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Evaluation of a NIR camera for monitoring yield 
and nitrogen effect in sugarcane
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ABSTRACT RESUMEN

The main objective of the research carried out in the sugar pro-
ductive sector in Colombia is to improve crop productivity of 
sugarcane. The rise of RPAS, together with the use of multispec-
tral cameras, which allows for high spatial resolution images 
and spectral information outside the visible spectrum, has gen-
erated an alternative nondestructive technological approach to 
monitoring crop sugarcane that must be evaluated and adapted 
to the specific conditions of Colombiá s sugar productive sector. 
In this context, this paper assesses the potential of a modified 
camera (NIR) to discriminate three varieties of sugarcane, as 
well as three doses of fertilization and estimating the sugarcane 
yield at an early stage, for the three varieties through multiple 
vegetation indices. In this study, no significant differences were 
found by vegetation index between fertilization doses, and only 
significant differences between varieties were found when the 
fertilization was normal or high. Likewise, multiple regressions 
between scores derived from vegetation indices after applying 
PCA and productivity produced determinations of up to 56%.

El principal objetivo de las investigaciones llevadas a cabo en el 
sector azucarero de Colombia es el de mejorar la productividad 
del cultivo de la caña de azúcar. El auge de los RPAS y el uso de 
cámaras multiespectrales ha generado un enfoque tecnológico 
alternativo para monitorear los cultivos de caña de azúcar de 
manera no destructiva ya que se pueden obtener imágenes 
de alta resolución espacial e información espectral fuera del 
espectro visible. Esta tecnología debe ser evaluada y adaptada 
a las condiciones específicas del sector azucarero del país. En 
este contexto, el presente artículo presenta los resultados del 
potencial de una cámara modificada (NIR) para discriminar 
tres variedades de caña de azúcar, así como tres dosis de fer-
tilización y estimar tempranamente la productividad de tres 
variedades de caña de azúcar por medio de múltiples índices 
de vegetación. En este estudio no se encontraron diferencias 
significativas por índices de vegetación entre dosis de fertil-
ización y sólo se encontraron diferencias significativas entre 
variedades cuando la dosis de fertilización fue normal o alta. 
Adicionalmente, por cada variedad evaluada, se hizo un análisis 
de componentes principales entre los índices de vegetación 
(existió una alta correlación entre los índices), y con los cinco 
primeros componentes se hizo una regresión múltiple para 
modelar las toneladas de caña por hectárea obteniéndose de-
terminaciones de hasta el 56%.

Key words: nitrogen, yield, near infrared, precision agriculture, 
vegetation index, RPAS. 
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The sensors used for spectral and spatial information may 
be on board satellites or airborne vehicles and their use 
will depend on the scale of work or detail expected in the 
products used to monitor the crop (Schmidt et al., 2000); 
Satellite images have been used on several occasions for 
studies at a regional level (Mulianga et al., 2013), but in 
the case of high level detail scales monitoring, the use of 
Unmanned Aerial Vehicles (UAVs) or Remotely Piloted 
Aircraft Systems (RPAS) is becoming a great tool for this 
task. This recent interest in using unmanned aerial vehicles 
in the study of agricultural crops is largely due to the great 

Introduction

Monitoring sugarcane using orbital remote sensors has 
been the subject of research around the world. This tech-
nique has allowed the measurement of the reflected and 
absorbed radiation of the vegetation, obtaining different 
results that have been used for different purposes in agricul-
ture such as discrimination between crops, discrimination 
based on variety, assessment of water stress, estimating 
yield, among others (Fernandes et al., 2011; Aguiar et al., 
2011; Vieira et al., 2012; Govender et al., 2007).
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benefits gained by their implementation: low prices and 
easy logistics compared to satellite products, high spatial 
and temporal resolution and the possibility of spectral 
information in different regions of the electromagnetic 
spectrum that allow the calculation of various vegetation 
indices, making them a great tool for monitoring and 
follow-up in different cultures (Lelong et al., 2008).

