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ABSTRACT RESUMEN

The diversity of arbuscular mycorrhizal fungi (AMF) com-
munities in agricultural systems depends on biotic and abiotic 
factors as well as on cultural practices. This research aimed to 
evaluate the diversity of AMF present in an altitudinal transect 
cultivated with cape gooseberry (Physalis peruviana L.). A set of 
13 soil samples from cape gooseberry plantations located in the 
Colombian Andean mountains in the provinces of Cundina-
marca and Boyaca were collected during dry (0-20 mm/month) 
and rainy (150-330 mm/month) seasons between 1500 and 
3000 m a.s.l., in order to establish the relationship between the 
altitudinal characteristics and AMF diversity. The evaluation 
of the abundance of spores and species and diversity indexes 
showed the presence of 46 AMF species in the dry season and 
31 in the rainy season. This shows the high diversity of AMF 
in the tropical Andes with spore abundance between 20 and 
120 spores 10 g-1 of soil in the rainy season and between 127 
and 1531 spores 10 g-1 of soil in the dry season. 

La diversidad de las comunidades hongos formadores de 
micorrizas (HFMA) en sistemas agrícolas depende de fac-
tores bióticos y abióticos, así como de prácticas culturales. 
La investigación tuvo como propósito evaluar la diversidad 
de los HFMA presentes en un transecto altitudinal (1500 a 
3000 msnm) cultivado con uchuva (Physalis peruviana L.). 
Se recolectaron 13 muestras compuestas de suelo de planta-
ciones de uchuva localizadas en Los Andes colombianos de 
los Departamentos de Cundinamarca y Boyacá, durante las 
temporadas seca (0-20 mm/mes) y lluviosa (150-330 mm/mes), 
para establecer la relación entre las características altitudinales 
y la diversidad de HFMA. La evaluación de la abundancia de 
esporas y especies e índices de diversidad evidenció la presen-
cia de 46 especies de HFMA en época seca y 31 en época de 
lluvias. Esto muestra la alta diversidad de HFMA en los Andes 
tropicales, con una abundancia entre 20 y 120 esporas 10 g-1 de 
suelo en temporada de lluvias y entre 127 y 1531 esporas 10 g-1 
de suelo en época seca.
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Glomeromycota.
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Introduction

One of the symbiotic associations with the greatest geo-
graphic and botanical distributions is the interaction be-
tween arbuscular mycorrhizal fungi (AMF), which covers 
more than 80% of plant species and is found in a great 
diversity of ecosystems (Brachmann and Parniske, 2006; 
Bonfante and Genre, 2008). A bi-directional exchange of 
nutrients is the basis of this association (Breuninger and 
Requena, 2004; Genre et al., 2005, 2008), which favors 
plant nutrition and plant tolerance to biotic or abiotic stress 
(Van der Heijden and Sanders, 2002; Smith and Read, 
2008; Smith and Smith, 2011). To understand this complex 

symbiotic association, it is necessary to know the environ-
ment in which it is developed and the factors that affect 
the establishment and functioning of AMF communities. 
Many factors affect the dynamics of this symbiosis, such as 
geophysical factors (i.e. altitude) or the different stages of 
plant development that influence the composition of AMF 
communities (Husband et al., 2002a, b; Oehl et al., 2006; 
Senés et al., 2014). Senés et al. (2014) evaluated the composi-
tion of AMF communities in the Peruvian Andes in potato 
crops at four different altitudes from 2,658 to 4,075 m a.s.l., 
and they found a direct relationship between altitude and 
the community composition of AMF species. Some factors 
that affect the structure, diversity and distribution of AMF 

http://dx.doi.org/10.15446/agron.colomb.v37n2.70796


240 Agron. Colomb. 37(3) 2019

communities are soil microorganism populations (Garbaye, 
1994; Gehring and Whitham, 2002), agricultural practices, 
such as logging, burning, use of fertilizer and tillage (Jansa 
et al., 2003), and indirectly microclimate and topography 
(Johnson, et al., 1992; Kernaghan, 2005).

