; Schlatter et al., 2017). Research has 
shown that soil processes related to phosphorus, carbon 
and nitrogen cycles, and also soil quality indicators such as 
arbuscular mycorrhizal fungi, community-level physiological 
profiles, alkaline phosphatase, and dehydrogenase activities, 
are very sensitive to the indiscriminate use of chemical 

fertilizers causing serious consequences such as lower 
nutritional quality, soil structure degradation, and change 
in the physical, chemical and biological soil conditions as its 
microbiota is altered (Souza et al., 2016; Malik et al., 2017; 
Nivelle et al., 2018). 

As an alternative to commercial fertilizers, a series 
of biofertilization techniques had been developed, like 
composting use, organic and biological fertilizers, all of 
them aiming to promote sustainable agricultural practices 
favorable to the environment and that generate higher 
nutritional quality products (Vandana et al., 2017; Helmy, 
2018). Biofertilizers are substances that contain alive 
microorganisms and improve the plant’s development. 
The difference between these products and chemical 
fertilizers consist in the biofertilizer’s gradual nutrients and 
phytostimulants supply, that improves soil characteristics 
and provides optimal plant growth (Carvajal-Muñoz and 
Carmona-Garcia, 2012; Mosa et al., 2015). Biofertilization 
stimulates soil properties by increasing OM content, 
facilitating cation-exchange capacity (CEC), raising 
water retention, promoting aggregates formation, and 
improving soil’s buffering capacity, through the presence of 
polysaccharides and mucilaginous substances that provide 
the cohesiveness for binding soil mineral particles and 
thereby help in soil structure formation (Carvajal-Muñoz and 
Carmona-Garcia, 2012; Vitousek et al., 2013; Ghosh, 2018). 

Owing to its ion retention capacity, OM preserves 
nitrogen, and phosphorus by diminishing these nutrients 
leaching, and favors microorganisms root colonization 
and prevents phytopathogens development (Lehman et al., 
2015). Therefore, microbial inoculants have been used in 
sustainable agriculture to maintain high productivity and 
crop quality with lower costs compared to chemical fertilizers 
(Sarma et al., 2015; Li et al., 2017; Vandana et al., 2017).

Furthermore, biofertilizers are an alternative to improve 
agricultural productivity in erosion susceptible soil, which can 
be caused by the lack of OM, due to its particle aggregating 
effect (Cotrufo et al., 2015; Lehman et al., 2015). A strategy 
to increase OM and soil nutrient levels consist in adding 
microorganisms that produce mucilaginous polysaccharides 
(intracellular and extracellular), which are hygroscopic and 
have adhesive properties that act as soil particle aggregating 
agents, thus, increasing soil’s porosity and improving its 
structure (Colica et al., 2014; Rossi and de Philippis, 2015). 
These effects in the soil can last for several months, and 
afterward, during the degradation of polysaccharides, 
plants receive those nutrients gradually (Park et al., 2017; Li 
et al., 2018). Some chlorophytes and most cyanophytes have 
a high production of these polysaccharides and mucilage, 
as they are components of the cell wall (Ghosh, 2018). 
Recent research uncovered their many possible applications 
not only in agriculture but also in biomedicine due to their 
antibacterial, antiviral, antifungal, and anticoagulant activity 
(Guo et al., 2015; Berri et al., 2016; Faggio et al., 2016).
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Chlorophytes and cyanophytes are fast-growing 
photoautotrophic organisms with the ability to adapt to 
different environmental conditions, which allows them to 
be established in small areas and regions non-suitable for 
crops (Sorochkina et al., 2018). Cyanophytes are primary 
colonizers during soil’s successional processes, and can 
even grow over volcanic ashes (Kerfahi et al., 2017). It is 
estimated that there are between 22 000 and 26 000 species, 
of which only a few are used for commercial purposes, 
including Spirulina, Chlorella, Nostoc, Anabaena, Haematococcus, 
Dunaliella, Botryococcus, Porphyridium, Scenedesmus, Nitzchia, 
Isochrisis, Schyzochytrium, and Phaeodactylum (Lu and Xu, 2015; 
Galarza et al., 2016; Hagemann and Hess, 2018).

