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ABSTRACT
Mexico is the centre of origin of the chayote (Sechium edule Jacq. Sw), an important plant in human consumption and in pharmaceuticals. 
The objective of this study was to determine the potential distribution of domesticated S. edule in Mexico using seven species 
distribution algorithms, to efficiently manage S. edule resources and help its conservation by identifying patterns of geographic 
distribution. Otherwise, areas of high suitability can be used to produce improved seed at a lower cost. 162 GBIF occurrence points 
and nine layers in raster format were used to evaluate seven algorithms of species distribution models. To evaluate the reliability and 
performance of the models, the statistics Area Under the Curve (AUC) and true skill statistic was used. Predominant climate types 
were Cwb (33.3 %) and Aw (17.9 %); predominant soil types were leptosol (33.3 %) and phaozem (16.7 %). The seven models showed 
areas of high suitability (> 0.75) in Chiapas, Guerrero, Oaxaca, Veracruz, Tabasco, Puebla and Hidalgo states. AUC values for the 
seven models were > 0.8 and their performance was adequate (0.4 > TSS < 0.7). Classification tree analysis was found to be the 
best algorithm measured by AUC (0.90); however, the seven models were adequate to explain S. edule distribution in Mexico. S. edule 
climatic adaptability also allows to be distributed towards the Yucatan Peninsula and western Mexico. The distribution of S. edule in 
Mexico, according to the studied algorithms, is limited to total annual precipitation and temperature seasonality.
Keywords: algorithms, geographical distribution, performance, temperature, weather.

RESUMEN
México es el centro de origen del chayote (Sechium edule Jacq. Sw), una planta importante en la alimentación humana y en la 
farmacéutica. El objetivo de este estudio fue determinar la distribución potencial de S. edule domesticado en México utilizando siete 
algoritmos de distribución de especies, con el fin de gestionar eficientemente los recursos de S. edule y ayudar a su conservación 
mediante la identificación de patrones de distribución geográfica. Por otra parte, las zonas de alta idoneidad pueden ser utilizadas 
para la producción de semilla mejorada a un menor costo. Se utilizaron 162 puntos de ocurrencia de la GBIF y nueve capas en 
formato ráster para evaluar siete algoritmos de modelos de distribución de especies. Para evaluar la confiabilidad y el rendimiento de 
los modelos se utilizaron los estadísticos Área bajo la curva y el verdadero estadístico de habilidad. Los tipos de clima predominantes 
fueron Cwb (33,3 %) y Aw (17,9 %); los tipos de suelo predominantes fueron leptosol (33,3 %) y phaozem (16,7 %). Los siete modelos 
mostraron áreas de alta idoneidad (> 0,75) para los estados de Chiapas, Guerrero, Oaxaca, Veracruz, Tabasco, Puebla e Hidalgo. 
Los valores de AUC para los siete modelos fueron > 0,8 y su rendimiento fue adecuado (0,4> TSS <0,7). Se encontró que el análisis 
de árboles de clasificación fue el mejor algoritmo medido por AUC (0,90), sin embargo, los siete modelos fueron adecuados para 
explicar la distribución de S. edule en México. La adaptabilidad climática de S. edule también le permite distribuirse hacia la Península 
de Yucatán y occidente de México. La distribución de S. edule en México, según los algoritmos estudiados, se limita a la precipitación 
total anual y la estacionalidad de la temperatura.
Palabras Clave: algoritmos, clima, distribución geográfica, rendimiento, temperatura.
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INTRODUTION

The chayote [Sechium edule (Jacq.) Swartz] is a native 
species to the mountainous regions of Mexico. It is currently 
found in the wild in the states of Veracruz and Oaxaca (Lira 
et al., 1999), where its cultivation is also practiced, and 
to a lesser extent in western and central Mexico. Because 
wild populations of chayote and the closely related species 
Sechium compositum (Donn. Sm) C. Jeffrey and Sechium 
chinantlense Lira & F. Chiang have only been found in this 
country, Mexico is considered the centre of origin of S. 
edule (Newstrom, 1990; Lira, 1995; Cross et al., 2006). 
The cultivated and wild populations of chayote in Mexico 
shows great phenotypic and phytochemical variability 
in the characteristics of fruit, leaves and flowers. S edule 
domesticated populations are used for food purposes, 
while wild populations are used for pharmaceutical 
research (Cadena-Iñiguez et al., 2008; 2011).