Multiple vegetation indices derived from visible and 
infrared spectrum of conventional, multispectral and 
hyperspectral sensors have been created in order to make 
assessments on different agronomic crops from these data, 
including determining the chlorophyll content (Hatfield 
et al., 2008), leaf area index (LAI) (Hunt et al., 2013) or 
nitrogen concentration (Miphokasap et al., 2012; Blackmer 
et al., 1996; Feng et al., 2008; Abdel-Rahman et al., 2010). 
Many others are equally used for nitrogen treatment dis-
crimination (Foster et al., 2012) or varietal discrimination 
(Johnson et al., 2008; Galvao et al., 2005). More recently, the 
potential uses of these indices on crop yield from satellite 
sensors have been evaluated (Morel et al., 2014), as well as 
time series of other variables such as Fraction of Absorbed 
Photosynthetically Active radiation (fPAR) (Duveiller et 
al., 2013). Early estimates have been made using high-
resolution airborne sensors of crop yield from vegetation 
indices (Berger et al., 2013) and even indices obtained with 
the use of ground sensors (Lofton et al., 2012).

In Colombia, the monitoring of sugarcane cultivation is 
conducted by the Sugarcane Research Center of Colombia 
(Cenicaña), using satellite images, especially from MODIS-
Terra sensor, Landsat TM and ETM+ images and data re-
flectance obtained by field spectroradiometry (Murillo and 
Carbonell, 2012). However, Colombia, being geographically 
located within the intertropical front, is subject to perma-
nent cloud coverage, which has been a limiting factor for 
timely and regular acquisition of satellite images of high 
spatial optical resolution.

The use of UAVs or RPAS with multispectral cameras can 
be a solution to the difficulties encountered in relation to 
the high percentage of clouds that appears in the satellite 
images since the flying height of the RPAS allows imaging 
without cloud interference. Moreover, having the ability to 
increase the frequency of shots and produce highly detailed 
images, thus allowing for a full monitoring of the crop and 
achieving effective control to improve productivity, which 
can be affected by various factors that vary both spatially 
and temporally (GopalaPillai and Tian, 1999).

The aim of this study was to evaluate the ability of a mul-
tispectral camera to generate vegetation indices and using 

them to estimate crop yield, between varieties discrimina-
tion and between nitrogen levels effect discrimination.

Materials and methods

Study area
The study was conducted by Cenicaña in the experimental 
lot three of the International Center for Tropical Agricultu-
re (CIAT), located in the municipality of Palmira, Valle del 
Cauca, Colombia (Fig. 1A). The geographical coordinates 
of the study area are 3°29’43.62’’ N and 76°21’49.51’’ W. 
The experimental lot houses two experiments in which 
different sugarcane varieties with different nitrogen doses 
(Fig. 1C) are evaluated.

The average temperature of the area is 23.2°C, with an 
average radiation of 430 cal cm-2 d-1, an annual rainfall of 
886 mm, a soil rich in organic matter, a clay content in a 
range between 35 and 60% and according to agroecological 
zoning (Carbonell et al., 2011) the experiment is located in 
a Typic Haplusterts soil, fine textural family and with a low 
humidity level (0-200 mm yr-1).

RPAS and sensor
A multirotor vehicle manufactured by the Advector Com-
pany was used. It is a quadricopter type Araknos V2 model. 
An Agricultural Digital Camera (ADC lite), manufactured 
by Tetracam Inc. was used for capturing images. The ADC 
lite is a small 6.55×4.92 mm camera with a weight of 200 g; 
it generates a record of the position of each of the captured 
images and has an unique 3.2 megapixel sensor operating 
in the NIR bands from 520 nm to 920 nm, simulating TM2, 
TM3 and TM4 bands of Landsat Thematic Mapper sensor 
(TM) (Tetracam, 2015). The sensor of this camera uses a 
blocking filter in the blue region of the spectrum and uses 
the sensitivity curve of the blue filter to measure the res-
ponse of the NIR, while green and red filters measure the 
corresponding response to each of parts of the spectrum. 
However, sensitivity curves of green and red have a high 
peak in the NIR perception, similar to the curve of sensi-
tivity of the blue, perturbing a pure measurement of these 
regions of the spectrum (Tetracam, 2015).

