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Abstract

The effective soil depth (ESD) affects both dynamic of hydrology and plant growth. In the southeast of Buenos 
Aires province, the presence of petrocalcic horizon constitutes a limitation to ESD. The aim of this study was to 
develop a statistic model to predict spatial patterns of ESD using apparent electrical conductivity at two depths: 
0-30 (ECa_30) and 0-90 (ECa_90) and geomorphometric indices. To do this, a Random Forest (RF) analysis 
was applied. RF was able to select those variables according to their predictive potential for ESD. In that order, 
ECa_90, catchment slope, elevation and ECa_30 had main prediction importance. For validating purposes, 3035 
ESD measurements were carried out, in five fields. ECa and ESD values showed complex spatial pattern at short 
distances. RF parameters with lowest error (OOBerror) were calibrated. RF model simplified which uses main 
predictors had a similar predictive development to it uses all predictors. Furthermore, RF model simplified had 
the ability to delineate similar pattern to those obtained from in situ measure of ESD in all fields. In general, RF 
was an effective method and easy to work. However, further studies are needed which add other types of variables 
importance calculation, greater number of fields and test other predictors in order to improve these results.
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Resumen

La profundidad efectiva del suelo (PES) afecta la dinámica hidrológica y el crecimiento vegetal. En el sudeste 
bonaerense, una limitante de la PES es la presencia de horizontes petrocálcicos. El objetivo fue desarrollar un 
modelo estadístico para la predicción de patrones espaciales de PES, a partir de conductividad eléctrica del 
suelo medida a dos profundidades: 0-30 (CEa_30) y 0-90 (CEa_90), e índices geomorfométricos. Para esto, se 
aplicó Random Forest (RF), el cual permitió seleccionar los predictores de acuerdo a su potencial predictivo para 
PES. En su orden, CEa_90, pendiente de captación, elevación y CEa_30 tuvieron mayor capacidad predictiva. 
Para validar el modelo, 3035 mediciones de PES fueron realizadas, en cinco lotes agrícolas. Las mediciones de 
CEa y PES reflejan patrones espaciales complejos. Los parámetros de RF con menor error (OOBerror) fueron 
calibrados. El modelo RF simplificado con los predictores más importantes, tuvo un desempeño predictivo similar 
al modelo RF que utilizó todos los predictores. Además, el modelo RF simplificado tuvo la capacidad de demarcar 
patrones similares a los mapas obtenidos por mediciones directas de PES, en todos los lotes. En general, RF 
fue una herramienta efectiva y fácilmente aplicable. Sin embargo, trabajos futuros deben incluir otros tipos de 
determinación de importancia de variables, mayor cantidad de lotes y probar otros predictores, de modo que se 
puedan mejorar los resultados obtenidos.

Palabras clave: Bosques aleatorios, Horizonte petrocálcico, Selección de variables.
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Introduction

The effective soil depth (ESD) affects the spatial-
temporal hydrological dynamic of soil and 
plant growth (Tesfa et al., 2009). Approximately 
40000 Km2 in the southeastern of Buenos Aires 
province, region of this study, the ESD is generally 
limited by the presence of a petrocalcic horizon, 
locally referred to as “tosca” layer. The tosca 
usually shows abrupt changes in the thickness, 
density and depth at very short distances. This 
complexity determines that conventional methods 
to describing the spatial pattern of tosca are 
destructive, expensive and time-consuming. 
This has limited the precision agriculture spread 
(Castro Franco et al., 2015). Therefore, there is 
a need for models with high predictive accuracy 
of ESD at farm scale, from ancillary information 
sources (Tesfa et al., 2009).

Lagacherie (2008), reported the soil science 
could not be isolated from technological 
developments in last decades. Actually, these 
advances have been used to collect ancillary 
soil information fast, easily and accurately. 
Furthermore, this information is related to factors 
of soil formation proposed by Jenny (1941). 
At this respect, recent go on soil sensors and 
geomorphometric indices derived from digital 
elevation models (DEM) have demonstrated high 
predictive accuracy of the spatial variability in 
soil properties (Corwin & Lesch, 2003). 