Cape gooseberry (Physalis peruviana L.) belongs to the 
Solanaceae family and is distributed in the wild highlands 
of the South American Andes (Pérez, 1996; Trillos et al., 
2008), its place of origin (Morton, 1987; Bartholomäus et 
al., 1990; Medina, 1991; Criollo and Ibarra, 1992; Chia 
et al., 1997). In Colombia, the optimal conditions for its 
cultivation include altitudes between 2300 and 2800 m 
a.s.l., temperatures between 13 and 17°C, relative humidity 
between 70 and 80%, and precipitation between 600 and 
1100 mm/year (Fischer, 2000; Espinal et al., 2005). The 
interest in working with this plant species is based on the 
fact that the plant is native to the Andes and has a wide 
range of edapho-climatic adaptations (Fischer, 2000) that 
may be related to its ability to associate with AMF. 

The objective of this study was to evaluate AMF diversity in 
Andean soils cultivated with cape gooseberry to determine 
if the composition of AMF communities is modulated by 
altitude. The possible effect of altitude on the establishment 
of AMF communities is fundamental for understand-
ing symbioses and finding behavioral patterns in AMF 
communities that would allow a better management of 
agroecosystems.

Materials and methods

Soil sampling
Sampling was performed on an altitudinal transect between 
1500 and 3000 m a.s.l. Composite samples of cape goose-
berry rhizospheric soils were collected at 13 sites. At each 
site 4 kg (15 subsamples) of soils were collected at a depth 
of 0-20 cm, in duplicate, for physicochemical and AMF 
analysis (Tab. 1). From each sample, 200 g were taken for 
analysis of the abundance and diversity of AMF spores, 
in duplicate. The remaining soil was stored to be used as 
inoculum or as a source of spores for a plant tramp assay. 
Two samplings were carried out: one in the rainy season 
(150-330 mm/month) and the other in the dry season (0-
20 mm/month).

Isolation and identification of AMF spores
For each sample, the number of spores 10 g-1 of soil was 
determined according to the methodology described by 
Gerdermann and Nicholson (1963), with modifications. 
The percentage of AMF colonization was estimated using 
the Trypan Blue differential staining methodology by 
Phillips and Hayman (1970) and Giovannetti and Mosse 
(1980) with modifications. The taxonomic classification 
of the AMF was performed at the species level based on 
the morphology of the spores. The spores were isolated 
and arranged in sheets with polyvinyl lactic acid-glycerin 
(PVLG) (Koske and Tessier, 1983) and, in some cases, with 
a mixture (1:1 v/v) of PVLG with Melzer (Brundrett et al., 

TABLE 1. Sampling sites, altitude, soil taxonomy, soil pH, organic matter (OM) and phosphorus (P) content in Cundinamarca and Boyaca.

Location Nomenclature Taxonomic
classification

Altitude
(m a.s.l.) pH OM (%) P (mg kg-1)

