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ABSTRACT
Leaf anatomy characteristics provide important evidences about the transition between C3 and C4 pathways. The C4 photosynthesis 
pathway allowed to reduce the C3 photorespiratory rate, concentrating CO2 around the Rubisco site and using structures and 
machinery already presented in C3 plants. In monocots, it is observed a high number of C4 lineages, most of them phylogenetically 
related to C3 groups. The genus Apochloa (C3), subtribe Arthropogoninae, is related to two C4 genera Coleataenia and Cyphonanthus. 
The aim of this study was to evaluate four Apochloa species in order to establish anatomical characteristics related to the evolution of 
C4 pathway in this group. By means of transverse sections fully expanded leaves of A. euprepes, A. lorea, A. molinioides, and A. poliophylla 
were collected and the characteristics of the mesophyll (M) and bundle sheath (BS) cells were determined. These species showed 
a rustic Kranz anatomy with enlarged and radial arranged BS cells, which have few organelles organized in a centrifugal position. 
Although the modifications of BS cells are probably related to the maintenance of plant water status, we also discuss the evolution 
for the establishment of C4 photosynthesis in the related C4 genera.
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RESUMEN
Las características de la anatomía de la hoja proporcionan evidencias importantes sobre la transición entre las vías C3 y C4. La 
fotosíntesis C4 surgió para reducir la tasa de fotorrespiración C3, concentrando el CO2 alrededor del sitio de la Rubisco y utilizando 
estructuras y maquinaria ya presentes en las plantas C3. En monocotiledóneas, se observa un alto número de linajes C4, la mayoría 
de ellas filogenéticamente relacionadas con grupos C3. El género C3 Apochloa, que pertenece a la subtribu Arthropogoninae, 
está relacionado con dos géneros C4 Coleataenia and Cyphonanthus. En este contexto, el objetivo fue evaluar cuatro especies de 
Apochloa para establecer las características anatómicas relacionadas con la evolución de la via C4 en este grupo. Se colectaron hojas 
completamente expandidas de A. euprepes, A. lorea, A. molinioides y A. poliophylla y se determinaron las características de las células del 
mesófilo (M) y del haz de la vaina (HV) a partir de secciones transversales de la hoja. Las especies presentaron una anatomía rústica 
de Kranz con células HV agrandadas y de distribución radial, con pocas organelas organizadas en posición centrífuga. Aunque las 
modificaciones de las células HV están probablemente relacionadas con el mantenimiento del estado hídrico de la planta, se puede 
inferir que facilitan el establecimiento de la fotosíntesis en los géneros C4 relacionados.

Palabras clave: anatomía de la hoja, Apochloa spp. fotosíntesis C4, poaceae, subtribu arthropogoninae.
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INTRODUCTION

Leaf anatomy provides important information about 
aspects of plant physiology. Thus, anatomy techniques are 
important tools to link morphological and physiological 
traits of plants (Brown, 1958; Hattersley and Watson, 
1976). In studies about transition between the C3 and C4 
pathways, leaf anatomy characterization is the first step in 
order to determine transverse sectional characteristics of  
the mesophyll (M) and the bundle sheath (BS) cells, and the 
degree of approximation between these two compartments 
(Dengler et al., 1994; Khoshravesh et al., 2016; Lundgren et 
al., 2019). The C4 via of the photosynthesis is an evolutionary 
novelty derived from C3 pathway, in response to the increase 
of photorespiratory activity (Sage, 2016). As most of the 
C4 plants have a spatial separation, where the initial CO2 
fixation occurs in M cell and the decarboxylation in the BS 
cell, there is a CO2 concentration mechanism around the 
Rubisco site, avoiding its oxygenase activity (Sage et al., 
2011; Sage et al., 2014). 

It is well documented that first steps for C4 evolution 
includes anatomical and ultrastructural modifications to 
establish the Kranz anatomy (Gowik et al., 2011). Thus, 
a reduction in the distance between two vascular bundles 
for the metabolite shuttle and an increase in the number of 
organelles in the bundle sheath cells for the photosynthetic 
activity are expected (Lundgren et al., 2019). Interestingly, 
some C3 species have a leaf anatomy closely related to 
C4 plants, especially in Poaceae family (Lundgren et al., 
2014). In these cases, a large investment in BS tissue, which 
requires just few modifications in order to set C4 pathway, is 
observed (Christin et al., 2013; Lundgren et al., 2014).

