
RESUMENABSTRACT

Horticultural crops include a wide range of commodities, such 
as fruits and vegetables, that are highly valuable for humanity. 
They are extensively grown worldwide, and their production 
can be described as an open and highly complex system affected 
by many factors, among which we can count weather, soil and 
cropping system, as well as the interaction between these fac-
tors. The aim of environmental physiology is to characterize the 
interaction between envi ronmental stress and crop response, in 
order to maximize both yield quantity and quality. This review 
presents the most recent findings about the effects of the main 
abiotic environmental factors (light, temperature, and water) 
on whole plant physiology of horticultural crops. Environ-
mental stresses can cause morpho-anatomical, physiological 
and biochemical changes in crops, resulting in a strong profit 
reduction. A clear understanding of environmental factors 
and their interaction with physiological processes is extremely 
important for improving horticultural practices (irrigation, 
light management, mineral nutrition, greenhouse design, etc.), 
optimizing photosynthetic carbon assimilation and increasing 
fruit productivity and crop quality. In addition, the information 
obtained by ecophysio logical studies can be incorporated into 
breeding programs or agricultural zoning strategies.

Los productos hortícolas como frutas y vegetales son amplia-
mente cultivados, dado que incluyen un extenso abanico de 
alimentos de gran valor para la humanidad. Los sistemas hor-
tícolas son abiertos y altamente complejos, y se ven afectados 
por factores como el clima, el suelo y el sistema de producción, 
así como por la interacción entre estos factores. Por lo anterior, 
la importancia de la fisiología ambiental o ecofisiología radica 
en que permite caracterizar la inte racción entre los factores de 
estrés ambiental y la respuesta de los cultivos, con el propósito 
de obtener una producción exitosa. El objetivo de esta revisión 
consiste en reunir los resultados de las inves tigaciones más 
recientes acerca del efecto de los factores am bientales abióticos 
(luz, agua y temperatura) sobre la respuesta fisiológica de los 
cultivos hortícolas. Los factores de estrés ambiental pueden 
causar distintos cambios morfológicos, fisiológicos y bioquími-
cos en los cultivos, determinando una considerable reducción 
en su rendimiento. La comprensión de la interacción entre 
estos factores ambientales y procesos fisiológicos es im portante 
en el mejoramiento de las prácticas hortícolas (riego, manejo 
de la luz, nutrición mineral, diseño de infraestructuras, etc.), 
con el objetivo de optimizar la fotosíntesis e incrementar la 
productividad de los cultivos. Adicionalmente, la información 
que se obtiene mediante la ecofisiología es una herramienta útil 
en los programas de mejoramiento genético, o en estrategias 
de ordenación del territorio agrícola.
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factors (Schaffer and Andersen, 1994), in order to obtain a 
successful production it is essential to understand clearly 
how said factors affect plant physiology (Wien, 1997). In 
this context, ecophysiology is the science that studies the 
interactions between plants and their physical, chemical 
and biotic environment (Larcher, 2003; Lambers et al., 
2008). Environmental physiology is also important to study 
both the effect of different environmental stresses (shading, 
heavy metals, drought and salinity, among others) on 
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Introduction

Widely cultivated for the high value of their products, 
horticultural crops include fruits and vegetables which 
provide essential food, minerals and vitamins that are 
critical to human nutrition (Kwack, 2007). The produc-
tion of horticultural crops can be characterized as an 
open and highly complex system affected by climate, soil, 
cropping system and interactions between these factors 
(Lentz, 1998). Given that plant growth and development 
are directly and indirectly influenced by environmental 
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growth and development (Salisbury and Ross, 1994) and 
the way plants compensate the detrimental effects of stress 
through different mechanisms (stress response, acclimation 
and adaptation) (Taiz and Zeiger, 2006). 