Sampling season

R D R D R D

Cu
nd

in
am

ar
ca

Zipacon
Z1
Z2

Andic Dystrudepts
Andic Dystrudepts

2675
2627

5.9
6.0

5.1
5.1

16.0
17.8

11.15
13.15

24.3
13.8

49.0
39.0

Granada

G1
G2
G3
G4

Andic Dystrudepts
Dystric Eutrudepts
Dystric Eutrudepts
Dystric Eutrudepts

2380
2302
2250
2000

5.9
5.5
5.5
5.4

5.18
5.18
5.15
5.00

16.6
22.5
14.7
8.3

13.63
14.34
12.68
9.34

32.6
54.0
12.0
5.0

63.1
50.4
30.3
30.4

Mosquera M1 Aeric Epiaquents 2560 5.6 5.10 6.1 14.22 35.0 53.0

Alban A Dystric Eutrudepts 1639 6.0 5.14 12.8 12.92 3.6 70.1

Bo
ya

ca

Combita
C1
C2
C3

Typic Humitropept
Typic Humitropept
Typic Humitropept

2869
2930
2750

4.9
5.0
5.2

5.3
5.21
5.2

7.1
8.6
10.7

14.40
14.60
14.46

32.7
62.4
15.8

53.1
62.2
36.8

Arcabuco
A1
A2

Oxic Humitropept
Oxic Humitropept

2575
2636

5.6
5.0

5.07
5.11

8.3
9.4

12.58
11.97

9.4
19.6

81.8
68.3

R: Rainy, D: Dry.
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1994). The isolated and identified spores corresponded to 
the two sampling periods, dry season (<20 mm/month) and 
rainy season (150-350 mm/month). The classification codes 
of Schenck and Pérez (1990) and INVAM (International 
Culture Collection of Vesicular Arbuscular Mycorrhizal 
Fungi (http://invam.caf.wvu.edu/cultures/cultsearch.htm)) 
were used, along with scientific publications as support 
for the genus or species classification (Morton and Ben-
ny, 1990; Blazkowski, 1991; Morton and Redecker, 2001; 
Schüßler et al., 2001; Oehl and Sieverding, 2004; Walker 
and Schüßler, 2004; Blaskowski et al., 2006, 2008; Siever-
ding and Oehl, 2006; Palenzuela et al., 2008; Alves Da Silva 
et al., 2009; Oehl et al., 2008, 2010, 2011 a, b, c, d; Goto, et 
al., 2011; Redecker et al., 2013). 

Diversity index
Density (DE), richness (R), relative abundance (RA), isola-
tion frequency (IF), Shanon-Wiener diversity index (H´), 
uniformity index (E), Simpson dominance index (D) and 
Simpson-Gini diversity index (Y) were used to determine 
AMF diversity in each sample and between all 13 samples 
collected. Indices were applied at the species level (Franke-
Snyder et al., 2001; Zhang et al., 2004; Rodríguez et al., 
2005; Zhao and Zhao, 2007; Kwasna et al., 2008; Chifflot 
et al., 2009).

Statistical analysis
Correlations were performed between spore diversity, 
abundance and richness of species. Multiple regressions 
were used for the diversity indexes and abundance and 
richness variables, as well as correlations between diversity 
variables, using the SAS program, version 10. 

Results and discussion

AMF Communities
The presence of plant-AMF symbiotic associations was 
measured as percentages of colonization of cape goose-
berry roots and the total number of spores present in the 
rhizosphere of the plant to verify the interaction of these 
AMF communities with the plant.

The results showed that the highest percentages of coloniza-
tion occurred during the rainy season for most municipali-
ties (Fig. 1), except for G1, A2 and A, with values between 
7.4 and 68.5%. Municipalities G4, A1, C3 and G2 were noted 
for having a higher percentage of colonization, and lower 
values were seen in G1, A2 and Z2. In the dry season, the 
colonization range was between 2 and 22%. The higher val-
ues were recorded in G1, G4, A and A2, and the lowest were 
seen in G3, C1 and Z2 (Fig.1). In all samples evaluated, the 

presence of AMF associated with roots of cape gooseberry 
plants was registered, independent of colonization rates, 
demonstrating that it is a mycotrophic species.
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FIGURE 1. Natural colonization levels (%) of cape gooseberry roots by 
AMF at two sampling seasons, dry and rainy. 

The number of spores varied between 20 and 120 spores 
10 g-1 of soil during the rainy season. The higher spore 
number values were seen in municipalities A and C1, and 
the smallest amount was recorded in Z1. However, the dry 
season presented the highest spore values, between 170 and 
1531 spores 10 g-1 of soil, in G3 and G4, respectively (Fig. 2). 

During the rainy season, a negative correlation was ob-
served in the number of spores, since the highest number 
of spores was recorded at the lowest altitudes. During the 
dry season, the correlation was positive, since a greater 
number of spores was observed at higher altitudes. These 
results agree with publications that show how, under water 
stress conditions, AMF sporulate by increasing the produc-
tion of spores g-1 of soil (Caproni et al., 2003; Roveda et al., 
2012; Pagano et al., 2013).

