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ABSTRACT
The objective of this review is to show how biochar (BC) can be obtained and its effects on the physicochemical properties of soils 
and physiological behavior of cultivated plants. Biochar is a product rich in carbon that comes from the pyrolysis of biomass, 
generally of vegetable origin. It is obtained by the decomposition of organic matter exposed to temperatures between 200-900 
°C in an atmosphere with low oxygen availability (pyrolysis), which can be slow, intermediate or fast. BC can contain varying 
levels of elements such as: carbon, nitrogen, oxygen, hydrogen, and sulfur. The primary sources to produce biochar are the forest, 
agroindustrial, and manure residues. BC quality and physical-chemical characteristics will depend on the type of waste or plant 
material for production. The high carbon contents present in organic matter, which are more resistant to biological and chemical 
decomposition, are stabilized by pyrolysis. BC remains stable into the soil for more extended periods (this allows BC to be considered 
as an essential component for the mitigation of the impacts of polluting substances). It has been found that BC application improves 
the physicochemical characteristics of the soil, including fertility. This improvement generates positive responses in the physiological 
behavior of plants such as: the increase of germination, accumulation of dry matter, photosynthesis, yield, and quality. Biochar opens 
essential doors for the sustainable management of agriculture in Colombia. It can be considered in agricultural regions exposed to 
heavy metals, in order to reduce its impact on human health.

Keywords: Carbon capture, mineralization, plant nutrition, pyrolysis.

RESUMEN
El objetivo de esta revisión es mostrar cómo es el proceso de obtención de biocarbón (BC) y sus efectos sobre las propiedades 
fisicoquímicas de los suelos y el comportamiento fisiológico en plantas cultivadas. El BC es un producto rico en carbono obtenido 
por pirólisis de biomasa generalmente de origen vegetal. Se obtiene mediante la descomposición de materia orgánica en exposición 
a temperaturas entre 200-900 ºC en una atmósfera con baja disponibilidad de oxígeno (pirólisis), que puede ser lenta, intermedia 
o rápida. El BC puede contener altos niveles de elementos como: carbono, nitrógeno, oxígeno, hidrógeno y azufre. Las fuentes 
principales para producir biocarbón son: residuos forestales, agroindustriales y estiércol. La calidad y características físico-químicas 
del BC dependerán del tipo de residuos o material vegetal para la producción. Los altos contenidos de carbón de la materia orgánica 
en una forma más resistente a la descomposición biológica y química son estabilizados por pirólisis. El BC se mantiene estable en el 
suelo durante más tiempo (compuesto importante para la mitigación de los impactos de la polución de sustancias contaminantes). 
La aplicación de BC mejora las características fisicoquímicas del suelo, incluyendo la fertilidad. Estos cambios generan respuestas 
positivas en el comportamiento fisiológico de las plantas como: incremento de la germinación, acumulación de materia seca, 
fotosíntesis, rendimiento y calidad. El BC abre ventanas importantes en el manejo sostenible de la agricultura en Colombia. Su uso 
puede ser considerado en regiones agrícolas expuestas a metales, con el fin de reducir su impacto en la salud humana.

Palabras clave: Captura de carbono, mineralización, nutrición de plantas, pirólisis.
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INTRODUCTION

The concentration of atmospheric CO2 is currently ~417 
mg kg-1 and this concentration has increased continuously as 
a result of human activities, such as industrial processes and 
changes in land use and agricultural practices. Atmospheric 
CO2, along with other gases, cause a warming effect of the 
planet, negatively affecting the soil’s chemical, physical and 
biological properties (Pak et al., 2016). Biochar (BC) is a 
viable option to face global warming because it helps carbon 
sequestration, which improves crop yield (Lehmann and 
Joseph, 2009). BC has also shown the potential to improve 
conventional agricultural productivity and profitability of 
farmers by favoring the plant nutritional status (Atkinson et 
al., 2010).

The origin and use of BC as a source to improve soil 
fertility is reported in the dark Amazonian lands locally 
known as “Terra Preta do Índio” (TPI) (Lehmann and 
Joseph, 2009). The soils of this Amazonian region have an 
A horizon, which is rich in carbon and nutrients (indicators 
of soil quality). It is a result of the accumulation of organic 
vegetable and animal residues which have been subjected to 
the intensive use of fire (de Sousa et al., 2015). Therefore, 
BC has been defined as a product rich in carbon that comes 
from the heating of biomass such as wood, manure or leaves 
in a closed container with little or no air availability (Lehman 
and Joshep, 2009). However, Shackley et al. (2012) also 
defined BC as biomass that has been pyrolyzed, and that 
has suitable physical-chemical properties for the safe and 
long-term storage of carbon in the environment. It involves 
a change in the chemical composition of the raw material, 
and it is irreversible.