Environmental physiology studies have been extensively 
used to improve the management of certain species or to 
explain differences among cultivars (Higgins et al., 1992; 
Hampson et al., 1996; Campostrini and Glenn, 2007; Sa-
garam et al., 2007; Lombardini et al., 2009). Nevertheless, 
in regions where agriculture is not very modern, or where 
new horticultural crops are introduced, the information 
supplied by environmental physiology studies is highly 
valuable for deciding on the distribution and performance 
of crops (Higgins et al., 1992). Knowledge on the responses 
of horticultural crops to environmental factors such as 
temperature, water availability, light or carbon dioxide 
(CO2) concentration is useful to determine the effect of 
suboptimal environmental conditions and to manage 
crops for maximum productivity (Schaffer and Andersen, 
1994). In addition, a better understanding of the interaction 
between environmental factors and physiological processes 
contributes to horticultural breeding programs, produc-
tion sustainability improvement and efficient agricultural 
zoning (Campostrini and Glenn, 2007). 

Thus, the aim of this review is to gather the most recent 
information on the effects of environmental factors (light, 
temperature and water) on whole plant physiology of hor-
ticultural crops as expressed by growth, yield, fruit quality 
and photosynthetic features.

Light
Sunlight is not only the energy source for photosynthesis, 
but also the most important factor affecting productivity in 
horticultural crops (Papadopoulos and Pararajasingham, 
1997; Gregoriu et al., 2007). Carbon exchange rate (CER) 
is strongly dependent on irradiance, absorption, and 
utilization of photon energy (Jackson, 1980; Gregoriu et 
al., 2007). Low irradiance, in as much as it determines 
insufficient light penetration into the canopy, influences 
CER directly by reducing photon energy utilization, thus 
decreasing productivity (Hampson et al., 1996; Gregoriu 
et al., 2007). Canopy management as a routine activity in 
horticultural crops is aimed at increasing light interception 
and productivity, stabilizing yield, and improving fruit 
quality (Hampson et al., 1996). 

Given that they need sunlight for flowering and fruit bud 
formation, fruit-tree crops keep a balance between light 
interception and light distribution (Huett, 2004). Since the 

relationship between photosynthetic photon flux density 
(PPFD) and net photosynthesis provides basic information 
for modeling leaf, plant, or canopy growth (Hanson et al., 
1987), several studies have focused on light interception and 
distribution into the canopy (Higgins et al., 1992; Wood, 
1996; Huett, 2004; Lombardini, 2006a). Light interception 
modeling has also been important in the development of 
pruning and training techniques for optimizing yield, 
and of tree removal strategies aimed at improving orchard 
productivity (Garriz et al., 1998; Huett, 2004; Li and Lak-
so, 2004; Lombardini et al., 2006a). A summary of the 
photosynthetic performance of several fruit-tree crops is 
listed in Tab. 1. 

Shading (levels of 60% to 90%) affects leaf morphology 
and anatomy, gas exchange and water relations (water use 
efficiency, stomatal conductance, and thus photosynthesis) 
in horticultural crops (Bjorkman, 1981; Atanasova et al., 
2003; Heuvel et al., 2004; Gregoriu et al., 2007). In addi-
tion, shade diminishes reproductive potential directly by 
decreasing flowering, fruit set and fruit size; and indirectly 
by reducing the vegetative growth that the plant needs to 
support reproduction (Hampson et al., 1996). A summary 
of the effects of shading on several horticultural crops is 
reported in Tab. 2. 

Previous studies have shown the importance of plant 
response to shading, since this information is useful to 
determine ideal plant density, cropping systems or growth 
conditions in greenhouses (Papadopoulos and Pararaja-
singham, 1997; Francescangeli et al., 2006; Francescangeli 
et al., 2007; Callejón-Ferre et al., 2009). Francescangeli et 
al. (2007) observed that shading increased growth cycle 
duration and diminished net assimilation rate in broccoli. 
However, as individual plant relative growth rate (RGR) was 
almost constant, they concluded that broccoli can be consi-
dered as a shade-tolerant plant, thus apt for intercropping 
systems. Tsubo and Walker (2004) and Nasrullahzadeh 
et al. (2007) studied the effect of inter cropped beans and 
observed that dry mass was 40% lower in shaded plants 
(shading was up to 90%). Nevertheless, shading did not have 
significant effects on yield parame ters (number of pods and 
number of grains per plant, and number of grains per pod). 
These authors concluded that growing beans in agroforestry 
or intercropping systems would be advantageous for far-
mers. Regarding planting distance, close spacing has been 
observed to have a negative effect on fruit set in tomato, 
apparently due to an inadequate supply of photosynthates 
(Papadopoulos and Parara jasingham, 1997). In a 4-year 
study conducted in tomato by Zahara and Timm (1973), 
the variables stem diameter, fruit set, number of flowers 
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TABLE 1. Photosynthetic characteristics of several fruit-tree crops in full sun. 