The flight took place on May 9, 2014, between 11:00 am 
and 1:00 pm, looking to have the most photosynthetically 
active radiation (PAR). At the time of the capturing of the 
images, the crop was 8.5 months old.

Experimental design 
The study was carried out on a two factor experimental de-
sign: three varieties of sugarcane in three doses of nitrogen. 
The levels of each factor are shown in table 1.
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TABLE 1. Experimental design factors.

Varieties Doses (Urea)

CC 01-1940 Null (0 kg ha-1)

CC 85-92 Normal (200 kg ha-1)

CC 93-4418 High (400 kg ha-1)

Selected varieties were the ones recommended by Cenicaña 
Variety Program due to their increase in planted area at a 
commercial level and their differences in architecture and 
color, which will permit to assess changes in vegetation and 
biomass index values.

The appropriate N doses were established based on the 
spatial distribution of organic matter using SEF (Fertiliza-
tion Expert System) developed by Cenicaña. A total of 36 
field plots divided into nine treatments constructed from 
the combination of varieties and nitrogen doses were 
tested in one experiment (Tab. 2). The size of each plot 
corresponds to 12 furrows with dimensions of 1.65×20 m. 
In experiment two, only 200 kg ha-1 doses were applied, 

among the same three varieties of sugar cane for a total 
of 108 plots.

TABLE 2. Treatments in experiment 1.

Variety Doses (kg ha-1 of Urea) Treatment

CC 01-1940 0 1

CC 85-92 0 2

CC 93-4418 0 3

CC 01-1940 200 4

CC 85-92 200 5

CC 93-4418 200 6

CC 01-1940 400 7

CC 85-92 400 8

CC 93-4418 400 9

Both experiments were harvested between 7 and 8 Sep-
tember, 2014. The productivity of the experiments was 
measured using a cane loader where the weight and the GPS 
position were registered, the yield was expressed in tons of 
cane per hectare (t ha-1) for each plot of the two experiments.

FIGURE 1. Geographic location of the study area. A. Location of the sugar industry in southwestern Colombia; B. location of the experimental lot at 
CIAT. C. Experimental lot divided in the two experiments assessed in the study.
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Image processing
The images obtained by the ADC lite were stored in 8-bit 
RAW format, obtaining an image per band and converted 
into TIFF format using PixelWrench2 software, which 
came with the camera. Later, with the images, an ortho-
rectified mosaic of the study area was generated, following 
the methodology proposed by García et al. (2014), using the 
X, Y and Z of the metadata of each of the acquired images.

Once the images were processed, different vegetation in-
dices were evaluated based on the available bands of the 
ADC Lite camera (Tab. 3).

TABLE 3. Indices of vegetation assessed, where N corresponds to the 
digital levels to near-infrared, G to green digital levels and R to digital 
levels of red.

Index Formula

Chlorophyll index - Green

Chlorophyll vegetation 
index

Green normalized differ-
ence vegetation Index

Modified soil adjusted 
vegetation index

Second modified 
triangular vegetation index

Normalized difference 
vegetation index

Normalized green red 
difference index

Optimized soil adjusted 
vegetation index

Ratio vegetation index

Soil adjusted vegetation 
index

Triangular vegetation  
index

These vegetation indices respond to different factors, from 
the impact on quality of vegetation to structural factors 
such as leaves, stems and orientation. In the case of the 
quality of vegetation, it absorbs some of the incoming en-
ergy to perform its various internal processes, presenting 
a high absorption in the visible spectrum, highlighting 
the absorption peaks in the blue and the red, while scat-
tering large amounts of energy in the NIR, generating a 
high reflectance, which is diminished when the vegetation 
has some type of complication or is reaching senescence 
(Ponzoni et al., 2012).