Biochar can bring significant benefits when applied to 
agricultural soils in combination with some fertilizers (Schulz 
et al., 2013). An increase in crop yield from 45 to 250 % has 
been reported, when BC is used in mineral nutrition plans of 
crops, such as radish, rice, corn and wheat (Atkinson et al., 
2010; Biederman and Harpole, 2013). The water retention 
properties of the soil, saturated hydraulic conductivity, 
and nutrient availability have also been optimized with 
BC application (Jeffery et al., 2016). Spokas et al. (2009) 
also reported that the supply of sawdust BC reduced CO2 
production (associated with the respiration of methanotrophic 
microorganisms) and the synthesis of nitrous oxide and 
methane (observed in the reduced N2O and the lower rates 
of NH4 oxidation). Finally, Sohi (2012) concludes that the 
organic material used in the production of biochar influences 
the structure, porosity, as well as the density and the specific 
surface of BC, which favors the availability of nutrients to be 
subsequently absorbed by plants.

Currently, studies focused on evaluating the potential of 
BC as a soil amendment and carbon sink have been carried 
out in order to provide a solution to erosion and greenhouse 
gases emission problems (Sohi, 2012). However, the available 
information on the responses of plants grown under BC 

supply is still limited and need further investigation (Jha et 
al., 2010). Therefore, this review aims to show, in a general 
way, how BC is obtained by shedding light on the debate 
about the effects on the physical and chemical properties 
of soils and the physiological behavior of cultivated plants.

GENERAL ASPECTS OF BIOCHAR PRODUCTION
Biochar is obtained by the decomposition of organic 

matter exposed to temperatures between 200-900 °C in 
an inert atmosphere with low / no oxygen concentration. 
This process, known as pyrolysis (Sohi, 2012), is generally 
divided into fast, intermediate and slow depending on the 
residence time (time required to complete the pyrolysis 
process) and the exposure temperature of the biomass 
(Lhemann and Joseph, 2009). The first is characterized by 
a concise residence time and high temperatures (less than 
2 seconds, > 800 °C) and is often used to produce bio-oil 
from biomass obtaining approximately 75 % yield (Mohan et 
al., 2006). The processes of slow and intermediate pyrolysis 
occur with a residence time of a few minutes to several hours 
or even days under temperatures between 300 and 800 °C, 
with BC yields between 25-35 % (Brown, 2009).

Different studies have shown that both the pyrolysis 
temperature and the material used have an effect on the 
production characteristics of BC for agricultural use (Sohi, 
2012). Gaskin et al. (2008) stated that BC manufactured from 
animal waste (poultry litter) has a lower carbon content (close 
to 40 %), while in the one obtained from vegetable by-products 
(pine chips) it is close to 78 %. These authors also reported 
that BC produced from pine chips at a temperature of 500 °C 
in the pyrolysis process caused a higher nutrient content (P, 
K, Ca, Mg), compared with a temperature of 400 °C. Finally, 
biochar physical and chemical qualities are also conditioned 
by factors such as the size and density of the pyrolyzed particle, 
the concentration of inorganic (ash content, Ca, Mg, and 
inorganic carbonates) and organic (cellulose, lignin, and 
hemicelluloses) compounds, and the type of waste (Lehmann 
and Joseph, 2009; Keiluweit et al., 2010).

BC obtained from forages, woody plants, or cacti shows 
different physical and chemical characteristics due to their 
carbon fixation metabolisms (Ahmad et al., 2014). For 
example, BC from CAM plants (pineapple) showed a higher 
content of nutrients such as N, P, K, Ca, Mg, Na, Zn, Cu, 
Fe, and Al (Ch’ng et al., 2015). In this sense, Table 1 shows 
a summary of the main plant species that have been used in 
biochar production, which were grouped according to their 
type of carbon fixation metabolism (C3, C4, and CAM).