It is through the go on sensors that is possible 
to collect numerous of apparent electrical 
conductivity (ECa) measurements, in an efficient 
and cost-effective manner (Friedman, 2005). 
It has been reported that ECa is influenced by 
texture, organic matter, soil structure, bulk 
density and cation exchange capacity (Friedman, 
2005). However, a few studies have reported the 
tosca effect on ECa (Corwin & Lesch, 2003). 
Particularly, in the southeastern of Buenos Aires 
province there is no evidence of studies which use 
the ECa to modeling the ESD.

The simultaneous use of geomorphometric 
indices and ECa have improved the spatial 
prediction of soil properties (Kitchen et al., 2003). 
It is widely accepted that topography is considered 
one of the factors which determines the spatial 
distribution of soil properties. As a result, 
numerous studies have reported the predictive 
potential of these indices on the spatial model 
of soil properties (Lagacherie, 2008). However, 
there is no evidence about the simultaneous use 
of geomorphometric indices and ECa to modeling 
ESD limited by tosca.

 The aim of this study was to develop a 
statistical model that can predict spatial patters 
of ESD limited by tosca in the southeastern 

conditions, using both ECa measurements 
and geomorphometric indices. To get this aim, 
“Random Forest” algorithm was applied. From our 
results, we hope to optimize digital soil mapping 
process at field scale.

Material and methods

Experimental fields

A total of 5 farm fields located in the southeastern 
of the Buenos Aires province were selected to 
explore the relationships among effective soil 
depth and those predictor variables related to 
factors of soil formation (Figure 1, Table 1). 
The area studied was 280 hectares. The soils 
are classified as Typic Argiudoll and Petrocalcic 
Argiudoll (USDA Taxonomy) (INTA, 2010).

Figure 1. Location of study area and experimental fields

                      Source: ©OpenStreetMap.

Effective soil depth and site variables collection 

The ESD up to the tosca layer was the variable 
to predict. To validating the model efficiency, 
the ESD was measured in each field. A total of 
3035 soil depth measurements were carried out 
between 2010 and 2012. Each measurement 
was carried out using a soil hydraulic sampler 
(Giddings Machine Co., Fort Collins, CO) on 
a 30-m grid resolution. Table 1, shows the 
description of site variables. 

The numerical calculation of predictor variables 
was carried out using different geomatic tools. 
Elevation was measured using a DGPS (Trimble 
R3 Navigation Limited, USA). A digital elevation 
model (DEM) was obtained from elevation data. 
From each DEM, geomorphometric indices 
were calculated using SAGA-GIS v2.0™ Terrain 
Analysis tool (SAGA, 2012). The geomorphometric 
indices were selected according to their capability 
for representing relief geometry, hydrological 
features and spatial topographical context in each 
field. On the one hand, slope and aspect are the 
primary geomorphometric indices related to basic 
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relief parameters. On the other hand, catchment 
slope, drainage areas, topographic wetness index 
(TWI), SAGA wetness index (SWI), stream power 
index (SPI) and loss soil factor (LS_Factor), are 
secondary geomorphometric indices related to 
surface hydrology and spatial topographical 
context. A detailed description of these algorithms 
can be found in Hengl & Reuter (2008).

ECa data were collected using Veris 3100® 
(Veris Technologies, Salina, KS, USA). This 
measurement was carried out in a series of 
parallel transects spaced 20 m apart (Corwin & 
Lesch, 2003). The six electrodes configuration is 
referred to as Wenner array, which is a commonly 
used on a measurement of soil electrical resistivity 
(Corwin & Lesch, 2003). Veris 3100, have allowed 
georeference measurements at 0-30 cm (ECa_30) 
and 0-90 cm (ECa_90), simultaneously.

Table 1. Description of site predictors

Site 
Properties   Description

Apparent 
Soil Electrical 
Conductivity

0 - 30 cm Depth 
(ECa30)

Apparent Soil Electrical conductivity in mS 
* m-1 to 0-30 cm depth range using Veris 
3100 EC® (Corwin and Lesch, 2003).