To obtain the value of the indices evaluated for each of 
the plots were created Regions of Interest (ROI) in each of 
them, taking care to avoid areas that could alter the values 
obtained (shadows and regions with overturned sugarcane 
were excluded of the ROI), and extracted the average value 
of all pixels contained in the respective ROI for each plot.

The vegetation indices calculated were evaluated accord-
ing to their behavior in relation to the fertilization dose in 
experiment one, testing its statistical differences by such 
doses, varieties and their interaction through ANOVA 
analysis and Bonferroni groups, allowing the comparison 
of the average of the analyzed factors, after having been 
subject to ANOVA analysis. Because of the disturbance 
mentioned earlier in the filters of green and red in the 
ADC lite camera, the significance level was set at α=0.1 in 
order to avoid “false negatives” and losing the potential that 
can reach the assessed camera with the above mentioned 
limitations.

Similarly, indices were related by linear regression against 
productivity per plot, using data from experiments one and 
two (36 and 108 plots respectively) evaluating their relation-
ship per set of varieties and for each variety individually 
and determining the best productivity prediction model.

Results

Agronomic treatment outcomes 
The experiment showed a high productivity measured in 
tons of sugar cane per hectare (t ha-1) based on the industry 
average at the time of its harvest (121.4 t ha-1). The CC 01-
1940 variety with a dose of 400 kg ha-1 of urea (treatment 
7), was the one with the highest productivity reaching 250 t 
ha-1. On average, CC 01-1940 variety, regardless of the dose, 
presented the highest tonnage with a productivity of 239 t 
ha-1, followed by varieties CC 93-4418 with a productivity 
of 225 t ha-1 and CC 85-92, with a productivity of 199 t ha-1 

respectively. However, comparing the tonnages between 
varieties, no significant differences were found due to the 
interactions between variety and nitrogen doses.

Analyzing the tonnage per dose of nitrogen regardless of 
the variety, the dose of 400 kg ha-1 was the one with the 
highest yield with 229 t ha-1, followed by the dose of 200 
kg ha-1 with 223 t ha-1; the dose of 0 kg ha-1 was the lowest, 
with a productivity of 211 t ha-1. The statistical differences 
were found between the highest dose (400 kg ha-1) and the 
lowest dose (0 kg ha-1).

In the results of tonnage by fertilization dose, analyzed by 
variety, significant differences were found between the 0 

CIG = N

G
–1        (1) 

CVI = N *R

G 2              (2) 

GNDVI = N – G

N+G
      (3) 

MSAVI = 0.5(2N+1– (2N+1)2– 8(N– R)    (4)  

MTVI 2 = 1.5 (2.5 (N – G ) – 2.5 (R – G ) )

(2 N +1 ) 2 – 6 N – 5 R – 0 .5
     (5) 

NDVI = N – R

N+R
      (6) 

NGRDI = G – R

G+R
       (7) 

OSAVI = 1 .16 (N – R )

(N +R +0 .16 )
   (8) 

RVI= N

R
      (9) 

SAVI = 1.5 (N–R)

(N+R+0 .5 )
     (10) 

TVI = 0.5(120 (N– G ) – 200(R – G ))    (11) 
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kg ha-1 and the 400 kg ha-1 doses in the CC 01-1940 variety; 
for other treatments, including CC 93-4418 and CC 85-92 
varieties, no significant differences between the doses were 
found (Fig. 2A).

The yield results for varieties analyzed by dose showed that 
in the 0 kg ha-1 dose there were no significant differences 
between any of the three varieties, but in doses of 200 kg 
ha-1 and 400 kg ha-1, significant differences between CC 
85-92 and CC 01-1940 varieties were found (Fig. 2B).