CURRENT USES OF BIOCHAR
One of the main dilemmas of agricultural activities is 

the management of large volumes of organic waste, which 
need to be treated appropriately in order to avoid risks of 
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Table 1. Summary of the different plant species used in biochar production from pyrolysis. Species are grouped according to 
carboxylation plant metabolism and characteristics.

Photosynthetic 
Metabolism

Plant 
type

Species
Pyrolyzed 
biomass 

Obtained results Reference

C3 plants

Cereal

Wheat
Wheat 
straw

Increase in the content of elements such as B, Cu, Cr and Mo. Kloss et al., (2012)

Rice Rice husks
Biochar modified for the removal of tetracycline. Adsorption 
capacity (58.8 mg g-1) attributed to its porous structure and 
large specific surface area.

Liu et al., (2012)

Oil

Soy Soy straw
P (2.2 g kg-1), N (23.8 g kg-1), C (441 g kg-1) and total base 
cations of 53 cmol/kg.

Tong et al., (2011)

Peanut
Peanut 
hulls

Temperatures of 700 °C: higher C content and increased pH. T of 
300 °C acidification of the aqueous solution (pH reduction from 
10.57 to 7.76) and elements such as H, N, S and O were higher.

Ahmad et al., (2012)

Canola
Straw and 

waste

Facilitates the electrostatic adsorption of copper, specifically by 
the formation of surface complexes with -COOH and phenolic 
hydroxyl groups on the biocarbon surfaces.

Tong et al., (2011) 

Safflower
Safflower 
seed cake

Biochar modified with KOH to measure its adsorption capacity. 
Contents of C (62.45%), H (1.85%), N (4.07%) and O (31.63%).

Angın et al., (2013) 

Fruit Orange
Orange 

peels

Pyrolysis at 150 °C: specific surface area of 22.8 m2 g-1, 50% C, 
1.75% N, 6.2% H and 41.0% O.
Pyrolysis at 700 °C: specific surface area 201 m2 g-1, 71.6% C, 
1.72% N, 1.76% H, and 22.2% O.

Chen and Chen (2009) 

Fiber 
and 

forest

Cotton
Cotton 

seed hulls 
Greater content of elements such as: Na, Ca, K, Mg, P, and S in 
biochar.

Uchimiya et al., (2011)

Pine
Needles, 
chips and 

wood

Pyrolysis at 100 °C: 50.87% C, 0.71% N, 6.15% H.
Pyrolysis at 700 °C: 86.51 % C, 1.13% N, 1.28 % H.

Chen et al., (2008)

Fir Wood Content of C 79.6%, N (1.02 – 1.24%), and H (3.04 – 5.48%). Kloss et al., (2012) 

Poplar Wood Content of C 78%, N (78 – 1.07%), and H (2.66 – 4.42 %). Kloss et al., (2012) 

Oak Wood
Specific surface area between 1 – 3 m2 g−1. Rich in oxides of 
elements such as Ba, Al, Ca, Fe, K, Mg, Mn, Na, Si, Sr and Ti. 

Mohan et al., (2011)

Perennial 
crops

Coconut
Coconut 

shell
Adsorption capacity of heavy metals such as copper and lead. Machida et al., (2005) 

Palm
Empty fruit 

bunches
Pyrolysis at 300 °C: 59.62% C, 4.02% H, 34.05% O and 2.31 % N.
Pyrolysis at 700 °C: 68.63% C, 2.71 % H, 27.45% O and 1.21% N.

Sukiran et al., (2011) 

Coffee

Processing 
residues 
and old 
plants 

Content of C (51 – 76%), H (5.0 – 7.2%), N (2.4 – 4.3%), S 
(0.05 – 0.17%), P (0.18 – 0.48%), K (0.81 – 1.94%), Ca (0.17 – 
0.56%), Mg (0.20 – 0.60%) and Na (0.06 – 0.17%).

Vardon et al., (2013) 

C4 plants

Cereal Corn
Cob and 

leaves
Greater content of elements such as: Si, Al, Fe, Ca, Mg, Na, K, 
Ti, Mn, P, Ba, Sr and inorganic S.

Mullen et al., (2010) 

Grass

Grasses
Fescue 

grass straw

Ash content (5.7 – 19.3%), C (47.2 – 94.2%), N (0.61 – 1.24%), 
H (1.53 – 7.25%), O (3.6 – 45.1%) and a specific surface area 
between 1.8 – 139 m2 g-1.