During the evolution of photosynthesis, C4 pathway has 
evolved independently more than 60 times in angiosperms 
(Sage, 2016). Monocots account the highest number of C4 
species (Sage et al., 2011), especially in the Poaceae family, 
which has the largest number of C4 transitions, about 20 
times (Christin et al., 2012). All C4 grasses are clustered in 
PACMAD clade (Panicoideae, Arundinoideae, Chloridoideae, 
Micrairoideae, Aristidoideae, and Danthonioideae), showing 
that this clade probable has some characteristic to facilitate 
this evolution (Christin et al., 2010; GPWG II, 2012). Of 
all C4 origins in PACMAD, 15 occurred in the subfamily 
Panicoideae, its greatest lineage, which includes the subtribe 
Arthropogoninae (Giussani et al., 2001; Edwards and Smith, 
2010; GPWG II, 2012).

The subtribe Arthropogoninae has seven genera with C3 
photosynthesis and nine genera with C4 photosynthesis, 
type NADP-ME (Morrone et al., 2012). Among them, the 
genus Apochloa Zuloaga & Morrone is described as a C3 
one, and it is phylogenetically related with two C4 genera: 
Coleataenia Griseb. and Cyphonanthus Zuloaga & Morrone 
(GPWG II, 2012; Morrone et al., 2012). Considering the 
modifications that occur in C3 grasses related to C4 genera, 
it is important to determine whether Apochloa species present 

anatomical traits that can be considered a pre-disposition 
to the C4 pathway. Thus, the aim of this paper was to 
describe leaf anatomy by means of transverse sections of 
four Apochloa species in order to investigate if the genus has 
characteristics that facilitate the C4 evolution in the subtribe 
Arthropogoninae.

MATERIAL AND METHODS

Site description and plant material

Anatomical studies were carried out with four Apochloa 
species: A. euprepes (Renvoize) Zuloaga & Morrone, A. lorea 
(Trin.) Zuloaga & Morrone, A. molinioides (Trin.) Zuloaga & 
Morrone, and A. poliophylla (Renvoize & Zuloaga) Zuloaga 
& Morrone. Species were collected in February 2016, at the 
Serra do Cipó, Santana do Riacho county, Minas Gerais 
state, Brazil (19° 28’ S and 43° 58’ W). This area is localized 
in the southern region of the Espinhaço mountain chain and 
it is characterized by rupestrian fields (Medina et al., 2007). 
The weather of the region is classified as CWB of Köppen 
(1948), altitudinal tropical, with warm and rainy summers 
and a dry season that can last seven months (Ribeiro et 
al., 2009). A soil sample where the species were found was 
collected. Soil pH was measured in solution using a 1:2.5 
soil/ water ratio (DM-22 Digimed pHmeter); sand, silt, 
and clay contents (dag kg-1) and organic material (dag kg-1) 
were determined using the pipette method. The region was 
characterized by acid and sandy soil, with low content of 
organic material (Table 1).

Leaf anatomy

Healthy, turgid, and fully expanded leaves from three 
individuals of each species, situated at minimum distance of 
1 m among the plants were harvested. This guarantees that 
the material belongs to different individuals.

Fragments of 2 cm2 from the centre region of the leaves 
were fixed in 1 % (v/v) paraformaldehyde and 1 % (v/v) 
glutaraldehyde in 0.05 M sodium cacodylate buffer, at  

Table 1. Soil characteristic of the site of collection (Serra do Cipó, 
Santana do Riacho county, Minas Gerais state, Brazil)  

of Apochloa species.

Soil characteristics

pH 4.5

Organic Material (dag kg-1) 1.50

Soil characterization Sandy texture

Sand

(dag kg-1)

59

Silt 39

Clay 2
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9-11 am. The tissue was dehydrated through a graded series 
of ethanol and embedded in LR White resin (Voznesenskaya 
et al., 2013). The leaf anatomy was studied by transverse 
sections (2-3 µm) obtained using a rotative microtome (model  
MRP-09 LUPETEC) and stained with 1 % toluidine blue. 

A total of 36 observations per species were analyzed: 
three different sections and four images per sections for 
each specimen. The distance (µm) and the number of cells 
between two veins, percentage of M and BS cells, and M:BS 
ratio were determined. The percentage of M and BS cells 
was calculated using a stereological grid of 500 random 
points layered on transverse section images and counting 
the proportion of points in M and BS cells in comparison to 
the total points (Mckown and Dengler, 2007).

Statistical analyses

Leaf anatomy data met the assumptions of normality, 
homoscedasticity, and independence and then, were 
compared with one-way ANOVA followed by the Tukey’s 
test (p<0.05), using Sigma Plot version 11.0.