Separability by indices of fertilization and varieties
Analyses of variance were performed to determine the pos-
sible statistical differences of the average of the established 
indices between different fertilization doses, as well as the 
varieties and their interaction. Table 4 is presented in P-
values, obtained from the analyses of variance performed 
for each index, for the Variety and Dose factors and the 
interaction between Variety and Doses. There was no 
experimental evidence that would confirm the existence 
of significant differences between nitrogen doses and 
their interaction with the varieties, however, there were 
two indices, CIG and GNDVI, where it was possible to 
detect statistical differences between varieties, with a 10% 
significance.

The values of each of the indices of experiment one were 
averaged for variety and in turn by fertilization dose, ob-
taining a similar trend in most of the indices, for which the 
highest value of each index corresponds to a fertilization 
dose of 200 kg ha-1 in CC 01-1940 (treatment 4) (Fig. 3), 
except for the CVI and TVI indices, the first one showing a 
reverse behavior (Fig. 3C) and the second one obtaining the 
highest value on a dose of 0 kg ha-1 in CC 93-4418 variety 
(Fig. 3L); while lower index values correspond to the CC 

85-92 variety on the three fertilization doses (treatments 
2, 5 and 8).

Bonferroni test was used at 10% (which keeps the experi-
mental error rate with I and II errors at appropriate levels) 
to analyze the statistical differences of indices between 
fertilization dose pairs, varieties pairs (Fig. 3) and between 
varieties pairs for each fertilization dose (Fig. 4). In figure 
3 it can be seen that no index manages to separate between 
fertilization doses, by variety; whereas in figure 4 it can be 
seen that two of the evaluated indices, CIG and GNDVI 
(Fig. 4B and 4D), were able to achieve the difference of CC 
01-1940 and CC 93-4418 varieties from CC 85-92 variety, 
only when these three varieties were fertilized with normal 
and high doses (200 and 400 kg ha-1).

FIGURE 2. A. Differences in productivity between doses for each variety (the letters corresponding to the groups should be read horizontally for each 
variety) and B. Differences in productivity between varieties per dose (the letters corresponding to the groups should be read vertically for each 
dose).
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TABLE 4. P-value by index for variety, dose factors and the variety-dose 
interaction, a result of ANOVA variance analysis for both experiments.

Index Variety Doses Variety:doses

CIG 0.0725* 0.7489 0.5134

CVI 0.3995 0.9360 0.5617

GNDVI 0.0660* 0.7239 0.5256

MSAVI 0.2383 0.8718 0.5131

MTVI2 0.2355 0.8693 0.5183

NDVI 0.2438 0.8881 0.5399

NGRDI 0.3341 0.9343 0.5585

OSAVI 0.2526 0.8893 0.5211

RVI 0.5750 0.8002 0.6481

SAVI 0.2530 0.8905 0.5288

TVI 0.3029 0.7770 0.6217

*Significant differences with a α



87García, Montero, and Chica: Evaluation of a NIR camera for monitoring yield and nitrogen effect in sugarcane

B

A
A

BA

A

A

A

A

A A

A

A

A

A

A

A

A

A A
A
A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A
A

A

A

A

A
A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A
A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A

A
A

A

A

A

A

A

A

A A

A

A

A

A

A

A

A

ATV
I

L

Doses

0 200 400

7000

8000

9000

10000

SA
VI

K

Doses

0 200 400
1.15

1.20

1.25

1.30

RV
I

J

Doses

0 200 400
10

18

16

14

12

20

OS
AV

I

I

Doses

0 200 400

0.90

0.94

0.98

1.02

NG
RD

I

H

Doses

0 200 400

0.66

0.70

0.74

0.78

ND
VI

G

Doses

0 200 400

0.78

0.82

0.86

M
TV

I2

F

Doses

0 200 400

1.64

1.68

1.72

1.76

M
SA

VI

E

Doses

0 200 400

0.87

0.89

0.91

0.93

GN
DV

I

D

Doses

0 200 400
0.26

0.28

0.30

0.32

CV
I

C

Doses

0 200 400

0.24

0.28

0.32

0.36

CI
G

B

Doses

0 200 400

0.75

0.80

0.85

0.90

0.90

Yi
el

d 
(t

 h
a-1

)