Keiluweit et al., (2010)

Bamboo Plant waste 
63.5% C, 2.9% H, 0.55% N and 33% O. Bamboo waste: 78.7% 
C, 3.4% H, 1.1% N, and 16.7% O.

Zhang et al., (2014)

(Continued)
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Table 1. Summary of the different plant species used in biochar production from pyrolysis. Species are grouped according to 
carboxylation plant metabolism and characteristics.

Photosynthetic 
Metabolism

Plant 
type

Species
Pyrolyzed 
biomass 

Obtained results Reference

CAM plants

Fruit Pineapple

Fruit peel
73% C, H (1.37 - 3.36%), O (9.88 – 12.05%) and N (0.99 - 
1.23%). 

Cheah et al., (2013) 

Leaves
45.8% C, 2.30% N, 0.46% P, 2.67% K, 0.40 % Ca, 6365 g Kg-1 
Mg, 1143 g Kg-1 Na, 119 mg Kg-1 Zn, 47.2 mg Kg-1 Cu, 5062 mg 
Kg-1 Fe, and 1.50 mg Kg-1 Al.

Ch’ng et al., (2015)

Crowns
Content of C (32.01 – 52.04%), H (4.27 – 5.97%), N (1.27 – 
1.86%), O (33 – 37%), Fe (0.01 – 0.08%) and a superficial area 
between 0.335 a 24.46 m2 g-1.

Fu et al., (2016)

Xero-
phyte

Cactus Plant waste
Removal of copper in polluted water, as it presents laminar 
structures with carboxylic residues on the upper external surface.

Hadjittofi et al., (2014) 

pollution, soil erosion, eutrophication of water and the 
emission of greenhouse effect gases (Amhad et al., 2014). 
As a result, various technologies are currently being used for 
BC application. In this sense, Dias et al. (2010) concluded 
that eucalyptus BC could be used as a loading agent for the 
composting of poultry manure since it generates a positive 
effect that mitigates the degradation and humification of 
organic matter.

Another critical characteristic of BC is its sorption 
capacity (process by which another absorbs a material) 
of inorganic contaminants such as heavy metals (lead, 
chromium, copper, zinc, nickel, arsenic, and cadmium) 
from mining operations in both soil and water (Dong et al., 
2011; Regmi et al., 2012; Hadjittofi et al., 2014; Trakal et 
al., 2014). This kind of pollution by organic substances has 
increased as a result of hydrocarbons exploitation, refining, 
storage and distribution, and bioremediation can take 
years to complete the restoration and recovery of impacted 
areas (Ferrera-Cerrato et al., 2006). Also, BC use has been 
reported as an exciting alternative in the cleaning of soils 
contaminated by agrochemicals (Ahmad et al., 2014). 
Many of these substances have accumulated as a result of 
the indiscriminate use of herbicides, insecticides, and other 
toxic molecules (Herath et al., 2016). For example, it has 
been observed that the amount of atrazine in the soil was 
reduced by livestock manure BC sorption (Cao et al., 2011). 
Also, the high surface and nano-porosity of BC favored 
the adsorption of insecticides based on chlorpyrifos and 
carbofuran (Yu et al., 2009), and decreased the levels of a 
pesticide such as pentachlorophenol (Xue et al., 2012). In 
addition, the use of BC has mitigated the contaminating 
impact of substances such as diclofenac (Jung et al., 2015), 
furfural (Li et al., 2014), glyphosate (Herath et al., 2016), 
ibuprofen (Jung et al., 2015; Mondal et al., 2016), levafix 
red (Angın et al., 2013), methylene blue (Wang et al., 
2013; Zhang et al., 2014), naproxen (Jung et al., 2015) and 
sulfamethazine (Rajapaksha et al., 2015). Table 2 shows the 
main bioremediation effects of BC in soils.

The potential use of biochar as an alternative and 
complementary substrate in the production of seedlings in 
crops without soil has also been studied (Dispenza et al., 
2017). Altland and Locke (2012) stated that BC-modified 
substrates used for the production of ornamental plants 
are an important source of phosphates. Bommaraju 
(2016) found that substrate constituted by vermicompost, 
peat, and BC from forest residues (50 % biochar and 50 % 
vermicompost) enhanced plant photosynthesis in coffee 
seedlings. Gu et al. (2013) also observed that biochar at a 
rate of 5-30 % v/v could replace commercial substrates such 
as peat of pine bark, moss or pearlite without generating 
negative impacts on Gomphrena plants growth. 

