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RESUMEN
El Virus de la Hepatitis C (VHC) codifica la proteína Core. Que, además de ser la subunidad de la cápside, participa en diferentes 
mecanismos de patogénesis de la infección por VHC. Dado que el sistema de replicación in vitro del VHC presenta limitaciones, 
el uso de vectores virales podría ser una herramienta útil para estudiar las propiedades de la proteína Core. Con el fin de validar el  
vector con el Virus del Bosque de Semliki (SFV) para el estudio de Core en células HepG2, se evaluó la expresión de la proteína 
verde fluorescente (GFP) y la proteína Core utilizando este vector viral. Las expresiones de GFP y Core se detectaron en células 
HepG2 transducidas con rSFV de 24 a 96 horas postransducción. La expresión de la proteína Core fue inferior a la expresión de 
GFP en las células HepG2. Teniendo en cuenta que la proteína Core del VHC puede regular la actividad del gen p53, se evaluó el 
nivel transcripcional de este gen. Se observó una disminución en el nivel de mARN de p53 en las células luego de la transducción, 
comparado con las células control. Aunque las células transducidas con rSFV-Core presentaron el menor nivel de mARN de p53, 
la diferencia no fue significativa comparada con las células transducidas con rSFV-GFP. Los resultados confirman que rSFV permite 
la expresión transitoria de proteínas heterólogas en líneas celulares de hepatoma humano. Se necesitan estudios adicionales para 
determinar si la expresión disminuida de Core puede deberse a degradación de la proteína viral.

Palabras clave: expresión transitoria, p53, Vector Viral, VHC.

ABSTRACT
The Hepatitis C Virus (HCV) encodes the structural protein Core, which in addition to being the capsid subunit, participates in 
different mechanisms of HCV infection pathogenesis. Since HCV in vitro replication system has limitations, the use of viral vectors 
could be a useful tool to study the Core protein properties. To validate the Semliki Forest Virus (SFV) strategy in transduced HepG2 
cells to study the HCV Core protein, the expression of green fluorescent protein (GFP) and Core protein expressions were detected 
24 to 96 hours post-transduction in HepG2 cells transduced with rSFV. Core protein expression was lower than GFP expression in 
HepG2 cells. Since HCV Core protein can regulate the activity of the p53 gene, the transcriptional level of this gene was evaluated. 
A decrease in the level of p53 mRNA was observed in the cells after transduction, compared to the control cells. Although the cells 
transduced with rSFV-Core had the lowest level of p53 mRNA, the difference was not significant compared to cells transduced with 
rSFV-GFP. The results confirm that rSFV allows the transient expression of heterologous proteins in human hepatoma cell lines. 
Additional studies are needed to determine whether the decreased expression of Core may be due to the degradation of the viral 
protein.

Keywords: transitory expression, p53, Viral Vector, HCV.
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INTRODUCCIÓN

Semliki Forest Virus (SFV) is a member of the Alphavirus 
genus, family Togaviridae. The alphaviruses replication 
strategy is highly efficient; moreover, SFV has a wide host range 
from insects to mammals and its genome insertion capacity 
has been used for the development of a suitable expression 
system of heterologous proteins in eukaryotic cells (Henao 
et al,. 2007). The SFV system is based on a cDNA copy of the 
SFV genome with a deletion of the structural genes to allow 
the insertion of a heterologous gene. The recombinant SFV 
particles are obtained by co-transfection with three different 
RNAs. The first one corresponding to the replicon (coding 
four nonstructural proteins of SFV or transcriptase complex) 
and the sequence of the heterologous gene, the second one 
is the sequence coding for SFV capsid protein, and the third 
one, the sequence coding for SFV envelope proteins. 

The recombinant viral particles contain a defective 
genome, which leads to RNA replication and expression 
of the replication complex and the heterologous protein. 
However, no infection occurs due to the absence of the 
alphavirus structural genes, therefore, providing a system 
with a high biosafety level (Berglund et al., 1999). The SFV 
vector has been used for heterologous protein expression 
in different types of mammalian cells, also for vaccine 
production, and gene therapy applications (Vidalin et al., 
2000; Lemmonier et al., 2002; Hourioux et al., 2007; Ip et 
al., 2014). Therefore, it could be a useful tool to study viral 
proteins including the properties of the HCV proteins.