Crop Light compensation point
(µmol m-2 s-1)

Light saturation point 
(µmol m-2 s-1)

A max
(µmol m-2 s-1) Reference

Almond
(Prunus dulcis)

60 1.130-1.330 15-20
Higgins et al. (1992); 
De Herralde et al. (2003)

Apple
(Malus domestica)

57 1.800-1.900 16
Flore and Lakso (1989); 
Higgins et al. (1992)

Fig
(Ficus carica)

49 1.100 15-17 Higgins et al. (1992)

Grape
(Vitis vinifera)

67 1.800-1.900 25 Higgins et al. (1992)

Hazelnut
(Corylus avellana)

52 1.100-1.200 12 Hampson et al. (1996)

Olive
(Olea europaea)

53 1.000-1.100 13-15 Higgins et al. (1992)

Orange
(Citrus sinensis)

17 750-1.000 15-22 Caruso-Machado et al. (2005)

Papaya
(Carica papaya)

29 1.900 25-30
Marler and Mickelbart (1998); 
Campostrini and Glenn 
(2007)

Peach
(Prunus persica)

40 1.300 16-17 Higgins et al. (1992)

Pecan
(Carya illinoinensis)

25 700-800 10-12 Lombardini et al. (2009)

TABLE 2. Summary of the effects of shading on several horticultural and nut crops. 

Crop Response Reference

Melon
(Cucumis melo)

Reduced photosynthetic rate, fresh weight, and flesh firmness.
Low accumulation of sucrose.
Accelerated the formation of the “water-soaked” symptom in the flesh.

Nishizawa et al. (2000)

Pepper
(Capsicum annuum)

Enhanced flower abortion and thus reduced fruit yield. Aloni et al. (1996)

Cauliflower
(Brassica oleracea)

Growth and development after curd initiation decreased with increasing shade levels. Rahman et al. (2007)

Carrot
(Daucus carota)

Reduced photosynthetic rate, stomatal conductance, transpiration and water use efficiency Thiagarajan et al. (2007)

Lettuce
(Lactuca sativa)

Decreased leaf thickness and leaf dry matter percentage. De Pinheiro and Marcelis (2000)

Pear
(Pyrus communis)

Decreased area per spur leaf, specific leaf mass and fruit diameter. Garriz et al. (1998)

Olive
(Olea europaea)

Reduced percentage of inflorescence buds, number of fruits per tree, and fruit mass. Gregoriu et al. (2007)

Grapevines
(Vitis vinifera)

Affected dry-matter partitioning and photosynthesis. Heuvel et al. (2004)

Hazelnut
(Corylus avellana)

Reduced yield primarily by decreasing number of nuts and secondarily by decreasing nut size. Hampson et al. (1996)

Pecan
(Carya illinoinensis)

Diminished photosynthesis, stomatal and trichome density. Lombardini et al. (2009)

Pineapple guava
(Acca sellowiana)

Shading can reduce total soluble solids and fresh weight in fruits. Martínez-Vega et al. (2008)

and number of leaves per plant decreased as plant density 
was increased up to 96.3 plants/m2. Similar results were 
found by Papadopoulos and Ormrod (1990), who observed 
that tomato fruit set declined with decreased plant spacing 
(i.e. 58%, 52% and 13% fruit set at 60 cm, 45 cm and 23 cm 
spacing, respectively).