Mexico ranks first in the world production and export of 
chayote. Around 2972 ha are produced in the country at 
an average rate of 66 tons per hectare, with Veracruz state 
contributing more than 90 % of total production (SIACON, 
2020). Chayote fruit is used in national gastronomy and 
its alcoholic extracts are being studied as a potential 
treatment for various types of cancer (Cadena-Iñiguez et 
al., 2013b; Aguiñiga-Sánchez et al., 2015; 2017; Salazar-
Aguilar et al., 2017).

Ecological niche is the relationship between a species 
with all biotic and abiotic factors that affect it. Ecological 
niche modeling predicts the probability of suitability of a 
species in each geographical area, that is, the necessary or 
ideal conditions for growth and development of species, 
where values close to 0 indicate little or no suitability, 
while values close to 1 indicates high suitability (Ashraf et 
al., 2017). The distribution of a species is a function of the 
ecological conditions where it develops and reproduces. 
Species distribution models (SDM) are based on statistical 
procedures and Geographical Information Systems (GIS). 
Using presence-absence data, these models allow the 
inference of ecological niches. Various algorithms for their 
calculation are grouped into descriptive, discriminating, 
and mixed techniques (Mateo et al., 2011). Descriptive 
techniques such as Bioclim include bioclimatic envelop 
methods to characterise the sites found within environmental 
space occupied by the species in question. In this group 
there are also algorithms based on distances (Domain and 
Mahalanobis) that evaluate sites in terms of environmental 
similarity with presence data (Elith et al., 2006). 
Discriminant techniques such as generalized linear models 
(GLM) require presence-absence data and could model 
realistic ecological relationships. Within these techniques 
are those using machine learning, such as maximum entropy 
(Maxent), random forest (RF), and support vector machines 
(SVM). These are widely used due to their ability to process 

large amounts of information and reconstruct groups for 
classification, or to generate numerical regressions for 
prediction tasks (Gobeyn et al., 2019). There are also null 
geographic models such as geographic distance, convex 
hulls, circles, and presence-absence that use geographic 
location of presences, but they are not based on predictive 
variables and are not commonly used since their performance 
and reliability has yet to be assessed (Hijmans and Elith, 
2013). Maxent algorithm is used more frequently (Phillips et 
al., 2006), however, more algorithms need to be evaluated 
for a more comprehensive view.

SDMs have various applications in agriculture. In 
cultivated species such as Zea mays and Panicum virgatum, 
Maxent and SVM algorithms have been used to estimate 
the suitability of geographic regions in which these species 
can thrive (Evans et al., 2010). Information from SDMs can 
also provide phylogeographic references and infer historical 
events that attempt to explain the origin and genetic 
structure of populations (Carstens and Richards, 2007), 
although this must also be corroborated with molecular 
data. SDMs are used to monitor the availability of pollinating 
insects, as well as to propose strategies to cope with any 
adverse changes in the environment that affect them (Polce 
et al., 2013). It is also possible to predict the suitability of 
noxious species (weeds and insects), forecast their location 
and distribution, and formulate strategies to mitigate 
socioeconomic damage in areas vulnerable to invasion 
(Lantschner et al., 2018). Other applications to be highlighted 
are the assessment of species richness, endemism, threatened 
habitats, protection and conservation of threatened species, 
diversity patterns, conservation studies, response to climate 
change, reintroduction of threatened species and the study of 
anthropic effects on the distribution of the species. Although 
many of these applications are used in animal species, they 
can also be applied to plant species (Mateo et al., 2011).