A

Doses

0 200 400
160

180

200

220

240

260

CC 93-4418CC 85-92CC 01-1940

FIGURE 3. Bonferroni grouping of productivity and vegetation indices between doses for each variety (figures should be read horizontally for each 
of the varieties).
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FIGURE 4. Bonferroni grouping of productivity and vegetation indices between varieties per dose (figures should be read vertically for each dose).
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Relationship between vegetation indices and productivity

Structure of correlation between vegetation indices 
For each variety, a factor analysis was conducted, using 
the main components as extraction method, to find co-
rrelations between the eleven indices measured in the 
study. Although the nature of the relationship between 
indices should not be affected by the variety, it was made 
for each one to numerically compare that the pattern did 
not change.

In all cases (varieties), 100% of the variability structure of 
the vegetation indices was achieved with five factors, and 
98% with the first two. Furthermore, significant correla-
tions between components and indices were found in the 
first two factors, as described in table 5.

TABLE 5. Correlations between each index and the first two factors ex-
tracted by main components.

CC 01-1940 CC 85-92 CC 93-4418

Index Factor 1 Factor 2 Factor 1 Factor 2 Factor 1 Factor 2

CIG 0.986 -0.115 0.984 -0.133 0.982 -0.118

CVI -0.998 0.001 -0.996 -0.037 -0.996 -0.006

GNDVI 0.986 -0.130 0.983 -0.138 0.980 -0.142

MSAVI 0.994 -0.067 0.997 -0.036 0.993 -0.098

MTVI2 0.994 -0.074 0.996 -0.048 0.992 -0.105

NDVI 0.996 -0.065 0.999 -0.028 0.996 -0.078

NGRDI 0.999 -0.031 0.999 0.002 0.998 -0.022

OSAVI 0.997 -0.062 0.999 -0.030 0.996 -0.078

RVI 0.939 0.108 0.938 0.115 0.914 0.243

SAVI 0.997 -0.058 0.999 -0.024 0.996 -0.076

TVI 0.664 0.745 0.300 0.952 0.750 0.643

From table 5 it is concluded that except the TVI (which 
is related to factor 2), all indices are strongly correlated 
because the lowest relationship between them and factor 
one is 0.93. The CVI index has an inverse relationship with 
the others.

Relationship between vegetation indices and productivity 
As a result of the high correlation between indices, and to 
be able to model their relationship to productivity without 
multicollinearity problems, it was decided to set a multiple 
linear regression between productivity and the scores of 
the top five factors of factor analysis (the first five reach a 
100% explained variability) for each variety. Table 6 shows 
that in the varieties CC 85-92 and CC 93-4418 it is possible 
to explain the variation in productivity in at least 48% and 
56% respectively. Also, the average estimation error of the 
model is 23.6 t ha-1 and 29.5 t ha-1. In variety CC 01-1940 the 

adjustment range was 20% with an estimation error of 28.4 
t ha-1. Table 7 shows the estimates of the model parameters 
for each variety.

TABLE 6. Multiple regression statistics by variety.

Variety Anova 
P-value Standard error (t) Adjusted R2

CC 01-1940 0.0129 28.4 20%

CC 85-92 <.0001 23.6 48%

CC 93-4418 <.0001 29.5 56%

TABLE 7. Parameter estimates with their p-values for each variety. 

CC 01-1940 CC 85-92 CC 93-4418

Parameter Estimate P-value Estimate P-value Estimate P-value

Intercept 229.108 <.0001 174.324 <.0001 174.324 <.0001

Factor 1 11.809 0.007 21.342 <.0001 21.342 <.0001

Factor 2 9.853 0.022 4.330 0.215 4.330 0.215

Factor 3 0.428 0.918 -7.421 0.037 -7.421 0.037

Factor 4 5.275 0.209 -0.602 0.862 -0.602 0.862

Factor 5 4.454 0.288 7.278 0.041 7.278 0.041

Discussion

For most indices in experiment one, the highest value ob-
tained is the response to a fertilization dose of 200 kg ha-1 
on the CC 01-1940 variety, while the lower value obtained 
is the response of a fertilization dose of 400 kg ha-1 on the 
CC 85-92 variety; however, no index found significant 
differences between fertilization doses or Variety-Dose 
interaction. 