In horticultural production systems, plants can experience 
water loss due to high solar radiation levels, often causing 
irreversible burns (Castilla, 2005). Shading is a useful stra-
tegy for reducing leaf temperature, fruit damage or water 
loss at irradiance peaks; and for growing shade-tolerant 
species in areas with excessive radiation (Kittas et al., 1999). 
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In a 2-year study, Callejón-Ferre et al. (2009) evaluated the 
effects of using aluminized screens with different degrees of 
shading (40, 50, and 60%) as well as traditional whitewas-
hing conditions on the production and quality of tomato 
cv. Atletico grown under greenhouse conditions. The 
results showed that 60% shading improved fruit firmness 
but decreased the amount of soluble solids.

Temperature
Temperature is an important factor influencing seed ger-
mination, vegetative growth, flowering, fruit set and fruit 
ripening in horticultural crops (Sage and Kubien, 2007; 
Ledesma et al., 2008; Kositsup et al., 2009). Both high and 
low temperatures, be they temporary or constant, can in-
duce morpho-anatomical, physiological and biochemical 
changes in plants, leading to profit reduction (Higuchi 
et al., 1998; Wang et al., 2003; Wahid et al., 2007). Heat 
stress can be a concern in many regions of the tropics and 
subtropics, since high temperature can cause significant 
damage such as sunburns on leaves, branches and stems, 
anticipated leaf senescence and abscission, shoot and root 
growth inhibition and fruit discoloration and damage 
(Yamada et al., 1996a; Higuchi et al., 1998; Almeida and 
Valle, 2007; Wahid et al., 2007). Reproductive processes are 
also highly affected by heat stress in most plants (Wahid et 
al., 2007). Through observations in strawberry, Ledesma 
et al. (2008) found that high temperature stress negatively 
affected the number of inflorescences, flowers and fruits, 
and that plant response to high temperature stress was cul-
tivar dependent. In tomato, pollen germination and pollen 
tube growth, ovule viability, stigma and style positions and 
number of pollen grains retained by the stigma were also 
seriously affected by high temperature (Foolad, 2005). In 
cherimoya, warm temperatures determined the production 
of low-viability pollen; and therefore of asymmetrical and 
small fruits containing few seeds (Higuchi et al., 1998). 
However, it has been observed that pollen viability is re-
duced in papaya when the temperature drops below 20°C. 
This condition can also cause problems of sex change and 
low-sugar content in fruits (Galán-Saúco and Rodríguez-
Pastor, 2007). In cacao, temperatures above 23°C seem to 
accelerate vegetative flushing initiation (Almeida and Valle, 
2007). Regarding anatomical changes, symptoms observed 
under heat stress conditions are generally similar to those 
checked under water stress. Plants present reduced cell 
size, closure of stomata, curtailed water loss, increased 
stomatal and trichome densities and greater xylem vessels 
in both root and shoot (Añón et al., 2004; Wahid et al., 
2007). In rose, significant increases in stomatal index and 
in stomatal and epidermal cell density were observed in 
plants grown under high temperature (Pandey et al., 2007). 

Studies conducted by Wentworth et al. (2006) in common 
beans showed high temperature dependent increases in leaf 
thickness, palisade development and stomatal density in 
the adaxial surface of the leaves. In a work conducted by 
Zhang et al. (2005) in grapes, they found that warm tempe-
ratures considerably affected the mesophyll cells, increased 
plasma membrane permeability, enhanced the loss of grana 
stacking and determined the swelling of stroma lamellae. 
Furthermore, an increase in the concentration of abscisic 
acid (ABA) was observed in grape leaves due to high tem-
perature, suggesting that ABA may be a high-temperature 
acclimation and heat-tolerance induction factor in this crop 
(Abass and Rajashekar, 1993). As previously mentioned, 
heat stress evidently affects the anatomical structures from 
tissue to sub-cellular levels. Thus, the accumulation of all 
these changes under high temperature stress may result in 
poor plant growth and productivity.

FIGURE 1. Typical pattern of temperature acclimation observed in most 
C3 plants, with a summary of the leading potential drivers of the accli-
mation response. Reproduced from Sage and Kubien (2007).