The HCV is an RNA virus from the Flaviviridae family, 
the Hepacivirus genus. The viral genome is a positive single-
stranded RNA of 9.6 kb that encodes a polyprotein of 
approximately 3000 amino acids. Cellular and viral proteases 
process the polyprotein into structural proteins (Core, E1, 
and E2) and nonstructural proteins (p7, NS2, NS3, NS4A, 
NS4B, NS5A, and NS5B) (Lin, 2006; Welbourn and Pause, 
2006). 

The World Health Organization (WHO) estimates  
71 million cases of chronic hepatitis C infection around the  
world (WHO, 2018). Indeed, between 60 to 80 % of  
the patients infected with HCV develop chronic infection, 
and 15-30 % of them evolve to end-stage liver diseases such 
as cirrhosis and Hepatocellular Carcinoma (HCC) (WHO  
et al., 2017; WHO, 2018). The HCC is the most common 
type of primary liver cancer and the fourth most common 
cause of cancer-related death (WHO and International 
Agency for Research on Cancer (IARC), 2018).

The first HCV treatment option was Interferon type I with 
unsuccessful results in more than 50 % of patients infected 
with HCV genotype 1, the viral genotype with the highest 
distribution worldwide. However, the recent developed 
direct-acting antivirals (DAA) have better outcomes with a 
95 % cure rate (González-Grande et al., 2016). Unfortunately, 
the access to this treatment is difficult due to the high cost 
(Rosenthal and Graham, 2016), and the viral clearance 

after the DAA treatment is not associated with HCC risk 
reduction in all cases (Conti et al., 2016). 

The HCV infection causes chronic inflammation, and the 
viral proteins induce oxidative stress leading to fibrosis and 
cirrhosis (Sukowati, 2016). Oxidative stress occurs with the 
excessive production of reactive oxygen species (ROS), and 
long term oxidative stress induces DNA damage (Sukowati, 
2016). Besides, Core, NS3, and NS5A HCV proteins have 
shown oncogenic activity related to pathways dysregulation 
that promotes malignant transformation of hepatocytes 
morphology, contributing to hepatocarcinogenesis (Akkari 
et al., 2012; IARC, 2012; Vescovo et al., 2016). 

HCV Core protein is related to some oncogenic processes, 
including effects on the tumor suppressor protein p53. This 
cellular protein is a transcription factor that regulates the 
cell cycle, programmed cell death, response to cell stress 
and DNA repair. The Core protein could induce mutations 
in p53 gene like G to A, and the mirror transition C to T 
affecting p53 functions (Kao et al., 2004; McGivern and 
Lemon, 2011;  Tornesello et al., 2013; Poole et al., 2018).

HCV Core protein could also enhance the expression 
of the cyclin-dependent kinase inhibitor p21 waf1/CIP1, which 
is a target of p53 and regulates activities such as cell-cycle 
and tumor formation through a p53-dependent manner, 
in the human hepatoma (Lu et al., 1999; Kwun and Jang, 
2003; Feng et al., 2015). Other studies indicate that HCV 
Core protein could repress transcription of the p21 gene 
through the tumor growth factor  (TGF-) pathway, 
as demonstrated by in vitro transient expression assays 
using Huh7, murine fibroblasts (NIH 3T3) and primary 
hepatocytes isolated from transgenic mice (Lee et al., 2002; 
Kwun and Jang, 2003; Jahan et al., 2011).