EFFECTS OF BIOCHAR APPLICATION ON THE 
PHYSICAL-CHEMICAL PROPERTIES  
AND MICROBIOLOGY OF THE SOIL

BC incorporation into the soil can alter water retention 
because BC porosity and high specific surface area reduce 
the apparent density of the soil (Rajapaksha et al., 2016). 
Additionally, it was found that the use of BC from pecan 
walnut shells and grass residues may favor the increase in 
soil temperature because it confers a dark color which is 
associated with the capture of solar energy. This increase 
in soil temperature may benefit microbial communities 
and germination of seeds in soils with low temperatures 
(Busscher et al., 2010). Another valuable physical property 
that is affected by the application of BC from olive tree 
pruning waste is the compaction of the soil, which was 
reduced, allowing a more significant root proliferation 
(Olmo et al., 2014).

BC can also modify the chemical properties of the soil, 
increasing the cation exchange capacity and improving soil 
fertility through the availability of essential and beneficial 
nutrients for the plant (Liang et al., 2006). Van Zwieten et al. 
(2010) have reported that the use of BC improved fertility by 
increasing the pH and Cation Exchange Capacity (CEC) in the 
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soil, especially at application rates of 10 t ha-1. On the other 
hand, Karhu et al. (2011) showed that the incorporation of 
9 t ha-1 of BC into a soil used for agriculture increased the 
average CH4 uptake and the water retention capacity close 
to 96 %. Additionally, it has been reported that biochar can 
increase the electrical conductivity (Oguntunde et al., 2004) 
and reduce the exchangeable acidity (Chan et al., 2008; 
Ch’ng et al., 2015), which indicates that nutrients may be 
more available in the soil solution. Table 3 summarizes 
the main benefits obtained in the physical and chemical 
properties of the soil with the supply of biochar.

Regarding BC impact on soil microorganisms, this aspect 
has gotten less attention in comparison to the physical 
and chemical properties of the soil (Lehman et al., 2011). 
Anderson et al. (2011) found that BC application promotes 
phosphate solubilizing bacteria, altering the carbon flux in 
the soil to increase the abundance of bacteria families such 
as Streptosporangineae (~6 %), Thermomonosporaceae (~8 %), 
Bradyrhizobiaceae (~8 %), and Hyphomicrobiaceae (close to ~14 
%) (these last two families have an important participation 
in the nitrogen cycle especially in the denitrification process 
of NO3

- to N2). These results indicate that BC application 
promotes phosphate solubilizing bacteria, which alter the 
flow of carbon in the soil and increase the abundance of these 

microorganisms that can degrade more recalcitrant carbon 
compounds and potentially reduce plant pathogenic bacteria.

BC application can condition associations between 
plants and microorganisms. For example, Kolton et al. 
(2011) found that BC incorporation in the soil enhanced 
bacterial communities (Flavioibacterium) associated with 
the root of mature sweet pepper (Capsicum annuum L.) 
plants. On the other hand, Warnock et al. (2010) observed 
that the abundance of arbuscular mycorrhizas decreased 
proportionally with the application of pine chip BC in 
Plantago lanceolata L. plants. It was found that the abundance 
of arbuscular mycorrhizas decreased proportionally with the 
application of BC, and these changes were accompanied 
by increases in both the pH and phosphorus availability 
in the soil; this indicates that the pH may be influencing 
the abundance mechanisms of mycorrhizae. In this sense, 
many of the studies have found that the microbial biomass 
increases as a result of BC application, but significant 
changes occur in the composition of the communities and 
in the enzymatic activities. These changes may explain the 
biogeochemical effects of BC on the nutrient cycle, the 
presence of phytopathogenic organisms and the growth of 
crops (Spokas et al., 2009; Elad et al., 2010; Solaima et al., 
2010). However, very little is known about the mechanisms 

Table 2. Bioremediation effects of biochar application on soils.

Use Substance Type of Biochar Response found Reference

Bioremediation  
of heavy metals 

Copper Rice straw
Presence of functional groups with high affinity of  
adsorption to Cu in BC.

Jiang et al., (2012)

Cadmium Orchard pruning waste Significant bioavailability reduction. Fellet et al., (2011)

Arsenic Wood Significant As reduction. Hartley et al., (2009)

Lead Oak wood Bioavailability reduction by 75%. Ahmad et al., (2012)

Chrome Chicken manure Reduction of Cr (IV) to Cr (III). Choppala et al., (2012)

Zinc Sewage sludge
Significant reduction in availability of the studied metal 
for the plants.