In chlorophytes and cyanophytes, mucilage synthesis 
is considered a strategy to tolerate various types of 
environmental stress caused by dehydration, mechanical 
damage, UV radiation, and high temperatures. Mucilage 
acts as a metal ions chelator, approaching to plant’s cell wall 

and facilitating its absorption. Also, it favors the specialized 
microbial interactions between different microenvironments 
and biomineralization processes (de los Ríos et al., 2015; 
Fimbres-Olivarria et al., 2018). Cyanophytes can improve 
desert soil characteristics due to their mucilaginous 
polysaccharides and other metabolites production, that 
increase soil levels of nitrogen and carbon, and capture 
water from the atmosphere, allowing the development of 
vascular plants like Coleogyne ramosissima, Stipa hymenoides, 
Streptanthella longirostris, Lepidium montanum var. jonesii, 
Agriophyllum squarrosum, Agropyron mongolicum, Artemisia 
ordosia, and Elymus dahuricus (Wierzchos et al., 2015; Rasuk 
et al., 2016).

The use of chlorophytes and cyanophytes as 
biofertilizers is called “algalization”, a term developed by 
G.S. Venkataraman in the 1970s. Research on this topic 
has focused on the use of chlorophytes and cyanophytes 
to offer nitrogen in crops. However, as seen in Figure 1, 

Figure 1. Effects of cyanophytes and chlorophytes as microalgae biofertilizers. In soil, they produce mucilage, hygroscopic polysaccharides, 
phosphatases, phytohormones, nitrogenous enzymes, antipathogen, and antioxidant compounds that enhance nutrient uptake and growth and 
protect the roots. In the plant, there is an improvement in rooting, germination, growth and development, yield and nutritional value of the final 
consumption product.
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besides nitrogen fixation they can also improve soil physical 
properties, increase the nutrients available for plants, and 
produce substances that promote plant development (Dash 
et al., 2016; Rossi et al., 2017; Helmy, 2018). Indeed, the 
presence of cytokines had been described in cyanophytes like 
Calothrix sp, Nostoc sp, and Phormidium animale (Frébortová 
et al., 2017). This type of phytohormones is responsible for 
increasing productivity in crops fertilized with cyanophytes, 
which do not necessarily correspond to higher nitrogen soil 
levels, but a major cell division and differentiation caused by 
the stimulating of plant growth (Haque et al., 2017).

BIOFERTILIZATION WITH CYANOPHYTES
Several investigations have shown the viability of 

cyanophytes use as biofertilizers in plants (See Table 1), 
especially in rice, providing nitrogen through N2 atmospheric 
fixation, and large amounts of polysaccharides that 
immobilize water on the soil surface during the dry season 
(Iyovo et al., 2010). This retained water remains available 
to plants, prolonging their growing season and significantly 
increasing their yields (Odjadjare et al., 2017). Moreover, 
polysaccharides can also prevent wind erosion during the 
dry season, due to their aggregation effect on the surface soil 
particles (Dash et al., 2016; Padhy et al., 2016; Chittapun et 
al., 2018).

In rice crop, the nitrogen balance depends on microalgae 
as they participate in nitrogen fixation and mineralization. 
For this reason, paddy rice crops are fertilized with 
cyanophytes mixtures in numerous countries such as China, 
India, Indonesia (Shahane et al., 2015; Rossi et al., 2017; Yao 
et al., 2018), Spain and some of South America (Ranjan et 
al., 2016; Jhala et al., 2017). In rice, Nostoc and Anabaena 
strains, both nitrogen fixers, are predominant, reducing the 
use of chemical fertilizers up to 15 %, and contributing to 
the biological fixation of approximately 20-30 kg of nitrogen 
per hectare, in each growing season (Chittapun et al., 2018; 
Singh et al., 2018).