According to Foster et al. (2012), the indices that are 
sensitive to the content of chlorophyll in the plant, such 
as those working in regions of green, red and red edge; 
take advantage of the reflectance ratios in these areas to 
achieve nitrogen treatment discriminations. The indices 
evaluated in this study did not discriminate between fer-
tilization doses. This is explained either by low spectral 
quality relative to the assessed camera or by the amount 
of organic matter present in the experiment (3.03%), which 
allows the release of nitrogen and other nutrients in the 
soil, yielding a more constant availability of nutrients for 
the three varieties present.

As for varietal discrimination in experiment one, just the 
CIG and GNDVI indices found significant differences in 
the dose of 400 kg ha-1 between CC 85-92 variety, which 
has the lowest index values, and the varieties CC 01-1940 
and CC 93-4418, which have the highest index values, 
and no significant difference between the latter. Similarly, 
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significant differences were found in the dose of 200 kg 
ha-1 between varieties CC 85-92 and CC 01-1940 while CC 
93-4418 variety could not be separated from the first two. 
This differentiation is due in part to the canopy architecture 
of the plant in each of the varieties, getting a much higher 
spectral response in varieties with curved blades (e.g., CC 
01-1940) than in varieties with erect leaves (e.g., CC 85-92), 
as the penetration of sunlight, and hence the reflectance, 
are different for each variety (Galvao et al., 2005; Victoria 
et al., 2013); however, another part of this differentiation 
is due to the LAI and the amount of biomass produced by 
each variety, eventually affecting the productivity of each of 
the varieties (Berger et al., 2013). In contrast to the number 
of indices found with the ability to perform a statistical 
difference between varieties (two indices), Hoyos-Villegas 
and Fritschi (2013), using a camera ADC lite, found sig-
nificant differences between two varieties of soybean by 
nine vegetation indices out of 15 indices evaluated with a 
significance level of 95%.

Conclusions

Only vegetation indices CIG and GNDVI show a significant 
difference between CC 85-92 variety and varieties CC 01-
1940 and CC 93-4418 in doses of 400 kg ha-1 and significant 
differences between the CC 85-92 and CC 01-1940 varieties 
in doses of 200 kg ha-1. The CC 85-92 variety is the one that 
shows the lower value of vegetation index in the majority of 
evaluated cases, thus allowing for varietal discrimination 
in two of the evaluated indices. This behavior is associated 
with the plant structure and a low productivity compared 
to the productivity of the CC 01-1940 variety.

The evaluated indices showed no significant differences 
between the fertilization doses applied in the nine treat-
ments of the experiment, demonstrating that its answer 
on the evaluated indices is very similar and it will depend 
both on the variety and its architecture.

The relationship between productivity and indices was 
modeled using a multiple linear regression and the scores 
obtained after an analysis of principal components (similar 
to a PLS regression, but made step by step) having found, 
for varieties CC 93-4418 and CC 85-92, determinations of 
48 and 56% respectively. The percentage of variability in 
productivity for CC 01-1940 variety was 20%.

Although productivity depends on many factors, it was 
possible to approximate the explanation of its variability 
with the group of evaluated indices, separated in principal 
components, to avoid multicollinearity. The percentage of 

explanation found and the standard errors were accept-
able and showed that the indices became one more input 
to predict productivity.

The ADC Lite camera proved to be effective in discrimi-
nating CC 85-92 variety against varieties CC 01-1940 and 
CC 93-4418 in doses of 400 kg ha-1, and CC 85-92 variety 
against CC 01-1940 variety in doses of 200 kg ha-1, however, 
it does not produce positive results in the discrimination 
of fertilization doses.
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