Méndez et al., (2012)

Nickel Cotton seed hulls
Surface functional groups of BCs controlled metal  
sequestration.

Uchimiya et al., (2011)

Bioremediation of 
organic substances

Atrazine

Cattle manure
Sorption of the molecule and atrazine partition  
positively related to the carbon content of BC.

Cao et al., (2011)

Wood shavings Adsorption of the molecule. Spokas et al., (2009)

Pasture pruning Increased herbicide adsorption. Zheng et al., (2010)

Diuron Eucalyptus wood
Stronger adsorption and weaker desorption of  
agrochemicals.

Yu et al., (2011)

Chlorpyrifos River red gum  
(Eucalyptus spp) wood

Adsorption by surface area of the BC. Yu et al., (2009)

Carbofuran Adsorption by surface area of the BC. Yu et al., (2009)

Carbaryl Pig manure Sorption of the molecule. Zhang et al., (2013)
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through which BC affects the abundance and composition 
of microbial communities (Lehman et al., 2011).

EFFECT OF BIOCHAR APPLICATION  
ON PLANT PHYSIOLOGY

Chan et al. (2008) observed that combined applications 
of BC of waste paper mills and chemical synthesis fertilizers 
favored the growth of radish plants since BC improved N 
fertilizer-use efficiencies. Also, parameters such as plant 
height, stem diameter, and dry matter were increased by BC 
in teak (Tectona grandis) seedlings. Finally, Van Zwieten et al. 
(2010) and Olmo et al. (2014) also found that BC improved 
seed germination and root growth in wheat plants.

BC application improved the absorption of nutrients 
in kiwi (Sorrenti et al., 2016) and apple (Ventura et al., 
2013) plants. Ch’ng et al. (2015) also reported that BC 
(manufactured with pineapple leaves) improved the contents 

of nitrogen (~80 %), phosphorus (~200 %), potassium 
(~400 %), calcium (~100 %), and magnesium (~150 %) in 
corn leaves. Besides, BC can help crop quality since it favors 
the accumulation of fatty acids such as palmitic, stearic, 
oleic, and linoleic in soybean (Waqas et al., 2017). The 
extraction of leachates from substrates with BC supports 
that fact that such natural enhancer is rich in nutrients, 
which favor plant growth when incorporated into the soil or 
substrates (Bommaraju, 2016). Sun et al. (2017) evaluated 
the molecular properties of water-soluble extracts (WSE) 
of BC prepared from wheat and corn plant residues. They 
found that these substances promoted grain germination 
and increased the coleoptile length of corn seedlings, 
specifically in the WSE obtained from corn BC.

Studies have been reported regarding the synergistic 
activity between BC application and other sources of 
nutrients with some exceptions. In this regard, Seehausen 
et al. (2017) found antagonistic effects between BC 

Table 3. Main effects of biochar application on the physical and chemical properties of the soil.

Affected property Effect Reference

Physical

Apparent density Reduction of apparent density due to the porosity of BC. Kuzyakov (2009)

Color Changes in the color of the soil surface, which are visible after the application of BC. Vacari et al., (2011)

Water retention Increased water retention due to the porosity and high specific surface area of BC. Kuzyakov (2009)

Infiltration Reduction of soil infiltration. Busscher et al., (2010)

Compaction Reduction of soil compaction. Olmo et al., (2014)

Penetration resistance Decreased resistance to penetration with BC application. Busscher et al., (2010)

Temperature
Increased soil surface temperature in early stages of germination and growth 
of wheat crops with application of BC.

Vacari et al., (2011)

Chemical

pH Soils alkalinization by increased pH. Sorrenti et al., (2016)

Electric conductivity
Increase in the electrical conductivity of the soil in the presence of BC  
compared to soil without BC.