Since HCV is essentially a hepatotropic virus, the expression 
of viral proteins in cells with the hepatic environment is a 
model to study the properties of the HCV proteins. Since 
the HCV replication system in vitro has limitations, then the 
expression of viral proteins using viral vectors could be an 
appropriate model to study the properties of the HCV Core 
protein in a hepatoma human cell line (Bartenschlager and 
Lohmann, 2000). Consequently, the present study aimed 
to determine the efficiency of the SFV expression system in 
the HepG2 human liver cell line estimating the expression of 
the Green Fluorescent Protein (GFP) and HCV Core protein. 
Moreover, we evaluated the effect of transitory HCV Core 
protein expression on p53 mRNA level in HepG2 cells.

MATERIALS AND METHODS

Cell lines 

Human Hepatoma cells HepG2 were maintained in 
DMEM (Dulbecco´s Modified Eagle´s Medium, Gibco), 
supplemented with 10 % heated inactivated fetal bovine 
serum (FBS) (Gibco), 1 % penicillin/streptomycin (ICN),  
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1 mM sodium pyruvate (ICN), 25 mM HEPES, 1 % 
L-Glutamine (ICN) and incubated at 37 ºC in a humidified 
atmosphere with 5 % CO2. BHK-21 cells were maintained 
in BHK medium (Gibco, Life Technologies, Scotland), 
supplemented with 10 % tryptose phosphate broth, 
gentamicin 5 µg/mL (Thermo Fisher Scientific®, USA) and 
10 % FBS (Valbiotech, France). 

Recombinant viral particles rSFV-GFP and rSFV-Core 

The pSFV1-GFP and the pSFV1-Core were constructed 
using the pSFV-1 plasmid as described previously (Navas et 
al., 2019). The sequences were obtained by PCR amplification 
from the pEGFP (GFP, 754 bp) and the infectious clone 
p90/HCV FL-Long pU (HCV genome, nucleotides 342-914). 
Then, the sequences were cloned into pSFV-1 at the BamHI 
site downstream of the 26S viral promoter. 

In vitro transcription of RNA from SFV1-GFP, SFV1-Core 
and pSFV-helpers was carried out using the large-scale 
mMessage mMachine Sp6 transcription kit (Ambion Inc, 
Austin, TX) and DNA previously treated with proteinase K 
and SDS. Then BHK-21 cells were co-transfected with the 
mRNAs synthesized (SFV1-GFP and SFV-helpers, or SFV1-
Core and SFV-helpers) by electroporation (Gene Pulser II, 
BioRad, Richmond, CA), as previously described (Liljeström 
and Garoff, 1993). Culture supernatants of co-transfected 
cells were harvested 36 hours later.  

A serial passage assay was performed in BHK-21 cells to 
determine the titer of the recombinant SFV (rSFV) particles, 
rSFV1-GFP, and rSFV1-Core. The proteins expression levels 
were measured 24 hours post-transduction (h.p.t.) by flow 
cytometry or indirect immunofluorescence with the human 
monoclonal anti-Core B12.F8 antibody, which recognizes 
a major B cell epitope within the amino-terminal region of 
the HCV Core (Cerino et al., 1993), and a secondary anti-
human IgG FITC-conjugated Ab (Sigma, San Louis, MO). 
The viral titer was calculated using the Reed-Münch Tissue 
Culture Infectious Dose 50 (TCID50) method.

HepG2 cells transduction with the recombinant viral 
particles

HepG2 and BHK-21 cells (2 x 106 cells) were transduced 
with rSFV-GFP or rSFV-Core recombinant viral particles 
at a multiplicity of infection (MOI) of 0.5, as previously 
described (Navas et al., 2019). After transduction, cells were  
incubated in 5 ml of fresh DMEM or BHK medium supplemen-
ted with 10 % FCS at 37 °C for 24 hours. Respectively as a 
negative control, we treated cells without recombinant viral 
particles at the same conditions (mock cells).

We evaluated GFP expression to determine the efficiency 
of SFV as an expression system in the hepatoma cell line 
HepG2. The GFP expression level was determined by flow 
cytometry after the transduction of HepG2 cells with a 

dilution corresponding to the rSFV1-GFP TCID50. GFP 
expression was detected in transduced HepG2 cells 24, 
48, 72, and 96 h.p.t by flow cytometry and by fluorescence 
microscopy (Nikon ELWD 0.3-OD75) 24 hours h.p.t.