Taxonomic identification of AMF
A total of 46 species, grouped in 16 genera, 11 families and 
5 orders, were taxonomically identified, illustrating the 
great diversity of AMF found in the Colombian Andean 
soils. The distribution of species and genera of AMF iden-
tified in each of the evaluated locations during dry and 
rainy seasons can be seen in Table 2. The results show 23 
species for Alban, 12 for Mosquera, 25 for Zipacon and 35 
for Granada, the latter presenting the greatest diversity of 
AMF species. Three types of spores that had not previously 
been described were found: two of them corresponded to 
the genus Glomus and the other was found from the genus 
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Acaulospora (Personal communication from F. Oehl and E. 
Sieverding), which were isolated from the soils of Granada, 
Zipacon and Combita. In the altitudinal transect (1636-
2675 m a.s.l.) of the province of Cundinamarca, between 
4 and 18 species were found in the soils during the rainy 
season and between 18 and 33 were found in the dry season 
in consolidated zones of cape gooseberry production (more 
than 20 years). For the altitudinal transect of the province 
of Boyaca (2572 to 2869 m a.s.l.), between 6 and 13 species 
were identified in the rainy season and between 11 and 17 
in the dry season, in a zone that is considered as new for 
cape gooseberry cultivation (between 5 and 7 years).

It is important to point out that five AMF species were 
not identified in soils of the consolidated zones of cape 
gooseberry production in Cundinamarca: Acaulospora sp2, 
A. scrobiculata, A. rehmii, A. colombiana and Paraglomus 
laccatum. In a recent crop production in the province of 
Boyaca, 13 AMF species were not identified: Glomus sp1, 
Rhizoglomus fasciculatum, R. proliferum, Funneliformis 
geosporum, F. coronatus, F. monosporum, Septoglomus 
constrictum, Claroideoglomus walkerii, Acaulospora lon-
gula, A. morrowiae, Acaulospora sp1, Intraspora sp. and P. 
occultum. Mahdai et al. (2017) reported a higher density of 
AMF spores associated with a coffee crop (256 spores 100 g-1 
soil) at higher altitudes (1400 m a.s.l.) as compared to lower 
altitudes (700 m a.s.l.) in the mountains of Saudi Arabia.

AMF species
The total number of species in the rainy season was 31, 
while in the dry season it was 46. Regardless of the sam-
pling time, the highest number of species was observed 
in sample G4, followed by A, while the lowest values were 
observed in G1 and G3.

FIGURE 3. Number of AMF species (10 g-1 of soil) identified in the cape 
gooseberry crop in Cundinamarca and Boyaca at two sampling sea-
sons, dry and rainy.

At the seasonal level, a high diversity in AMF communities 
was also observed, which was expressed as a higher num-
ber of spores, richness and relative abundance of species 
in the dry season compared to the wet season in which 
higher levels of root colonization were detected. Similar 
results have been obtained by several authors in the dry 
season (Pagano et al., 2013; Guadarrama et al., 2014; Ra-
belo et al., 2014) as well as in the wet season (Guadarrama 
and Álvarez-Sánchez, 1999). The seasonal variation of 
the communities was evident by the differences found in 
the number of species between the dry (46) and rainy (31) 
seasons, of which 32.6% of the species were not isolated in 
the rainy season. These results are in agreement with previ-
ous reports on seasonal variations of AMF communities 
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FIGURE 2. Relationship between altitude and number of AMF spores grown with cape gooseberry in the provinces of Cundinamarca and Boyaca. 
a) Rainy season and b) dry season.
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TABLE 2. Distribution of AMF genus and species in soil samples cultivated with cape gooseberry in an altitudinal transect between 1636 and 2869 
m a.s.l. (R: Rainy, D: Dry).