Area Under the Curve (AUC) is the most used statistic 
to measure the reliability of distribution models. This value 
corresponds to the probability that, by taking presence/absence 
data at random, the model assigns higher suitability values to 
presence data (Mateo et al., 2011). AUC has some limitations 
in its use, especially in species with a high range of adaptability 
(Lobo et al., 2007). However, through algorithms adjustments 
such as cross-validation, correlation analysis, Cohen’s kappa, 
true skill statistic (TSS) and raising the number of presences 
to 20 or over, its consistency and performance can increase 
considerably (Hijmans and Elith, 2013).

The recalcitrance of S. edule seed does not allow it 
to be protected in ex situ germplasm banks, which is why 
suitable sites must be found to maintain and study S. edule 
accessions. Currently, work is being done on the creation 
of new germplasm banks to facilitate the access to genetic 
diversity for chayote producers, as well as to encourage the 
exchange of genetic material from farmers (Cadena-Iñiguez 
et al., 2013a).
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The objective of this study was to determine the potential 
distribution of domesticated S. edule in Mexico using seven 
algorithms to calculate species distribution models, to 
efficiently manage the resources of S. edule and aid its 
conservation, identify geographical distribution patterns.

MATERIALS AND METHODS

OCCURRENCE DATA

S. edule occurrence data were obtained from the Global 
Biodiversity Information Facility (GBIF, https://www.gbif.
org/). Worldwide there are 2327 occurrence data, of which 
983 are from Mexico. Data from these records were cleaned 
to remove entries with repeated coordinates, absence of 
coordinates, georeferencing errors and exclusion of wild 
specimens, leaving 162 occurrences data. SSDM package 
(Schmitt et al., 2017) selects pseudo-absences from randomly 
selected sites where a species is assumed to be absent. 25 % of 
the records were randomly selected for use in the test, while 
the remaining 75 % were used for training.

BIOCLIMATIC VARIABLES

The 19 bioclimatic variables of WorldClim version 2.1 from 
the period 1970–2000 was used, with a spatial resolution 
of 1 km2 (Fick and Hijmans, 2017). Raster models with 
spatial resolution of 1 km2 was added for elevation data in 
meters (Fick and Hijmans, 2017) (Table 1). Köppen-Geiger 
climate classification (Beck et al., 2018) and soil types from 
Harmonized World Soil Database version 1.2 (Fischer et al., 
2008) were used to group occurrence data. Raster values for 
22 layers were obtained using Point Sampling Tool of QGIS 
version 3.16.2 (QGIS Development Team, 2020). Specific 
locations of occurrence data were found using Physiographic 
Subprovinces from Digital Map of Mexico, prepared by 
National Institute of Statistical and Geographic Information 
(INEGI) (https://www.inegi.org.mx/temas/fisiografia/).

ANALYSIS AND PROCESSING

All packages mentioned in this paper were run using 
RStudio (R Core Team, 2020). The qualitative variables of 
climate and soil types were processed using tidyverse package 
(Wickham et al., 2019) with data presented in bar graphs, 
showing descriptive information. They were not included 
in SDM since climate type is correlated with bioclimatic 
variables related to precipitation such as bio12 (Table 1) 
(Evans et al., 2010), and soil type generally does not seem 
to restrict distribution due to the adaptability of the crop to 
different soil types (Lira et al., 2019). Pearson’s correlation 
was calculated for raster values of 19 WorldClim bioclimatic 
variables and elevation. Variables with correlation values 
greater than 0.8 were eliminated to avoid affecting the 
models (Phillips et al., 2006) (Table 1).

DISTRIBUTION MODELS

Seven common algorithms from literature were used: 
Generalized linear model that uses a weighted linear 
regression to arrive at the estimated maximum likelihood 
of the parameters (Hijmans and Elith, 2013); Generalized 
additive model, which is an algorithm that allows non-
linear responses to be directly modeled by smoothing the 
predictive variables (Wood, 2017); Generalized boosted 

Table 1. List of variables used in the model development for 
S. edule domesticated in Mexico.