Oguntunde et al., (2004)

CEC Increased cation exchange capacity. Liang et al., 2006

Total organic C Increased total carbon. Van Zwieten et al., (2010)

Dissolved organic  
carbon (DOC)

Increased amount of DOC in the soil. Rajapaksha et al., (2016)

NO3
- Reduction of NO3

- washing by 75% in the second year. Ventura et al., (2013)

Interchangeable Na Increased exchangeable sodium. Chan et al., (2008)

Interchangeable K Increased interchangeable potassium. Van Zwieten et al., (2010)

Soluble K Increased soluble potassium in soil. Asai et al., (2009)

Available P Increased amount of available phosphorus in soil. Ch’ng et al., (2015)

Interchangeable Ca Increased exchangeable calcium. Van Zwieten et al., (2010)

Interchangeable Mg Increased exchangeable magnesium. Chan et al., (2008)

Interchangeable Al Reduces aluminum availability. Van Zwieten et al., (2010)

Interchangeable acidity Reduces interchangeable acidity. Ch’ng et al., (2015)
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application and substrates from mushroom production 
on the maximum leaf area and stomatal conductance of 
Abutilon theophrasti. For this reason, it is important not to 
make generalized conclusions about the synergistic effects of 
BC application on plant yield. In this sense, Kishimoto and 
Sugiura (1985) (as cited in Chan and Xu, 2009) found that 
the application of 5 and 15.25 t ha-1 of BC (from unknown 
woods) in a soybean crop affected yield, reducing it by 37 % 
and 71 % respectively, due to the increase in pH that caused 
nutritional deficiencies in the plants. Similar responses were 
observed by Asai et al. (2009) in the quantification of “SPAD 
chlorophylls”, finding the lowest values in the treatments 
with biochar application, which was attributed to the 
reduction in nitrogen availability in the soil. Finally, Table 4 
summarizes the main effects of biochar application on the 
physiological behavior in plants.

PERSPECTIVES
The use of BC opens essential opportunities for the 

sustainable management of agriculture in Colombia. As 
mentioned before, BC can be considered in systems in which 
vegetables are irrigated with contaminated water (Miranda 
et al., 2011) and in perennial crops exposed to heavy 
metals due to activities related to mining and hydrocarbon 
exploitation (Jiménez, 2015), in order to reduce their impact 
on human health. In this sense, the cocoa crop is cultivated 
in contaminated soils with high cadmium content; in these 

scenarios, biochar can be an important alternative in 
bioremediation of heavy metals (Lau et al., 2011). Another 
interesting opportunity is to evaluate the different sources 
of plant and animal material as alternatives to be used in 
the pyrolysis process, especially by-products such as sugar 
cane bagasse (Rodríguez et al., 2009), the leaves and empty 
fruits of oil palm crops (Sukiran et al., 2011), corn, sorghum 
and rice chaffs, cotton waste, as well as waste from livestock 
activities (pig, poultry and cattle manure). The knowledge of 
the effects on the physiology of cultivated plants is one of the 
main challenges that should be taken into consideration. A 
clear example is the use of solid vegetable residues of coffee 
production systems as the pulp obtained from the fruit 
processing represents about 43.58 % of the coffee fruit on 
a fresh weight basis (Montoya, 2006). It has been reported 
that about 2258 kg ha-1 of coffee pulp are produced annually 
(Rodríguez, 2007). Collectively, about 162 900 t of fresh 
pulp are generated per each million bags of 60 kg of dried 
parchment coffee that is exported from Colombia. If not used 
correctly, the pollution caused by these residues would be 
equivalent to the one generated by the excrements and urine 
of a population of 868 736 inhabitants (Rodríguez, 2009).  
For this reason, alternatives such as the application of BC 
can improve the productivity, quality and profitability of 
farmers. 

On the other hand, it has been shown that BC application 
causes small and potentially transitory changes in the 
functioning of agroecosystems (Jones et al., 2011). Studies 

Table 4. Summary of the different effects of biochar application on the physiological activity of variables in plants.

Plant species
Physiological 

variable 
Type of BC Application rate Responses found Reference

Radish

Germination Paper mill waste 10 t ha-1 Increased germination. Van Zwieten et al., (2010) 

Dry matter

Grass pruning residues, 
cotton waste and plant 
pruning 

10 - 100 t ha-1 Increased dry matter accumulation. Chan et al., (2008)

Paper mill waste 10 t ha-1 Increased dry matter accumulation. Van Zwieten et al., (2010)

Yield
Grass pruning residues, 
cotton waste and plant 
pruning

10 - 100 t ha-1 Increased yield. Chan et al., (2008)

Soy

Dry matter Paper mill waste 10 t ha-1 Increased dry matter accumulation. Van Zwieten et al., (2010)

Fatty acids Pine waste 10:90 (p/p) Higher fatty acids accumulation. Waqas et al., (2017)

Yield Unknown wood 

0.5 t ha-1 Increased yield in 51%.
Kishimoto and Sugiura 
(1985) cited by Chan 
and Xu (2009)5 and 15.25 t ha-1

Yield reduction by 37% and 71% re-
spectively due to nutritional deficien-
cies associated with increased pH.