RESULTS

The leaf transverse sections showed that the four Apochloa 
species had uniseriate epidermis with bulliform cells with 
rounded shape in the adaxial epidermis. Projection of the 
sclerenchyma connects the vascular bundles to the adaxial 

and abaxial epidermis. The mesophyll shows intercellular 
spaces and an arrangement of cells around the vascular 
bundles, with enlarged and uneven BS cells (Fig. 1).

All the species analyzed presented two layers of cells 
around the vascular bundle, being the inner layer of thick-
walled cells characterized as mestome sheath and the outer 
layer as parenchymatous bundle sheath. In spite of the 
enlargement of BS cells, only few chloroplasts organized in 
a centrifugal position were observed, while in the M cells the 
organelles showed a periphery position pattern (Fig. 2).

Leaf anatomical traits showed significant difference 
between the species (Table 2). The highest distance between 
veins (519.0 µm) was observed for A. molinioides, while lower 
values were observed for A. euprepes and A. poliophylla (217.5 
and 200.8 µm, respectively). In relation to the number of M 
cells between two veins, the lower values were also recorded 
for A. poliophylla and A. euprepes. Although these species had 
the lowest values of distance and number of cells between 
veins, and percentage of mesophyll cells, A. euprepes showed 
the highest percentage of BS cells (24 %), which determined 
more than 30 % decrease in the M:BS ratio. The enlargement 
of BS at the expense of M cells is a characteristic strongly 
related to the establishment of C4 pathway. 

DISCUSSION

In all Apochloa species analyzed an enlargement of the 
bundle sheath (BS) cells was found, an anatomical leaf 

Figure 1. Leaf transverse sections from a. Apochloa molinioides (Am), b. Apochloa lorea (Al), c. Apochloa euprepes (Ae), and d. Apochloa poliophylla (Ap). 
M, mesophyll; asterisk, bundle sheath; BC, bulliform cell. Scale bar= 50 µm.
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trait commonly observed in intermediate species allowing 
to establish a C4 pathway (Gowik and Westhoff, 2011; 
Muhaidat et al., 2011). In grasses, BS cells (parenchymatous 
cells) are organized in one or two layers, so that in the 
species with two layers, the inner layer called mestome 
sheath has small cells with suberized thick walls and absence 
of chloroplasts or other organelles, and it is located between 
the vascular tissue and the outer layer of parenchymatous 
bundle sheath (O’Brien and Kuo, 1975; Hattersley et al., 
1976; Dengler et al., 1985; Lundgren et al., 2014; Miyake, 
2016), a typical organization observed in Apochloa species.

The emergence of Kranz anatomy is characterized by the 
presence of a concentric layer of cells around the vascular 
bundle, which allows the metabolic shuttle between M 
and BS cells, and in consequence the emergence of CO2 
concentration mechanism (Sage et al., 2012; Lundgren et al., 
2014). Thus, the presence of enlarged and radial arranged 

bundle sheath cells (parenchymatous cells) around the 
bundles can be considered a rustic Kranz anatomy (Muhaidat 
et al., 2011); with the exception that they are not surrounded 
by a concentric layer of mesophyll cells (Rawsthorne, 1992) 
and a few intercellular spaces. This concentric organization 
is common in C3 grasses related to C4 groups of the family 
Poaceae (Lundgren et al., 2014), as observed for Apochloa 
species. Besides that, the enlargement of the bundle sheath 
cells may represent an adaptation for C4 physiology, once 
this cell needs to accommodate more and larger chloroplasts 
to guarantee an efficient photosynthetic cycle (Lundgren et 
al., 2019).

During the development of C4 pathway, the reduction in 
the distance and in the number of cells between two veins 
and the decrease of the M:BS ratio are common, which 
enables the metabolite shuttle between mesophyll and 
bundle sheath cell compartments (Lundgren et al., 2014). 

Figure 2. Bundle sheath cells organization from a. Apochloa molinioides (Am), b. Apochloa lorea (Al), c. Apochloa euprepes (Ae), and d. Apochloa 
poliophylla (Ap). M, mesophyll; asterisk, bundle sheath; arrow, mestome sheath; VB, vascular bundle; O, organelle. Scale bar= 50 µm.

Table 2. Leaf anatomical characteristics of Apochloa species from Serra do Cipó, Santana do Riacho county, Minas Gerais state, Brazil.