Variable Description Unit

Bio1 Annual Mean Temperature ºC

Bio2 Mean Diurnal Range ºC

Bio3 Isothermality ºC

Bio4 Temperature Seasonality ºC

Bio12 Annual Precipitation Mm

Bio14 Precipitation of Driest Month Mm

Bio15 Precipitation Seasonality Mm

Bio18 Precipitation of Warmest Quarter Mm

Elevation Digital Elevation Model M

Figure 1. Occurrence data percentage of S. edule for each physiographic 
subprovince (https://www.inegi.org.mx/temas/fisiografia/) in Mexico.

https://www.inegi.org.mx/temas/fisiografia/
https://www.inegi.org.mx/temas/fisiografia/
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regression model which is an algorithm that repeatedly fits 
many decision trees to improve model accuracy (Greenwell 
et al., 2020); Classification tree analysis is an algorithm 
that initiates a non-parametric structured approach for the 
evaluation and comparison of different options, thus helping 
to choose the most competitive alternative (Schmitt et al., 
2017); Random Forest (RF) which is a regression-based 
algorithm in which bootstrap is used to select subsamples 
of the data and generate a large number of regression 
trees (Breiman, 2001); Maxent which is an algorithm that 
expresses a probability distribution where each cell of the 
grid has a predicted suitability of the conditions for the 
species (Phillips et al., 2006) and Vector Support Machines 
(SVM) (Vapnik, 1998) which uses a functional relationship 
called the kernel to map data into hyperspace where patterns 
can be represented more simply. Additionally, an assembly 
of the seven aforementioned models was executed through 
a weighted average of the outputs of the seven algorithms 
used (Schmitt et al., 2017). Likewise, dependencies gam 
(Hastie, 2020), stats (R Core Team, 2020), maxent (Hijmans 
et al., 2017), rpart (Therneau and Atkinson, 2019), gbm 
(Greenwell et al., 2020), randomForest (Liaw and Wiener, 
2002) and e1071 (Meyer et al., 2019) were used. Threshold 
used was 0.5.

Regarding Maxent algorithm, ENMeval package 
(Muscarella et al., 2014) was used to optimize the model, 
hinge and threshold functions were deactivated to avoid 
overfitting response curves, the regularization multiplier 
was 0.75 and were activated linear, quadratic and product 
functions. For running the models, the protocol of Hijmans 
and Elith (2013) was followed. The model’s adjustment was 
measured using AUC, where values > 0.5 indicate adequate 
models. However, AUC may present bias and variation in 
its values with the spatial extension to select bottom points 
(Lobo et al., 2007). To correct this problem, point distance 
sampling was used. This involved calculating the distance 
from the presence records for the training and test data 
sets, as well as the distance from the absence data for the 
training and test data sets (Hijmans, 2012; Hijmans and 
Elith, 2013). To evaluate the performance of the models 
the TSS was used, where TSS > 0.75 indicates excellent 
performance, 0.4 < TSS < 0.75 optimal performance and 
TSS < 0.4 poor performance (Eskildsen et al., 2013). The 
performance of the models and AUC and TSS calculation 
were carried out using SSDM package (Schmitt et al., 2017). 
The output raster layers were exported to QGIS Development 
Team version 3.16.2 (2020) for final editing of distribution 
model maps.