High temperature induces the acclimation of photosynthesis 
by changing the photosynthetic capacity, the temperature 
response of photosynthesis or both (Fig. 1) (Sage and Ku-
bien, 2007; Wang et al., 2007; Kositsup et al., 2009). Chan-
ges in several photosynthetic characteristics under high 
temperatures are excellent indicators of plant tolerance to 
heat stress (Wahid et al., 2007), which is indeed capable of 
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damaging the thylakoid membranes (Petkova et al., 2007). 
As a consequence, a series of physiological parameters such 
as chlorophyll fluorescence, variable to maximum fluores-
cence ratio (Fv/Fm) and base fluorescence (F0) can be used 
to estimate heat tolerance in different species or cultivars 
(Yamada et al., 1996a). Studies realized by Petkova et al. 
(2007) indicated that chlorophyll fluorescence induction 
parameters (F0, Fm, Fv and their ratios) are good indicators 
of heat tolerance in common beans, and can therefore be 
used to trace characters of interest in breeding programs. 
Similar results have been reported by Nyarko et al. (2008) in 
cabbage. Changes in Fv/Fm ratio under heat stress conditions 
could also be a good indicator in screening heat-resistant 
grape cultivars (Kadir et al., 2007). High temperatures in-
fluence photosynthetic capacity and stomatal conductance 
by decreasing the activation state of rubisco. Furthermore, 
heat stress diminishes the amount of photosynthetic pig-
ments (Wahid et al., 2007). In tomato, the latter condi tion 
(temperature above 45°C for 2 h) injured the plasma mem-
brane, altered the pigment composition of the photosyn-
thetic apparatus, and caused an important reduction of 
the net photosynthetic rate due to affections in the Calvin 
cycle and the functioning of photosystem II (Camejo et 
al., 2005). In citrus species, net CO2 assimilation rate is 
reduced by partial decrease in both stomatal conductance 
and instantaneous carboxylation efficiency at temperatures 
above or below the optimum range (28-32°C) (Machado 
et al., 2005). Hence, knowledge about temperature levels 
is useful in physiological research as well as horticultural 
crop production. In general, optimum temperature levels 
have been obtained for many horticultural crops through 
laboratory and/or field experiments. Understanding the 
way this factor affects plant physiology is greatly desirable 
to avoid damages due to unfavorable temperatures during 
plant ontogeny (Wahid et al., 2007). A summary of opti-
mum temperature levels for the photosynthesis of several 
horticultural crop species is shown in Tab. 3.

Water
Since water is fundamental for maintaining normal physio-
logical activity and membrane transport processes (Jones 
and Tardieu, 1998), supplying it adequately is crucial for 
obtaining maximum productivity of horticultural crops. 
In addition, water plays an important role in horticultural 
crops, since fruits and vegetables are usually sold on a fresh 
weight basis and yield is predominantly determined by 
water content (Marcelis et al., 1998). Drought stress occurs 
when there is not enough soil water content for successful 
growth or water supply replenishment (Larcher, 2003; 
Lombardini, 2006b). A decline in leaf relative water con-
tent (RWC) initially causes stomatal closure, which in turn 

leads to a decrease in the supply of CO2 to the mesophyll 
cells and thus reduces leaf photosynthetic rate. Likewise, 
drought stress also affects processes such as cell division 
and expansion, ABA synthesis and sugar accumulation, 
consequently reducing crop yield (Marsal and Girona, 1997; 
Chartzoulakis et al., 1999; Raviv and Blom, 2001; Arquero 
et al., 2006; Lombardini, 2006b). 

In general, it can be said that horticultural crops require a 
high water supply through appropriate irrigation schedules. 
Nevertheless, deficit irrigation can enhance fruit quality by 
raising dry matter percentage and sugar content (Jones and 
Tardieu, 1998; Spreer et al., 2007). Furthermore, controlled 
water deficit has been used as a technique to stimulate 
blossoming in crops such as guava or litchi, or to substitute 
for adequate chilling when temperate crops such as apple 
are grown in the tropics (Chaikiattiyos et al., 1994). Hen-
ce, regulated deficit irrigation (RDI) and partial rootzone 
drying (PRD) techniques have been applied to withhold 
water during certain periods, thus producing moderate 
drought stress, which in turn has improved yield, fruit 
quality and water use efficiency. The results of RDI experi-
ments have been contradictory, but sometimes promising 
(Lombardini et al., 2004; Spreer et al., 2007). In experiments 
conducted in Spain, RDI has increased grape productivity 
(Faci et al., 2009) and citrus fruit quality (Ballester et al., 
2009), although the yield effect has been controverted for 
some species (Robles et al., 2009). RDI can also be used 
to delay flowering and harvesting time (Melgar et al., 

TABLE 3. Optimum temperature levels for the photosynthesis of some 
horticultural crop species. 