Biofertilization with cyanophytes has also been evaluated 
in other crops such as wheat (Li et al., 2017; Di Salvo et al., 
2018), legumes (Sonkoly et al., 2017; Muñoz-Rojas et al., 
2018), and green peas, where cyanophytes from Nostoc genus 
stimulated plant growth and increased seed germination, 
reducing the use of chemical fertilizers by 50 % (Osman et 
al., 2010). Furthermore, Maqubela et al. (2009) evaluated 
fertilization in maize also with Nostoc sp, finding that plants 
had between 40-49 % more dry weight and 14-23 % more 
N in their tissue. Similarly, Grzesik and Romanowska-Duda 
(2014) biofertilized maize, using cyanophytes strains from 
Microcystis aeruginosa and Anabaena sp, finding not only 
improvements in biomass and nutrient uptake, but also in 
percentage, dynamics, and mean time of germination. The 
authors associated these events with a high concentration 
of different bioactive compounds included in Cyanobacteria 

that stimulate physiological pathways inside the plant, 
like the assimilation of atmospheric nitrogen, increases in 
chlorophyll content in leaves, activity of net photosynthesis, 
transpiration, stomatal conductance, intercellular CO2 
concentration, activity of acid and alkaline phosphatase, 
RNase, total dehydrogenase, and a decrease in electrolyte 
leakage from leaves, which indicates lower permeability of 
cytomembranes under the application of Cyanobacteria 
(Grzesik and Romanowska-Duda, 2014). Later, the same 
authors confirmed those finding using willow plants (Grzesik 
et al., 2017). 

Overall, several authors had concluded that the species 
of Cyanophyta mentioned above can be an alternative 
replacement for chemical fertilization in different crops 
and that it is compatible with organic agriculture, including 
horticulture (Chamizo et al., 2018). Additionally, it has been 
observed that Cyanophyta also stimulates microbial activity 
in soils damaged by fire and in arid and semi-arid soils, 
reducing water and wind erosion (Nisha et al., 2018). 

BIOFERTILIZATION WITH CHLOROPHYTES
Cyanophytes use is widely known, but its applications 

are limited by some species possibility of producing toxic 
compounds (Kaushik et al., 2019). Since chlorophytes do 
not have this disadvantage, they offer interesting possibilities 
given their ease and speed of growth, as well as, for their 
nutrient content that includes Ca, Mg, Zn, Fe, P, K and Mn 
(Carvajal-Muñoz and Carmona-Garcia, 2012). 

Moreover, Chlorophytes can produce polysaccharides 
and some phytohormones, which could favor soils recovery, 
improve nutrient content, and enhance plants growth (Grzesik 
et al., 2017; Schreiber et al., 2018). For instance, irrigation of 
wheat and rice crops with chlorophytes suspensions, as well 
as the immersion of seeds in those suspensions, had shown 
numerous benefits, such as an increase in germination and 
productivity rates (Galarza et al., 2016; Huang et al., 2016; da 
Silva Ferreira and Sant’Anna, 2017; de Siqueira Castro et al., 
2017; Dineshkumar et al., 2018).

Out of all microalgae, Chlorella genus has been most used 
for biofertilization so far and was the first microalga to be 
cultivated (Wijffels et al., 2013). Chlorella is a unicellular, 
non-mobile Chlorophyta with 2-10 μm diameter. It is known 
for its food potential, given its high content of proteins and 
other nutrients. The use of Chlorella vulgaris, for instance, is 
widely known. Eman et al. (2008) used extracts of C. vulgaris 
on grape cultivations by adding them in concentrations of 
25 % and 100 %, causing a positive effect on productive 
bulbs percentage when comparing to the control treatment. 
Other characteristics like leaf area, stem length, and leaves 
and buds number, were too positively affected. Moreover, 
they observed a slight increase in the productivity of the 
vines expressed in the number of bunches, the weight of the 
grapes, the fruits quality, a reduction in the ripening time, 
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Table 1. Use of Chlorophyta and Cyanophyta as biofertilizers in different crop and non-crop plants.