Species Distance between two veins (µm) Number of M cells between  two veins Mesophyll (%) Bundle Sheath (%) M:BS ratio

A. molinioides 519,0±9,0a 10,0±0,42ab 28±1,1c 14±0,3b 2,1±0,08b

A. lorea 335,0±3,4b 10,0±0,48b 30±0,5b 14±0,4b 2,3±0,06ab

A. euprepes 217,5±6,8c 6,8±0,20a 33±0,5ab 24±1,3a 1,5±0,12c

A. poliophylla 200,8±9,5c 8,1±0,40a 36±0,5a 11±0,4b 3,4±0,10a

Values represent mean ± SE, n= 36 observations per species. In each column, values followed by the same letter are not different (one-way ANO-
VA and the Tukey’s test; p<0.05).
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However, even with the reduction observed for the Apochloa 
species, our findings are still in the range of values found for 
C3 grasses (Christin et al., 2013). The C3 grasses Dicanthelium 
oligosanthes (Schult.) Gould  and Panicum bisulcatum Thunb. 
had distance between veins of 206 and 240 µm, respectively; 
figures more than 50 % higher than the studied C4 grasses 
(Khoshravesh et al., 2016). High distance between veins 
was also observed for the C3 grass Jansenella griffithiana 
(Müll. Hal.) Bor, with a mean of 471 µm (Bianconi et al., 
2020). In relation to the number M cells between veins, C3 
PACMAD species usually have three times more cells than 
C4 PACMAD ones (Ermakova et al., 2020). This pattern was 
observed for the C3 and C4 grasses Neurachne alopecuroidea 
R. Br. and Neurachne minor S. T. Blake, with 6.5 and four cells, 
respectively (Khoshravesh et al., 2020).

In fact, previous studies already pointed out that the 
genus Apochloa does not present specialized chloroplasts 
in the bundle sheath cells (Zuloaga et al., 2010), as it was 
observed in all four species analyzed here. The ability to fix 
and reduce CO2 in the BS cells is another step of BS cell 
activation and participation in the photosynthesis process 
(Gowik and Westhoff, 2011; Sage et al., 2014). In order to 
confirm the presence of photosynthetic enzymes in cells, 
studies of ultrastructure and enzymatic immunolocalization 
are needed. However, scarce organelles, mainly chloroplasts, 
found in these parenchymatous cells may indicate that the 
engagement in carboxylation activity of photosynthesis is 
not the main function. 

In this case, the enlarged BS cells may have another 
function, related to the environmental conditions in the area 
of collection. Sandy soils, poor in organic material, have a 
low capacity of water retention. Thus, the weather and soil 
characteristics provide low water availability for the most 
part of the year, even during the rainy season (Giulietti et al., 
1987; Castro and Menezes, 1995). In fact, bundle sheath 
cells of C3 tropical grasses have functions related to water 
supply (Sage, 2001; Griffiths et al., 2013). It is related that 
C3 PACMAD grasses have a high tolerance to the increase 
of evaporative demand through the investment in bigger 
BS cells (Griffiths et al., 2013). Under high temperature 
or low air humidity, and low water availability bundle 
sheath cells may store and regulate the water flux to the 
mesophyll, maintaining the leaf hydraulic integrity (Griffiths 
et al., 2013), besides preventing air entering the xylem (Sage, 
2001; Leegood, 2008). In this context, the water reserve 
function of BS cells has been considered a predisposition for 
C4 evolution in grasses, favouring the occupation of tropical 
and subtropical environments (Sage, 2001; Griffiths et al., 
2013), center of expansion of C4 grasslands (Edwards et al., 
2010; Osborne and Sack, 2012).

Apochloa species showed a rustic Kranz anatomy, with 
the presence of enlarged BS cells. Although they presented 
a typical C3 leaf anatomy and most of the organelles 
(chloroplasts) are restricted to M cells, the percentage of 

tissue related to BS cells may facilitate the establishment of 
C4 pathway in C4 genera related to these Apochloa species. 
Thus, more ultrastructural and phylogenetic investigations 
are needed in order to understand if those characteristics 
are coordinated with modifications of enzymes 
compartmentalization and the emergence of intermediate 
and C4 species in the clade related.

CONCLUSIONS

The presence of rustic Kranz anatomy in the Apochloa 
species analyzed could indicate facilitation to the 
development of the C4 photosynthesis in this group or may 
represent a trace of an ancestral C4 condition. However, 
ultrastructural and enzymatic analyses are required to 
confirm the photosynthetic metabolism of this species.
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