(Continued)
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have been achieved (Fiallos-Ortega et al., 2015). This shows 
that the use of BC in the restoration of degraded soils in 
Colombia can be an exciting alternative. 

have reported the benefits of BC used in the restoration 
of ecosystems with different intensities of deterioration, 
especially in the production of forage from alfalfa plants, 
where a higher forage yield and improvement in soil quality 

Plant species
Physiological 

variable 
Type of BC Application rate Responses found Reference

Rice

Dry matter

Eucalyptus chips

45 g kg-1 Higher accumulation of foliar and 
total dry matter.

Noguera et al., (2010)

Yield 45 g kg-1 Significant increase in the weight of 
grains.

Noguera et al., (2010)

C/N 45 g kg-1 Reduction in the C/N ratio in the plant. Noguera et al., (2010)

Flow of sap 
in the xylem 
and SPAD 
chlorophylls

Rose and teak waste 0 - 16 t ha-1

Increased sap flow in the xylem of rice 
plants. There is a significant reduction 
in SPAD chlorophyll values related to 
the decrease in N availability.

Asai et al., (2009) 

Wheat

Germination Paper mill waste 10 t ha-1 Increased germination. Van Zwieten et al., (2010)

Root-aerial 
part ratio 

Peanut hulls; 
Fir bark

0, 12.5, 25 and 50 
t ha-1

The shoot – root ratio of wheat de-
creased in all biochar application rates.

Collins (2008)

Yield
Commercial BC of  
oak, beech, and  
hazelnut forests

30 and 60 t ha-1 Yield increased 32.1% and 23.6% 
respectively in the first year.

Vacari et al., (2011)

Absorption 
of water and 
nutrients, dry 
matter and 
yield

Olive pruning waste 40 Mg ha-1

Reduced resistance to penetration, 
greater water and nutrients uptake, 
increased proliferation of fine roots, 
accumulation of dry matter and yield.

Olmo et al., (2014)

Abelmoschus 
esculentus (L.) 
Moenc

Specific leaf 
area, stomatal 
conductance, 
photosynthe-
sis, water use 
efficiency 

Lantana camara stems 0, 10 and 30 g kg-1

BC promotes infiltration rate and 
improves water retention in the soil, 
increasing photosynthesis, water use 
efficiency and yield.

Batool et al., (2015)

Corn

Germination Corn and wheat waste - Increased coleoptile length. Sun et al., (2017)

Adsorption 
of nutrients

Poultry manure 8 t ha-1

Increased soil availability of N, P, K, 
Ca and Mg. Greater absorption of nu-
trients by the plant.

Ch’ng et al., (2015) 

Dry matter Poultry manure 8 t ha-1 Increased dry matter accumulation in 
leaves, stems and roots.

Ch’ng et al., (2015) 

Yield

Commercial biochar  
of wood (sources and 
conditions not  
available)

8 - 20 t ha-1 Improved corn grain yield. Major et al., (2010)

Kiwi
Adsorption 
of nutrients

Peach and vine  
pruning waste

20 g kg−1

Increased exchangeable Fe in the soil, 
greater absorption of nutrients by the 
plants.

Sorrenti et al., (2016)

Banana
Nutrient 
uptake

Wood 11.25 t ha-1 Increases potassium absorption. Steiner (2007)

Apple
Adsorption 
of nutrients

Peach and vine  
pruning waste

10 ton ha-1 Reduced NO3
- washing in 75% in the 

second year compared to the control.
Ventura et al., (2013)

Table 4. Summary of the different effects of biochar application on the physiological activity of variables in plants.
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CONCLUSIONS
In general terms, BC is a valuable tool that can be used in 

soils as a mitigation strategy for environmental pollution. It 
also serves as a carbon sink substance, improves the physical 
and chemical characteristics of the soil and has been proven 
to have high potential in agricultural use, increasing the yield 
and quality of cultivated plants. Additionally, it is an exciting 
alternative in the management of solid residues of vegetable 
(cherries obtained from coffee plants, rice husks, or pruning 
residues) or animal (poultry, cattle, and pig manure) origin.
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