0 - 90 cm Depth 
(ECa90)

Apparent Soil Electrical conductivity in mS 
* m-1 to 0-90 cm depth range using Veris 
3100 EC® (Corwin and Lesch, 2003).

Basic Land 
Surface 
Parameters

Elevation (m) Elevation in meters

Slope (%) Slope gradient in percent, for each grid cell 
in an digital elevation model (DEM)

Aspect (°) Slope orientation in degrees for each grid 
cell in an digital elevation model (DEM)

Hydrologic 
Parameters

Catchment Slope 
(Catch_Slope)

Average gradient above flow path 
(percent). Is related with surface runoff 
rate and drainage density (Hengl and 
Reuter, 2008).

Catchment Area 
(Catch_Area)

Is a measure of the contributing area. It can 
be defined as area of all cells upslope that 
will provide flow to this cell and the area 
of the cell itself (Hengl and Reuter, 2008).

Topographic 
Wetness Index 
(TWI)

Takes into account both a local slope 
geometry and site location combining 
slope and catchment area. It is a grid 
cell that describe the propensity for a 
site to be saturated to the surface given 
its contribution area and local slope 
characteristics (Hengl and Reuter, 2008).

SAGA Wetness 
Index (SWI)

Similar to the TWI. It is based on a modified 
catchment area calculation. Has higher 
potential soil wetness than the TWI to grid 
cells situated in valley floors with a small 
vertical distance to a channel (Hengl and 
Reuter, 2008).

Stream Power 
Index (SPI)

Describes the potential flow erosion at 
the given point in a digital elevation model 
(DEM) (Hengl and Reuter, 2008).

 

Loss Soil Factor 
(LS_Factor)

Grid cell that represent the effect of 
topography on soil loss. Combines the 
effects of the slope length and slope 
gradient

ESD and predictors were computed with 
ordinary kriging method using ArcGIS v10. Based 
on this interpolation, a map was carried out at a 
spatial resolution of 10 m.

Ensemble of general data set 

A dataset was ensemble using all predictors. To 
facility the comparison among fields, elevation 
parameter was transformed. The transformation 
consisted of subtracting at all elevation values, 
the lowest one for each field. The dataset was 
prepared as follows: (i) design and confection of 
a 20 m regular grid for each field, using spatial 
analyst extension in ArcGis 10.0™, (ii) values 
extraction of variable  predictor at each grid point, 
using the function -extract multi values to point- 
spatial analyst extension in ArcGIS 10.0.and (iii) 
unify all points forming the dataset. 

The dataset was ensemble using 6145 training 
dataset, obtained from predictors for all fields. 
Then, the training dataset was randomly divided 
into two subsets: a calibration dataset (CD, 
n=4300) and a validation dataset (VD, n=1845). 
The CD was used to model the relationship among 
ESD and predictors, while the VD was used to 
test the accuracy of the models prediction.

Variable selection and model simplification 

A variable selection procedure and the model 
simplification involved: (i) calibration of “Random 
Forest” (RF) algorithm, (ii) quantification of the 
predictors importance, (iii) variables selection 
and (iv) simplification of predictive model. This 
procedure is usually used for variable selection 
in high dimensional issues (Genuer et al., 2010).

The aim of RF calibration is to adjust the 
parameters of the algorithm in order to develop 
an optimal predictive model (Guyon & Elisseeff, 
2003). This calibration was carried out in two 
steps. Firstly, correlation among predictors was 
calculated. Secondly, the parameters of RF were 
estimated: number of trees in the forest (ntree) 
and number of predictors evaluated at each node 
(mtry). The RF calibration procedure was carried 
out using “RandomForest” library of R v3.1.2. 
™. RF calibrated ntree and mtry parameters 
using “bootstrap” as method for error estimation 
(Breiman, 2001). This consists of using several 
random samples (bootstrap samples) from the CD. 
Then, RF builds a tree for each bootstrap sample. 
At each bootstrap sample Xi, one-third of data 
are left out of it and not used in the construction 
of the k-th tress, so-called out of bag (out-of-bag 
(OOB)). OOB estimate of error rate (OOBEER) is 
estimated from aggregating trees in the forest. 
This OOBEER is calculated following equation 1.
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 Equation 1

Where, yi is the initial ensemble error 
classification on OOB. As a bootstrap sample is 
added, an OOB error (yOOB (Xi)) is estimated and 
repeating k-times. Those mtry and ntree which 
have the lowest OOBEER should be selected for 
the model (Breiman, 2001).