Expression of the HCV Core protein was evaluated by 
indirect immunofluorescence using the B12.F8 Ab at the 
same time points as GFP expression using the dilution 
corresponding to the rSFV1-Core TCID50. The expression 
levels of GFP and HCV Core protein in transduced HepG2 
cells were also confirmed by western blot.

Immunofluorescence

Cell monolayers were fixed (3 % paraformaldehyde) 
and then treated with 0.5 % Triton X-100 (Sigma, USA). 
Detection of the HCV Core protein was performed using the 
human monoclonal B12.F8 antibody diluted 1:25 in PBS 
containing 1 % bovine serum albumin (BSA) (Sigma, USA). 
Followed by the secondary antibody FITC conjugated goat 
anti-human 1gG1 (Sigma, USA) diluted 1:50 in PBS 1 % BSA 
and Evans blue.

Western blot

Cell were harvested 24 h.p.t and lysed in this buffer: 50 
mM Tris, pH 8.0, 150 mM NaCl, 1 % Nonidet P40, 0.5 % 
sodium deoxycholate, 0.1 % SDS and 0.5 % protease inhibitor 
cocktail, and incubated for ten min at 4 oC. The proteins 
were quantified using the Bradford assay and then loaded 
on a 10 % sodium dodecyl sulfate (SDS) polyacrylamide 
gel (PAGE) in reducing conditions assuring equal protein 
loading, blotted onto a PVDF membrane (Amersham-
Pharmacia, Uppsala, Sweden), incubated with the B12.
F8 Ab and secondary anti-human IgG HRP-conjugated Ab 
(Amersham), and revealed by chemiluminescence (ECL 
Western Blot, Amersham) according to the manufacturer’s 
instructions (Sambrook et al., 1989). The immunoblots were 
quantified by densitometry (un-scan-it v.6, Silk Scientific, 
Orem, UT), and protein levels were compared with the signal 
corresponding to a known concentration of a truncated 
isoform of Core (120 amino acids) 

Total RNA extraction

Total RNA from transduced and mock HepG2 cells was 
extracted using TRIzol® reagent (Invitrogen life technologies) 
24 h.p.t. Cell cultures were lysed directly in a culture dish 
by adding 1 ml of TRIzol® per 10 cm2 of the culture dish 
area. Total RNA was diluted 1:100 and quantified by 
spectrophotometry (Spectronic GENESYS 10 UV, Thermo 
Electron Corporation), and the absorbance ratio A260/A280 
was used to determine the purity of the extraction.

Semi-quantitative rt-PCR of p53 mRNA 

RNA, cDNA, and magnesium concentrations and PCR 
cycles were adjusted to achieve optimal PCR conditions for 
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quantification. RNA (2.66 mg) were reverse transcribed in 
the presence of 0.5 mg of primer OligodT (Promega), 20 U 
RNAse inhibitor (Fermentas, Cleveland USA), 200 U Moloney 
Murine Leukemia Virus Reverse Transcriptase (Fermentas), 
and 1 mM dNTP´s (Promega) in a final volume of 20 
mL. One-tenth of cDNA was amplified with Taq polymerase 
(Fermentas) for p53 amplification (94 ºC, 4 min, 35 cycles 
of 94 ºC, 30 s, 55 ºC, 30 s, 72 ºC, 1 min, 72 ºC, 4 min) and 
glyceraldehyde three phosphate dehydrogenase (GAPDH) 
amplification (90 ºC, 5 min, 22 cycles 90 ºC, 1 min, 60 ºC, 
1 min, 72 ºC, 1 min, 72 ºC, 10 min). Concentrations of 3 
mM MgCl2, 1:2 cDNA dilutions and 200 nM of Inter exon 
primers 5´-TTGCCGTCCCAAGCAATGGATG-3´ (nt 12027-
12048), 5´-TCCTGACCTGGAGTCTTCCAG-3´ (nt 14093-
14116) were used for p53 amplification. And the primers 
5´-CCCTTCATTGACCTCAACTACATGG-3’ (nt 3926-3950), 
5`AGTCTTCTGGGTGGCAGTGATGG 3´ (nt 4953-4975) 
were used for GAPDH amplification (Kaboev et al., 2000). 
All the amplification products were run in agarose gel 
electrophoresis at 1.2 % for 60 minutes at 80 V.