Figure 2. Physiographic subprovinces of Mexico. a. Climate types. Af = Tropical, rainforest; Am = Tropical monsoon; Aw = Tropical savannah; 
BSh = Arid, step, hot; BSk = Arid, step, cold; Cfa = Temperate, no dry season, hot summer; Cfb = Temperate, no dry season, warm summer; Cwa = 
Temperate, dry winter, hot summer; Cwb = Temperate, dry winter, warm summer. b. Soil types.
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RESULTS

PHYSIOGRAPHY, CLIMATE, AND SOIL TYPES

Twenty-one physiographic subprovinces were registered for 
the 162 occurrence records, most of which correspond to the 
physiographic subprovinces of Eastern Sierra (20 %), Lakes and 
Anahuac volcanoes (13 %), Chiconquiaco (10.5 %), Chiapas 
highlands (9.5 %) and Sierras of southern Chiapas (8.5 %) 
(Fig. 1). Three climatic groups were found to be present in 
the occurrence records of S. edule according to the Köppen 
classification: tropical (A), dry (B) and temperate (C). The 
predominant type of climate was Cwb (temperate, dry winter, 
warm summer, 33.3 %), also known as temperate mountain 
with dry winter, followed by Aw (tropical monsoon, 17.9 %) 
and Af (tropical, rainforest, 11.7 %). In the physiographic 
subprovinces of Lakes and Anahuac volcanoes and Eastern 
Sierras, up to seven and eight different climatic types were 
seen, respectively. In Plains and Hills and the Sierra Lacandona, 
with few points of occurrence, the climates Cwb and Am 
predominated, respectively (Fig. 2a). Eight predominant soil 
groups are present in the occurrence records of S. edule, 
according to raster information from Fischer et al. (2008). 
Leptosol contributes 33.3 % of the total, phaozem 16.7 %, 
followed by luvisol and regosol, both contributing 13 % y 
12.3 %, respectively. In some physiographic subprovinces, 
only one type of soil and climate predominated (Fig. 2).

DISTRIBUTION MODELS

The distribution models of S. edule in Mexico were inferred 
by layers bio1, bio2, bio3, bio4, bio12, bio14, bio15, 
bio18, and elevation, which were derived from correlation 
analysis. The AUC and TSS values for training and testing 

were averaged because they are very similar values. The CTA 
algorithm obtained the highest AUC score (0.90) In general, 
the AUC for the seven models was > 0.5 and they showed 
adequate performance (0.4 < TSS > 0.7) (Table 2).

The GLM algorithm (Fig. 3a) showed low suitability (0.21-
0.40) for the states of Chiapas, Oaxaca, Guerrero, Puebla, 
Hidalgo y Veracruz. GAM model (Fig. 3b) showed results very 
similar to GLM algorithm. GBM algorithm showed areas of 
high suitability for regions of Chiapas, Oaxaca, Veracruz, the 
Yucatan peninsula and the western coastal zone of Mexico. 
(Fig. 3c). CTA algorithm showed areas of high suitability for 
the Mesoamerican region of Mexico (Fig. 3d). Surprisingly, 
moderate suitability was found in small regions in the north 
of the country, where the weather is generally drier with little 
precipitation. This can be explained by the coincidence of 
the clime arid, steppe and hot (BSh) and clime arid, steppe 
and cold (BSk) weather in certain occurrence records.

RF, Maxent and SVM algorithms showed very similar 
results in terms of suitable areas for S. edule (Fig. 4 a-c). The 
RF and MVS algorithms (Fig. 4a–c) showed similar maps, 
with areas of high suitability like those seen in the Maxent 
model but with smaller regions. The Maxent algorithm (Fig. 
4b) has high suitability (> 0.81) zones similar to the RF and 
SVM models, however the high suitability was emphasised 
in large regions of Veracruz, Puebla, Hidalgo, Guerrero, 
Oaxaca and Chiapas. The assembly of the seven algorithms 
(Fig. 4d) showed zones of high suitability very similar to 
Maxent algorithm (Fig. 4b).

According to Jacknife test, the generalized algorithms 
(GLM and GAM) and SVM gave greater weight to variables 
related to precipitation (bio12 and bio14); while the 
GBM, CTA, RF algorithms had more influence of variables 
related to temperature (bio4). Maxent algorithm gave a 
fair percentage to all bioclimatic variables. The assembled 
model gave more importance to bio4 (Table 2).