The importance classification for predictors 
was carried out using the procedure known as 
“permutation accuracy importance”. Details are 
described in Strobl et al. (2009). “permutation 
accuracy importance” is the most adequate 
procedure for classifying importance variables 
when RF is used (Breiman, 2001). Results were 
graphically represented using “party” R package 
v3.1.2.

To reduce the number of predictors without 
losing predictive accuracy, the model is simplified 
(Xiong et al., 2012). This procedure is running in 
two steps. First, a prediction model was computed 
considering all predictors. The purpose was 
to determine the effect on predictive RF model 
performance by reducing the number of variables. 
Second, it was evaluated the RF model simplified 
with CD and VD.

We used iterative elimination to describe the 
predictive accuracy of RF model (Xiong et al., 
2012). To do this, we used “caret” R package 
v3.1.2. Coefficient of determination (R2) and Root 
mean square error (RMSE) for each model were 
calculated to compare the overall accuracy of 
RF models while applying iterative elimination. 
The RF simplified model was applied to estimate 
the effective soil depth for each field. Then, 
a regression analysis was carried out among 
effective soil depth observed and predictive 
values. This regression was applied to CD and 
VD. Finally, the prediction performance of RF 
simplified was compared with a visual analysis of 
effective soil depth maps generated for each field.

Results and discussion

Table 2, shows mean values and coefficient of 
variation (CV) for each predictor. 

A total of 65% of ESD values were among 75 
and 100 cm. Lower ESD means were observed in 
fields 3 and 4. Ranges of ECa were associated to 
non-saline soils conditions for all fields (Rhoades, 
1996). According to their CV, ECa and ESD seemed 
to have a similar tendency. Fields 1 and 2, had a 
lower CV. Both are located in a hill zone, whereas 
fields 3, 4 and 5 are in a plain area. 

Our results suggest that spatial pattern of ESD 
are complex at field scale. At his respect, Amiotti 
et al. (2001), reported that complex soil patterns 
exist at field scale in the southeast of Buenos Aires 
province. It is due to the soil formation period 
was characterized up to three different pedogenic 
cycles. On the other hand, Pazos & Mestelan (2002), 
demonstrated that complex spatial relationships 
exist between elevation and ESD up to tosca layer. In 
general, our results confirm the complexity for tosca 
spatial pattern at field scale, in all fields studied.

Table 2. Statistical summary of site predictors for each experimental field

Field

Mean 
(cm)

Effective 
Detph† Elevation ECa_30‡ ECa_90‡

Mean 
(cm)

CV 
(%)

Mean 
(cm)

CV 
(%)

Mean 

(mS*m-1)
CV (%)

Mean 

(mS*m-1)
CV (%)

1 101.90 13.96 162.50 1.95 18.09 16.57 26.31 13.90

2 103.03 9.05 200.42 2.72 25.80 7.84 22.41 7.21

3 64.86 34.35 158.49 2.19 24.36 20.55 27.15 21.58

4 62.20 33.48 156.38 0.36 28.84 13.53 27.56 22.78

5 106.83 18.32 133.09 3.50 20.47 9.54 19.97 5.57

†. Effective soil depth up to Petrocalcic horizon
‡.  ECa_30: Apparent Electrical Conductivity 0 - 30 cm depth

     ECa_90: Apparent Eletrical Conductivity 0-90 cm depth

Table 3, shows the properties for each soil map 
unit and its proportional soil series composition 
for each field. This information could be used as 
complement information about understanding 
the spatial patterns of predictors. 