Crop
Optimum temperature 

for photosynthesis 
(°C)

Reference

Apricot
(Prunus armeniaca)

25 Wang et al., (2007)

Apple
(Malus domestica)

20 Higgins et al. (1992)

Asparagus
(Asparagus officinalis)

20 Inagaki et al. (1989)

Cherimoya
(Annona cherimola)

20 Higuchi et al. (1999)

Common beans
(Phaseolus vulgaris)

27 Bunce (2000)

Fig
(Ficus carica)

28 Can and Aksoy (2007)

Grape
(Vitis vinifera)

27 Higgins et al. (1992)

Mango
(Mangifera indica)

30 Yamada et al. (1996b)

Tomato
(Solanum lycopersicum)

30 Wahid et al. (2007)

Sunflower
(Helianthus annuus)

25 Bunce (2000)
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2008) or to increase flowering and productivity at certain 
periods of the year when prices are high. Such is the case 
of the “forzatura”, a traditional practice applied in lemon 
crops in Sicily, where the summer bloom is accentuated by 
withholding irrigation until the trees wilt (Barbera et al., 
1985). It is necessary, however, to determine the optimum 
stress level so that the dry period does not have depressing 
effects on tree vitality, and to understand the interactions 
among tree water status, crop load and fruit growth, in 
order to optimize yield under water deficit conditions. For 
example, high yields can be obtained in peach with deficit 
irrigation if an appropriate management of fruit thinning 
is done at stage III of fruit growth. This is so because said 
management enhances fruit size not only due to a reduction 
in fruit competition, but to an improvement in tree water 
status as well (Marsal et al., 2006; López et al., 2006, 2007).

On the other hand, it is important to discuss about flooding, 
since plant development is affected by either too little or 
too much water in the root zone. Flooding is produced by 
storms, over irrigation, poor draina ge, high water tables 
and dam and river overflowing (Rao and Li, 2003). As it 
has been previously mentioned, plants induce a series of 
physical, chemical and biological processes in response to 
stress conditions. Under flooding conditions, plants show 
similar symptoms to those they develop under heat or water 
stress. Plant responses to waterlogging include increased 
internal ethylene concentration, low stomatal conductance, 
decrease in leaf, root and shoot development, changes in 
osmotic potential and nutrient uptake, and reduced chlo-
rophyll content and photosynthesis (Tamura et al., 1996; 
Ashraf and Rehman, 1999; Rao and Li, 2003; Issarakraisila 
et al., 2007). Flooding also increases the severity of certain 
diseases, mainly root-rotting fungi (Rao and Li, 2003), as 
reported by De Siva et al. (1999) regarding Phytophthora 
root rot in blueberry. The decrease of oxygen level in soils 
affects the bioavailability of nutrients as well as the ability of 
root systems to uptake and transport water and mineral nu-

trients (Lizaso et al., 2001). Waterlogging caused inhibition 
of N uptake from the soil and reduced leaf concentrations 
of N, P, K, Ca and Mg in avocado (Schaffer and Andersen, 
1994) and pea (Rao and Li, 2003). The effects of flooding 
duration on some horticultural crops are summarized in 
Tab. 4.

Conclusion

It can be said that knowledge about the interactions bet-
ween environmental factors and plant physiology facilitates 
the identification of environmental changes such as lack of 
light, high temperatures or water deficit. For example, the 
shading of horticultural crops can reduce photosynthesis 
rate, transpiration and stomatal density and conductance; 
and enhance flower abortion. Likewise, high temperatures 
can affect pollen viability and germination, number of 
flowers and number of fruits per plant. Finally, ecophysio-
logical information is a tool that can be used in breeding 
programs to obtain improved cultivars, as well as in stra-
tegies of agricultural zoning, thus enhancing productivity. 
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