Plant Organisms Application Effect Country Reference

Williams banana 
(Musa cavendishii) 

Chlorella vulgaris  
(Chlorophyta)

Spray four times during growing 
season at 0.0, 25, 50, 75 and 
100 % concentrations. 

Improvements: yield, bunch and hand weight, and 
chemical properties (total soluble solids % and to-
tal sugars, decrease in % of starch and total acidity).

Egypt
Eman et al., 
2008

Maize (Zea mays)
Nostoc sp. (Cya-
nophyta)

1 g dry weight/L suspension 
on soil (dry biomass: 6 g/m2).

Improvements: soil’s C, N and EPS content, and 
aggregate stability. Plant’s growth and N uptake. 

South Africa
Maqubela et 
al., 2009

Pea (Pisum sativa)

Nostoc entophytum  
(Cyanophyta)

Fresh weights: 0.5, 1 and 1.5 g 
dissolved in 100 mL of distilled 
water each (OD: 0.95 at 700 
nm) added to the soil (3 Kg 
soil/pot).

Improvements: germination percentage, growth 
parameters (root depth, shoot length, dry weight, 
leaf area, and number), pigments content (chloro-
phyll a and b, carotenoid), carbohydrate, total N 
and P, and protease and amylase activities.

Egypt
Osman et 
al., 2010Oscillatoria angustissima 

(Cyanophyta)

Maize (Zea mays)

Microcystis aeruginosa 
(Cyanophyta) Monocultures suspended in wa-

ter applied to grains up to 35 %  
for 2 days, and continuous  
moistening of the substrate  
(filter papers).

Improvements: germination percentage,  
dynamics, and mean time of germination and  
accelerated growth of seedlings (faster elongation 
of roots and leaves and enlarged fresh and dry  
biomass). Increase in chlorophyll content, the  
activity of net photosynthesis, and others.

Poland

Grzesik and 
Romanows-
ka-Duda, 
2014 

Anabaena sp.  
(Cyanophyta)

Chlorella sp.  
(Chlorophyta)

Cucumber  
(C. sativus)  
Eggplant  
(S. melongena) 
Rice (O. sativa) 
Lettuce (L. sativa).

Chlorella vulgaris  
(Chlorophyta) Seed watered with 2 ml of C. 

vulgaris solution (289×104/
ml) or C. pyrenoidosa solution 
(11.8×104/ml) twice a day.

Improvements: healthier seedlings with the enhanced 
root system. Seedlings of cucumber and eggplants 
had greener and bigger leaves. Cucumber seedlings 
were disease resistant. Higher chlorophyll a and b 
content, except in rice. 

Dubai, UAE
Elhafiz et al., 
2015Chlorella pyrenoidosa 

(Chlorophyta)

Wheat (Triticum 
aestivum)

Chlorella sp.,  
Scenedesmus sp.,  
Chlorococcum sp. (Chl), 
Chroococcus sp. (Cya)

Dry biomass (20 μg chlorophyll/g 
vermiculite: compost) with water. 
50 g of each formulation (MC1 
and MC2) was mixed with 
6 Kg of soil.

Improvements: higher values of available N, P, and 
K in roots, shoots, and grains, and better nitrogen- 
fixing potential. Microbial biomass carbon  
significantly enhanced. Increase in plant dry and 
spike weight.

India
Renuka et 
al., 2017Phormidium sp.,  

Anabaena sp.,  
Westiellopsis sp., 
Fischerella sp. (Cya)

Rice (Oryza sativa)

Aphanothece sp.  
(Cyanophyta)

10 Kg dry weight/ha. Improvements: grain yield and panicle number. India
Dash et al., 
2016Gloeotrichia sp.  

(Cyanophyta)

Tomato (Solanum 
lycopersicum) 

Ulothrix sp.  
(Chlorophyta) Blended with the organic 

growing medium. 
Improvements: fresh weight, sugar and carotenoid 
content of fruits.

Belgium
Coppens et 
al., 2016Klebsormidium sp.  