A total of nine soil cartography units are 
spatially corresponded to experimental fields. 
General characteristics for each soil series can 
be found in INTA (2010). 53% of soil series are 
Petrocalcic Argiudolls (USDA Taxonomy). The 
others are Typic Argiudolls. The most important 
difference between them is the presence or not 
of petrocalcic horizon, also depth and thickness 
in the argillic horizon (INTA, 2010).

Parameters calibration of “Random Forest” 
algorithm

Figure 2, summarizes the simultaneous evaluation 
OOBEER from mtry and ntree tested. It was evident 
the effect of mtry increment on OOBEER. When mtry 
increased, OOBEER decreased from 50% (mtry=1) 
to 32% (mtry=9). Changes in OOBEER indicate the 
importance of additional variables. RM model 
with mtry higher than 9 incremented OOBEER and 
can generate an over-fit model (Breiman, 2001). 
The effect of ntree was lower than mtry. RF models 
with ntree higher than 500 showed more stability. 

Modelling effective soil depth at field scale from soil 
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Figure 2. Relationship between OOBEER and quantity of predictors per node 
(mtry) for different regression trees (ntree)

In general, our results indicated that mtry 
equal to 9 and ntree equal to 500 are those 
parameters of RF model which fit best, in order 
to achieve an improvement in overall accuracy 
of ESD.

Table 3. Soil Mapping Unit for each experimental field 

Field
Soil 

Mapping 
Unit

Soil Series % Soil Classification 
(USDA)

1 MP11 Balcarce 40 Petrocalcic Argiudoll

Mar del Plata 60 Typic Argiudoll

MP24 Mar del Plata 70 Typic Argiudoll

  Tres Esquinas 30 Typic Argiudoll

2 SP6 Azul 30 Petrocalcic Argiudoll

Cinco Cerros 25 Petrocalcic 
Argiudoll

 Sierra padres 45 Petrocalcic Argiudoll

3 TA48 Tres Arroyos 80 Petrocalcic 
Argiudoll

 Semillero Buck 20 Typic Argiudoll

4 Lpd11 Laprida 50 Typic Argiudoll

 Tres Arroyos 50 Petrocalcic Argiudoll

5 CMl1 Claudio Molina 50 Typic Argiudoll

El Gavilan 50 Typic Argiudoll

Lpd13 Laprida 70 Typic Argiudoll

Tres Arroyos 30 Petrocalcic Argiudoll

RG6 Rancho Grande 60 Petrocalcic Argiudoll

Miscelanea 40 Petrocalcic Argiudoll

Lpd9 Laprida 60 Typic Argiudoll

 Tres Arroyos 40 Petrocalcic Argiudoll

Predictors importance for effective soil depth 

Figure 3, shows the results of “permutation 
accuracy importance” use.

Figure 3. Predictors importance for effective soil depth data sensitivity to 
%IncMSE generated by Random Forest algorithm

“Permutation accuracy importance” classifies the 
variables importance according to difference in 
prediction before and after a variable was permuted 
to all ntree. The average of this difference in all 
ntree, determine the absolute value of predictor 
importance (Strobl et al., 2009).

Our results suggested that the limit absolute 
value between relevant and irrelevant variables is 
45 (dashed line - Figure 3). According to that, those 
most important predictors of effective depth were 
ECa_90, catchment slope, elevation and ECa_30.

Our results showed that ECa could have better 
predictive accuracy than geomorphometric indices 
to model ESD. The complexity of spatial pattern 
of predictors may be related to abrupt changes at 
short distances for depth, strengthen and thickness 
in petrocalcic and argillic horizons. According to 
Dietrich et al. (2014), it is possible that ECa would 
have affected by: (i) high spatial variability of ESD 
and (ii) changes in CaCO3 density in the pretrocalcic 
horizon. Generally, depth tosca present lower CaCO3 
density (Pazos & Mestelan, 2002). These changes 
affect soil hydrological dynamic and thus soil 
electrical conductance. 