Table 2. Jacknife test for contribution (%) of variables to algorithms and statistics AUC and TSS.

Model Bio1 Bio2 Bio3 Bio4 Bio12 Bio14 Bio15 Bio18 Elevation AUC TSS

GLM 4.35 13.99 12.38 4.19 47.34 0.04 0.17 16.34 1.16 0.82 0.63

GAM 15.30 1.64 9.78 26.77 2.73 16.03 14.03 10.14 3.35 0.83 0.64

GBM 1.15 9.89 0.08 85.45 9.89 0.12 3.03 0.05 0.07 0.87 0.74

CTA 0.34 0.06 4.27 46.54 0.07 0.07 13.99 21.16 13.66 0.90 0.89

RF 8.34 6.09 7.64 29.65 10.91 5.64 17.56 5.16 8.98 0.87 0.74

Maxent 11.18 11.22 11.25 10.89 11.21 11.19 10.63 11.24 11.15 0.85 0.70

SVM
5.01 5.17 10.41 10.75 38.20 3.23 16.14 4.36 6.68 0.87 0.74

Ensemble
7.49 7.67 7.03 25.17 14.20 5.36 16.21 8.19 8.62 0.84 0.68

GLM: Generalized lineal model; GAM: Generalized additive model; GBM: Generalized boosted regression model; CTA: Classification tree 
analysis; RF: Random Forest, SVM: Support vector machines. bio1: annual mean temperature; bio2: mean diurnal range (mean of monthly (max 
temp - min temp)); bio3: isothermality; bio4: temperature seasonality; bio12: annual precipitation, bio14: precipitation of driest month; bio15: 
precipitation seasonality; bio18: precipitation of warmest quarter; AUC: Area under the curve, TSS: True skill statistic.
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Figure 3. Distribution models for S. edule in Mexico. a. Generalized lineal model. b. Generalized additive model. c. Generalized boosted regressions 
model. d. Classification tree analysis.

Figure 4. Distribution models for S. edule in Mexico. a. Random Forest. b. Maxent. c. Support vector machines. d. Ensemble.
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DISCUSION

Annual mean temperature plays an important role in 
S. edule distribution, with an average of 20 ºC across the 
162 occurrences data. The optimum temperature range is 
13–21 ºC, as temperatures below this cause damage to the 
fruits, while those above 28 ºC cause problems in flower and 
fruit retention (Lira, 1996). Wild populations of S. edule 
generally tend to be distributed in Am and Af climates, 
however, under growth conditions, cultivated S. edule can 
thrive in a diverse range of dry and temperate climates 
(Aung et al., 1990). The calcareous components of leptosols 
can immobilise the mineral nutrients in the soil and, in the 
case of chayote, can reduce the productivity and quality of 
the fruits (Cadena-Iñiguez, 2005). However, some leptosols 
may have small layers rich in organic matter, which is an 
edaphic requirement for chayote plantations (Lira, 1996). 
Phaozem, present in 50 % of physiographic subprovinces, 
are soils considered ideal for agriculture due to their high 
organic matter content. Ideal soils for chayote production 
must be well drained, rich in organic matter and have a pH 
of 4.5–6.5 (Lira, 1996), however, the different phenotypic 
variants of chayote enable a high level of adaptability to 
different types of soil (Lira et al., 2019).