Densitometry analysis 

The amplification products obtained from standardization 
assays and semi-quantitative RT-PCR were analyzed in 1.2 % 
agarose gel electrophoresis stained with ethidium bromide 
and quantified by densitometry using the program Image 
J (V1.4.3 NIH). We performed the analyses following the 
recommendations described in Current Protocols in Cell 
Biology (Gerstein, 2001). p53 mRNA relative levels were 
calculated by measuring the relative ratios (RR) p53/GAPDH 
acquired from the media of five independent experiments 
obtained by densitometry analysis of gel bands.

Statistical analysis 

The normality of the data was probed before proceeding 
to the statistical analysis. The analysis of p53 mRNA 
expression levels was accomplished using the Statgraphics 
Centurión XV package (StatPoint, Inc 2005). The difference 
between medians was analyzed by a non-parametric Kruskal 
and Wallis Test performed using whole densitometry values 
(p = 0.0000; H=130.073 > 5.99 (2 0.05, 2) and p =0.0000; 
H= 119.536 > 7.81 (2 0.05, 3)). Additionally, we conducted 
a one-way ANOVA and a multiple comparison media test 
(Tukey Test) to analyze differences between p53 mRNA levels 
in transduced and non-transduced cells. The relative ratios 
(RR) mRNA p53 /mRNA GAPDH were calculated from 
media densitometric values of five independent experiments.

RESULTS

GFP expression in transduced-HepG2 cells

The reporter GFP expression was first evaluated to 
determine the efficiency of SFV as an expression system in 
the hepatoma cell line HepG2, taking into account that the 
appearance of GFP has been demonstrated in different cell 
lines, as being a suitable indicator of the efficiency of the SFV 
system (Ehrengruber et al., 1999).  

The GFP expression level was determined by flow cytometry 
after HepG2 cells transduction with a dilution corresponding 
to the rSFV1-GFP TCID50. GFP expression was detected  
at 24 to 96 h.p.t. in rSFV transduced cells with a peak between 
24 and 48 h.p.t. (Fig. 1a). The percentage of cells with GFP 
expression was similar between rSFV-transduced HepG2 
(70.4 %) and BHK-21 cells (71.3 %) 24 h.p.t. (Fig. 1b).  

Figure 1. GFP expression in transduced cells using rSFV. a. GFP expression was detected by flow cytometry in rSFV transduced HepG2 cells. The 
arithmetic means expressions from three different experiments ± SD. b. Dot plot analysis of GFP expression in rSFV transduced cells. I. BHK-21 cells 
24 h.p.t. II. HepG2 cells 24 h.p.t. Fluorescent events in region 4 of the channel FL1 correspond to cells expressing GFP. The percentage of fluorescent 
cells is indicated in each dot plot.
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This result indicates the transduction efficiency and the 
replication of rSFV in this human hepatoma cell line and 
confirms the data previously published (DiCiommo and 
Bremner, 1998; Ehrengruber et al., 1999).  

HCV core protein expression in HepG2 cells using rSFV

Considering the results obtained with rSFV1-GFP in 
HepG2, the transduction efficiency of the expression of the 
HCV Core protein was investigated. Expression of the HCV 
Core protein was evaluated by indirect immunofluorescence 
using the B12.F8 Ab at the same time points as GFP 
expression using the dilution corresponding to the rSFV1-
Core TCID50. Even if the GFP expression as a heterologous 
protein in transduced-HepG2 cells was demonstrated, the 
HCV Core protein was detected only in 10 to 25 % of cells 
between 24 and 48 h.p.t., compared to around 60 % of  
cells positive for GFP expression. The HCV Core expression level 
was also lower compared with the results obtained in rSFV1-
Core-transduced BHK-21 cells (50 % 24 h.p.t.) (Fig. 2a).  