Argillic horizon may affect ECa values in mainly 
two ways. The first, due to the percentage relation 
between argillic horizon and those underlying 
and overlying; the second would be attributed 
to the simultaneous presence of petrocalcic and 
argillic horizons. This was assessed by Pazos & 
Mestelan (2002), who reported that the presence of 
tosca affects either depth and thickness of argillic 
horizons. 

In that context, ECa may possibly be affected by 
the dynamic of spatial patterns of petrocalcic and 
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argillic horizons. Therefore, ECa can be a potential 
predictor for determining spatial patterns of ESD. 

The importance of catchment slope in the ESD 
prediction was expectable. This is related to water 
holding capacity, runoff rate and water drainage 
(Wilson & Gallant, 2000). It is widely known that 
these hydrological characteristics are directly 
related to ESD. Despite that, none evidence was 
found which had mentioned catchment slope as 
predictor of ESD. Therefore, this can be a novel 
result.

Simplification of “Random Forest” model 

Figure 4, shows the changes on prediction 
performance of RF model whereas predictors were 
iteratively eliminated. That RF model which only 
uses ECa_90, catchment slope, elevation and 
ECa_30 had a similar performance as one with 
all predictors. However, this is not indicating that 
the rest of predictor lack of prediction accuracy. It 
would be probably that prediction accuracy could 
decrease since ECa_90, catchment slope, elevation 
and ECa_30 had a better prediction performance 
in the model (Xiong et al., 2012).

Figure 4. Coefficient of determination (R2) and root mean square error (RMSE) 
of Random Forest once less important predictors were removed. 

Prediction of effective soil depth from 
simplified model 

Figure 5, shows the prediction performance of simplified 
RF model applied to CD and VD. Our results suggested 
that simplified RF model demonstrated a potential 
application to ESD prediction. However, its use in others 
fields is limited for different reasons: (i) a high variability 
in depth, thickness and CaCO3 density of tosca at 
short distance, (ii) the relationship between tosca and 
argillic horizon and (iii) the anthropic effect. It is widely 
known that the southeast of Buenos Aires province is 

an outstanding zone due which income depends on 
agricultural production. Due to that, common suitability 
land processes such as terraces, crop management 
zones and drainages had been valuable. Generally, 
these could affect the spatial pattern of ECa as well as 
geomorphometric indices and therefore, increase error of 
simplified RF model developed.

Figure 5. Random Forest model applied for calibration dataset (CD) (R2 = 0.98, 
P<0.01) and validation dataset (VD) (R2 = 0.91, P<0.01).

Figure 6. Visual comparison between effective soil depth map and estimated 
from Random Forest model for all fields

Modelling effective soil depth at field scale from soil 
sensors and geomorphometric indices
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Figure 6, shows maps of effective depth made 
from simplified RF model development and ESD 
interpolation. Simplified RF model determined 
similar spatial patterns of ESD as interpolation 
technique did. Based on our result, we could 
validate that RF may be an effective and 
practical tool to select and predict ESD. However, 
although this RF model would not have the same 
performance for all fields, further studies will 
improve that.

Conclusion

In this study, RF algorithm was used to selecting 
predictors and developing a simplified model to 
predict ESD at field scale through soil sensor and 
geomorphometric indices information. Despite 
the complexity of tosca spatial patterns, our 
results show that simplified RF model was an 
effective and practical tool to predicting spatial 
patterns of ESD at field scale. 

Either tosca and catchment slope are directly 
correlated to soil hydrological processes and thus 
could be related to ECa spatial pattern. The RF 
model which only used ECa_90, catchment slope, 
elevation and ECa_30 had a similar performance 
as one considering all predictors. Furthermore, 
spatial predictions of ESD achieved from simplified 
RF model were similar to those obtained using 
interpolation techniques in each field. 

RF can be effective to modeling ESD in the 
southeastern of Buenos Aires condition. However, 
further studies should be required: (i) to asses 
relationship among predictors and ESD using 
a different variable selection method from RF; 
(ii) to examine specific correlations among ECa, 
catchment slope and ESD; and (iii) to include 
others predictors.
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