(Chlorophyta)

Apple  
(Malus domestica)

Chlorella vulgaris  
(Chlorophyta)

Foliar application of suspen-
sion: 10 L/ha.

Improvements: greener, larger and healthier 
leaves, K and Ca content, apple weight and size.

Hungary Nagy, 2016

Rice (Oryza sativa)
Commercial packets  
of  N2-fixing of  
Cyanophyta

1 Kg/m2

Improvements: growth (shoot length, leaf area and 
plant dry weight), crop yield, leaf metabolic activities 
(chlorophyll a, catalase activity and protein /carbo-
hydrate ratio), and soil properties (silt %, N content, 
and amelioration of metal contents).

India
Padhy et al., 
2016

Willow  
(Salix viminalis)

Microcystis aeruginosa 
(Cyanophyta)

Foliar application of monocul-
tures (2.5x105 cells/mL) three 
times during vegetation season, 
3-week intervals.

Improvements: plant height, total shoot length, 
and number, FM and DM, chlorophyll levels and 
intensify gas exchange. Better physiological perfor-
mance and crop yields, by enriching plants with 
growth-promoting substances. Improvement in 
plant health status. 

Poland
Grzesik et 
al., 2017

Anabaena sp.  
(Cyanophyta)

Chlorella sp.  
(Chlorophyta)

(Continued)
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and also, an increase in the number of sugars and a decrease 
in the acidity. Also, in a vineyard, the use of C. vulgaris caused 
an increase in vegetative growth, productivity, and fruit 
quality (Nagy, 2016). 

Similarly, extracts of C. vulgaris had a positive effect on 
banana crops, increasing quality and productivity (Hamouda 
and El-Ansary, 2017); and in lettuce, rice, cucumber, and 
eggplant, were it was tested alongside Chlorella pyrenoidosa, 
reporting good result from both species as they improved 
growth and metabolism parameters in all plants (Elhafiz et 
al., 2015).

Another study conducted in Hungary by Nagy (2016), 
evaluated C. vulgaris use as foliar biofertilizer of apple plant 
(Malus domestica Borkh.). It was demonstrated that the use 
of this Chlorophyta as biofertilizer resulted in greener and 
healthier leaves. Although treatments did not have a significant 
effect on N, P, Mg, and micronutrients concentrations in 
the leaves, the use of the algal suspension did increase the 
K significantly and Ca leaves content. Furthermore, Pereira 
et al. (2018) found that the use of another Chlorella species, 
C. sorokiniana stimulated the in vitro rooting of the epiphytic 
orchid Schomburgkia crispa. This represents an alternative for 
its use as a supplement since it allows to obtain better yields 
than conventional culture media. 

On the other hand, Barone et al. (2018) analyzed the 
effect of sulfate restriction on 53 genes and the morphology 

of Beta vulgaris L., under the addition of the chlorophytes C. 
vulgaris and Scenedesmus quadricauda. Results indicated that at 
the morphological level, seedlings treated with chlorophytes 
showed significantly higher values for root traits related to 
soil exploration and nutrient uptake; and at a molecular 
level, the Chlorophyta extract positively regulates many of 
the evaluated genes, thus, demonstrating the biostimulating 
effects of microalgae.

Differently, Schreiber et al. (2018) estimated wheat growth 
(Triticum aestivum L.) on two nutrient-deficient substrates: 
“null Erde” and sand, with and without fertilization by wet 
and spray-dried algae, and with a chemical fertilization 
control. After the wheat growth, it was recorded that the 
plants grown in the sand were smaller, but the fertilization 
with the algae led to a growth that was comparable to the 
chemical fertilizer one. These results showed that algae 
biomass and its nutrients represent an alternative to support 
agriculture in marginal soils.

IS IT POSSIBLE TO APPLY MICROALGAE USE IN 
ORGANIC PRODUCTION?

Organic production abstains from the use of synthetic origin 
agrochemicals in crops, to avoid the ecological imbalance 
generated by xenobiotics; instead, applies techniques that 
allow sustainable agricultural production (Crowder and 

Table 1. Use of Chlorophyta and Cyanophyta as biofertilizers in different crop and non-crop plants.