The difference observed between the HCV Core protein 
expression levels in rSFV transduced cells was also confirmed 
by western blot. Immunoblotting analysis indicated an  
11-fold increase of HCV Core expression level in BHK-21 cells 
compared to transduced HepG2 cells (Fig. 2b).  In addition 
to the lower efficiency of the recombinant SFV particles for 
HCV Core expression in HepG2 cells, we observed a marked 
cytopathic effect (CPE) in rSFV1-Core-transduced HepG2 
cells 24 h.p.t. (Fig. 3).

p53 mRNA levels in HepG2 cells transduced with rSFV-
GFP and rSFV-core

Five independent RT-PCR experiments for p53 mRNA and 
GAPDH mRNA amplifications were performed to compare 

mRNA expression levels in transduced-cells transduced, GFP 
transduced, and control cells. A decrease of p53 mRNA level 
was observed in transduced cells compare to mock cells. 
Moreover, the lowest p53 mRNA level was detected in rSFV-
Core transduced cells (Fig. 4).

The p53 mRNA/GAPDH mRNA relative ratios obtained 
from the experiments were analyzed with ANOVA  
(p = 0.1356). Although the relative ratio was lower in rSFV-
Core transduced cells, the data did not show a significant 
difference between rSFV-GFP and rSFV-Core HepG2 cells 
(Fig. 5).

DISCUSSION

In this study, we used the recombinant SFV as a viral 
vector in the hepatoma cell line HepG2, and we performed 
a semiquantitative RT-PCR for p53 mRNA to investigate 
the effect of the HCV Core protein in p53 transcription in 
transduced cells. 

The GFP expression levels detected in transduced HepG2 
and BHK-21 cells 24 h.p.t are in agreement with the results 
previously described (DiCiommo and Bremner, 1998; 
Ehrengruber et al., 1999). Interestingly, the GFP expression 
in transduced HepG2 cells even at 96 h.p.t, which differs 
from the results obtained in transduced BHK-21 cells  
(Fig. 1) and suggest that compared to BHK-21 cells, HepG2 
cells are more resistant to SFV replication.

However, according to Wahlfors et al. (2000), the relative 
transduction efficiency of Sindbis virus on HepG2 cells is very 
low compared to BHK cells, 293T cells, and human primary 
fibroblasts, the best targets for both Sindbis virus and SFV. 
The contradictory results obtained between the present 
study of high transduction efficiency of SFV on HepG2 cells 
for GFP expression and the research by Wahlfors et al. (2000) 
could be due to differences between HepG2 cell clones and 

Figure 2. HCV Core protein expression in transduced cells using rSFV. a. Detection of HCV Core expression by indirect immunofluorescence 
(Magnification 40x) I. BHK-21 cells 24 h.p.t. II. HepG2 cells 24 h.p.t. b. Western blot analysis of HCV Core protein expression in transduced cells 
with rSFV-Core. Lane 1 BHK-21 cells 24 h.p.t. Lane 2 HepG2 cells 24 h.p.t
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probably host range differences between SFV and Sindbis 
virus. 

Considering the transduction efficiency observed in 
HepG2 using rSFV-GFP, the expression of the HCV Core 
protein was investigated. In contrast to the GFP expression 
level, the effectiveness of the SFV system for the HCV Core 
protein expression in HepG2 cells was three to seven times 
lower than for GFP. 

The low HCV Core expression level described in this study 
differs from the report of SFV-transduction efficiency in 
this cell line, where a high level of hepatitis E virus (HEV) 
capsid protein expression in rSFV-transduced HepG2 cells 
was described (Torresi et al., 1997). However, the failure to 
induce anti-Core specific cytotoxic T lymphocytes in mice 
after intramuscular injection with rSFV particles described 
by Vidalin et al. (2000), could be due to the low level of 
expression of the HCV Core in cells, different from BHK 
using this viral vector, as observed in the present study.