High suitability zones (> 0.76) shown in the seven 
algorithms coincided with the presence of two species that 
are closely related to S. edule: S. chinantlense and S. compositum 
(Cross et al., 2006, Barrera et al., 2021). The varietals virens 
levis, nigrum spinosum, nigrum xalapensis, albus dulcis and albus 
minor are also distributed in these regions (González-Santos et 
al., 2017). When there are different ecotypes or populations 
of the same species, the species distribution algorithms can 
be considered representative of the entire species (Mateo 
et al., 2011). Although distribution models are applicable 
for wild species, S. edule populations are domesticated and 
very few of them are cultivated, for example, the case of 
varietal complexes virens levis and nigrum xalapensis. However, 
the before mentioned varietal complexes of S. edule are 
vulnerable in these same areas. The risk of genetic erosion in 
these places is mainly due to the presence of new improved 
varieties that are displacing semi-domesticated populations, 
which generally have fruit with morphological characteristics 
not suitable for the market, such as the presence of thorns, 
small size, and bitter flavour. Also, the introduction of crops 
such as coffee causes a decrease in S. edule populations 
(Cadena-Iñiguez, 2005). In 2007, to counteract the effects 
of genetic erosion, the Sechium spp. germplasm bank was 
created in Huatusco, Veracruz (a geographic site in an area of 
high suitability according to this study), where domesticated 
and wild variants from different parts of Mexico and Central 
America are protected in situ (Cadena-Iñiguez and Arévalo-
Galarza, 2011).

In this study, only occurrence data pertaining to cultivated 
S. edule were considered. However, in a study by Lira et al. 
(2018) using Maxent algorithm, only occurrence data for 

wild S. edule were used and their results are very similar to 
those from this study using Maxent model. This is because 
ecological requirements of cultivated and wild S. edule are 
similar. The evolutionary history of S. edule can complement 
the analysis of distribution models. The first wild populations 
of S. edule originated in the states of Guerrero, Chiapas, and 
Veracruz. Hybridisation between populations and varietals 
of S. edule, as well as with S. chinantlense and S. compositum 
species, together with adaptive specialisation, have led to 
new phenotypic variants adapted to different environmental 
conditions and thus have dispersed to new regions with 
human help.

Regarding S. edule, González-Santos et al. (2017) evaluated 
106 occurrence data belonging to five chayote varietals, which 
were modelled using the 19 bioclimatic layers of World Clim 
and the Maxent algorithm to forecast the effect of climate 
change on the distribution of these varietals in the year 2050. 
Some varieties such as nigrum spinosum will lose around 50 % 
of their current distribution, while others such as virens levis 
will maintain and slightly increase their distribution, since this 
varietal is the very valuable and is commonly used in breeding 
(Cadena-Iñiguez and Arévalo-Galarza, 2011; Cadena-Iñiguez 
et al., 2013a). Otherwise, most of the chayote varietals are 
found semi-domesticated in domestic gardens and cloud 
forest areas, the latter being highly disturbed by human 
activities (Lira, 1995).

Sechium edule is a species that can thrive in different 
climatic conditions. Because of this, the AUC values can be 
close to one, but are unreliable, as the range of values for 
each variable obtained from large databases is very wide. 
Although the chayote varietals differ morphologically, the 
differences are not very noticeable when the values of the 
bioclimatic variables are compared (González-Santos et al., 
2017). Therefore, the models used may be representative 
of all S. edule populations (Mateo et al., 2011). Species 
distribution can also be limited by other factors that must 
be considered, but it can be difficult to incorporate into 
distribution models. For example, competition with other 
species, pollination and human influence can all affect 
distribution. It is necessary to evaluate different models to 
gain a broad perspective on the distribution of species.

CONCLUSIONS

Cultivated populations of S. edule thrive in a wide range of 
climate and soil types. CTA was found to produce the best 
distribution model according to the AUC statistics. However, 
all seven models were relatively adequate to explain the 
distribution of S. edule in Mexico. The areas of high suitability 
were found in regions of the states of Chiapas, Guerrero, 
Oaxaca, Veracruz, Tabasco, Puebla, and Hidalgo, which 
should be considered as high priority areas for conservation 
and breeding. The distribution of domesticated S. edule in 
Mexico, according to the algorithms studied, is limited to 
total annual precipitation and temperature seasonality. 
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Climatic adaptability of S. edule also allows it to be distributed 
towards the Yucatan Peninsula and western Mexico.
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