Plant Organisms Application Effect Country Reference

Maize (Zea mays)

Chlorella vulgaris  
(Chlorophyta) 3 g dry powder/Kg soil before 

planting.

Improvements: shoot length, leaves number, dry 
and fresh weight, total plant length, nutrients and 
pigments content and germinability of the seeds 
produced.

India
Dineshku-
mar et al., 
2019Spirulina platensis  

(Cyanophyta)

Sugar beet  
(Beta vulgaris) 

Chlorella vulgaris  
(Chlorophyta) 2 and 4 mL/L in hydroponic 

solution.
Improvements: root traits and expression of genes 
related to nutrient acquisition.

Italy
Barone et 
al., 2018Scenedesmus quadricauda 

(Chlorophyta)

Rice (Oryza sativa)

Nostoc carmeun  
(Cyanophyta) 6 and 12 g wet in 12 Kg of 

soil.
Improvements: root length, shoot length, wet 
weight, and dry weight of seedlings.

Thailand
Chittapun et 
al., 2018Nostoc commune  

(Cyanophyta)

Rice (Oryza sativa)

Chlorella vulgaris  
(Chlorophyta) Mixed with soil by soil drench 

method in concentration: 25, 
50, 75 and 100 %.

Improvements: plant height, leaves number, leaf 
area, fresh and dry weight, seed number, weight of 
seeds, seed weight and yield. Increase in rice yield 
up to 7–20.9 %.

India
Dineshku-
mar et al., 
2018Spirulina platensis  

(Cyanophyta)

Orchid  
(Schomburgkia 
crispa)

Chlorella sorokiniana 
(Chlorophyta)

96×105 cells/mL used as sus-
pension and supernatant in the 
culture medium.

Improvements: leaf and root length, shoot fresh and 
dry weigh, number of roots and leaves, pigmented 
(green) roots, shoot development and bud prepa-
ration for rooting.

Brazil
Pereira et 
al., 2018

Bean  
(Phaseolus vulgaris)

Chlorella sp.  
(Chlorophyta) Foliar application (3x106 cells/

mL) twice a week.
Improvements: pod number and size, seed and total 
dry weight, root length and in crop yield. 

Ecuador Maila, 2018
Scenedesmus sp.  
(Chlorophyta)
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A new generation of algae biofertilizers focuses on 
chlorophytes and cyanophytes extracts (without living cells) 
with lower costs. These products are especially focused 
on foliar nutrition, since they have high levels of vitamins, 
amino acids, and hydrolyzed form enzymes, that can be 
incorporated through stomas. These formulations are mainly 
oriented to crops with high added-value such as flowers or 
medicinal plants (Renuka et al., 2018; Rizwan et al., 2018). 
Colombia still needs to work on the implementation of 
chlorophytes and cyanophytes biofertilization alternative to 
improve product quality and to boost national agriculture 
towards adequate soil management and environmental 
sustainability.

CONCLUSIONS
Although application and quantities of Chlorophytes 

and Cyanophytes inoculum, in addition to the experimental 
conditions, are dissimilar in the reviewed works, an overall 
positive effect of these microorganisms on plant growth 
is established in all the research mentioned above. In this 
context, the main task of the scientists is to find ways 
to improve plants productivity, leading to sustainable 
agriculture that secures food production and is respectful 
to the environment at the same time; and it seems that the 
use of chlorophytes and cyanophytes as biofertilizers have 
a great potential to achieve this objective. Nonetheless, 
high production costs still represent a limitation in 
their commercialization, which is why the main focus of 
investigations from now on should be to generate new 
algal-based biofertilizers that focus on chlorophytes and 
cyanophytes extracts (without living cells) with lower 
costs, and to elucidate the molecular and physiological 
mechanisms around the plant-biofertilizer interaction, so a 
better understanding of its effects and how to manage them 
can be achieved. 
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