A strategy aimed at increasing the expression level when 
using the SFV vector system was reported for the HCV NS3 

protein by Frelin et al. (2004). The authors demonstrated a 
significant increase in HCV NS3 expression level by adapting 
the viral sequence to the most commonly used codons by 
human cells. This strategy could be envisioned to improve 
the transduction efficiency of SFV in HepG2 cells for the 
expression of specific proteins.

This study showed a reduced level of HCV Core protein 
expression compared with GFP. rSFV1-GFP-transduced 
HepG2 cells exhibited not only higher heterologous protein 
expression but also less critical CPE than rSFV1-Core 
transduced HepG2 cells. Enhanced CPE due to the presence 
of replication-competent viruses (RCV) in the rSFV1-Core 
particles collected was kept under control by inoculation of 
transduced HepG2 cell supernatant in BHK-21 monolayers. 
The CPE was not detected in these assays suggesting RCVs 
were absent or present at low levels (data not shown).

The marked CPE could be due to the apoptosis induction 
by the HCV Core protein, probably associated with the 
regulation of p53 or p53-related proteins. Core protein 
affects the p53 protein level and its transcriptional activity 

Figure 3. The cytopathic effect in HepG2 cells after transduction using rSFV. a. Mock cells. b. rSFV-GFP transduced cells. c. rSFV-Core transduced cells.

Figure 4.  RT-PCR assay for p53 mRNA and GAPDH mRNA level in rSRV transduced-HepG2.  Lane 1: Molecular weight 1 kb (Ladder, Fermentas). 
RT-PCR of p53 mRNA Lanes 2, 4, 6. Lane 2: Mock cells, Lane 4: rSFV-GFP transduced HepG2 cells, Lane 6: rSFV-Core transduced HepG2 cells. RT-
PCR of GAPDH mRNA Lanes 3, 5, 7-9. Lane 3: mock HepG2 cells, Lane 5: rSFV-GFP transduced HepG2 cells, Lane 7: rSFV-Core transduced HepG2 
cells. Lane 8: Positive control and Lane 9: Negative control. Agarose gel electrophoresis 1 %.
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(Lu et al., 1999; Kwak et al., 2017). This viral protein could 
regulate p53 functions via protein-protein interaction, 
modulating the transcription or with post-translational 
modifications (Kao et al., 2004). Indeed, Jahan et al. 
(2011) showed that HCV Core protein from genotype 3a 
downregulates the expression of p53 mRNA in human 
hepatoma cell line Huh7. However, in our study, no 
significant difference in p53 mRNA levels was demonstrated 
between rSFV-Core compared to rSFV-GFP transduced  
(Fig 5). Indeed, the limitations of the present study are 
the low-resolution technique to show differences at the 
transcription level of mRNA p53 and possibly the variability 
among the transduction assays. 

In the present study, decreased HCV Core protein 
expression was not related to the SFV replicon because 
vector efficiency was demonstrated with reporter protein 
expression. This result could be associated with the 
induction of oxidative cellular stress by increased reactive 
oxygen species (ROS) production and subsequent autophagy 
and viral protein degradation as described in HuH-7 cells 
expressing HCV Core protein (Ríos-Ocampo et al., 2019). The 
accumulation of the HCV Core protein in the endoplasmic 
reticulum (ER) leads to ER stress which can result in changes 
in cell homeostasis as an adaptive response mammalian cells 
activate the Unfolded Protein Response to reduce the stress 
decreasing the protein load at the ER (Ríos-Ocampo et al., 
2019). Moreover, the HCV Core protein can induce toxicity 
in HepG2 cells by activation of triglycerides biosynthesis and 
subsequent accumulation of lipids (Hourioux et al., 2007; 
Kwak et al., 2017).

CONCLUSION

This study confirms that rSFV can be a useful tool for 
transient heterologous protein expression in human liver 

cell lines. Further studies are required to demonstrate if the 
low level HCV Core protein expression described in rSFV 
transduced-HepG2 cells is related to induction of ER Stress 
and protein degradation.
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