Location

Cundinamarca Boyaca

ALBAN MOSQUERA ZIPACON GRANADA COMBITA ARCABUCO

A M Z1 Z2 G1 G2 G3 G4 C1 C2 C3 A1 A2

Sample season R D R D R D R D R D R D R D R D R D R D R D R D R D

Species

Glomus macrocarpum * * * * * * * * * * * * * * * * * * * * * * * * * *

Glomus brohutii * * * * * * * * * * * * * * * * * * * * *

Rhizoglomus intraradices * * * * * * * * * * * * * * * * *

Rhizoglomus aggregatum * * *

Rhizoglomus irregulare * * *

Glomus sinuosum * *

Glomus microcarpus * * * * * * * * * * * * * * * * *

Glomus sp1 * * * * * * * *

Glomus sp 2 * * * *

Rhizoglomus fasciculatum * * *

Rhizoglomus proliferus * * * * *

Funneliformis mosseae * * * * * * * * * * * * * *

Funneliformis geosporus * * * * *

Funneliformis coronatus * *

Funneliformis monosporus * * *

Simioglomus hoii * * *

Septoglomus constricum *

Clareidoglomus claroideum * * * * * * * * * * * * * * * * * * * * *

Clareidoglomus etunicatum * * * * * * * * * * * * * * * *

Clareidoglomus drummondii * * *

Claroideoglomus luteum * * * * * * * * *

Claroideoglomus walkeri *

Diversispora celata * * * *

Diversispora versiformis * *

Entrophospora infrequens * * * * * * * * * * * * * *

Entrophospora nevadensis * * * * * * * *

Acaulospora longula * * *

Acaulospora morrowiae * * * * *

Acaulospora sp 1 * * *

Acaulospora sp 2 * *

Acaulospora sp 3 * * * * * * *

Acaulospora scrobiculata * * * * *

Acaulospora rehmii * * *

Acaulospora spinosa * * * * *

Acaulospora denticulata * * * * * * *

Kuklospora colombiana * * * *

Pacispora sp * * * * * * * * * * *

Scutellospora nodosa * * * * * * * * * * *
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(Courty et al., 2008; Davey et al., 2012; Bonfim et al., 2013; 
Guadarrama et al., 2014). Some authors have reported 
similar effects of the rainy season on root colonization to 
those obtained in the present study (Rabatin, 1979; Allen, 
1983; Lodge, 1989; Miller, 2000; Miller and Sharitz, 2000), 
while other authors observed no effect (Bryla and Duniway, 
1997; Ming and Hui, 1999). The presence of spores and the 
different levels of root colonization showed the existence of 
an active interaction between AMF and cape gooseberry 
plants in the Andean soils. The dry season increased the 
number of spores.

In the present study, a high number of spores was found 
in 10 g of soil, both in the rainy season (20-120 spores g-1) 
and dry season (170-1531 spores g-1). These values were 
higher than those reported by Jayachandran and Shetty 
(2003) for the wetlands of the Everglades (18-124 spores g-1) 
and by Lopes et al. (2013) in humid forests and pastures in 
Brazil (2.5 and 77.9 spores g-1), where the number of species 
varied between 31 and 46 for the rainy and dry seasons, 
respectively. These values are similar to those reported in 
the Chilean Andes (39 species) (Castillo, 2005; Castillo et 
al., 2005), in the Amazonian-pasture forest in Brazil (36 
species) (Lopes et al., 2013), and in the forests of Mexico (37 
species) (Violi et al., 2008). A lower diversity of species has 
been reported in the dunes in Brazil (25 species) (Stümer 
et al., 2013), forests (13-29 species) and pasture lands (18 
species) of Mexico (Gavito et al., 2008; Fernandes et al., 
2009; Guadarrama et al., 2014), tropical humid forests of 
Colombia (18 species) (Peña-Venegas et al., 2007), forests in 
Brazil (Aidar et al., 2004; Zandavalli et al., 2008; Moreira 
et al., 2009; Bonfim et al., 2013; Rabelo et al., 2014) and in 

general in various studies that have demonstrated a range 
of 12-26 species 10 g-1 of AMF (Wilson et al., 1992; Wang 
et al., 2008).

The high number of spores identified in the present study, 
associated with high species diversity from the ecological 
point of view, is a reflection of the history of the establish-
ment of communities in a specific environment. It can be 
considered a reserve bank that may contains AMF adapted 
to various environmental conditions with the potential 
to associate with different hosts at a particular moment 
in time, with different growth strategies and adaptive 
mechanisms to the dynamic changes of the environment 
(Hijri et al., 2006; Oehl et al., 2006; Moebius-Clune et al., 
2013). From the agronomic point of view, the high diver-
sity represents the high potential presented by the Andean 
ecosystems for the establishment of symbiotic associations. 
Although this was an analysis of agroecosystems with 
semi-intensive use, AMF diversity was high, contrary to 
that reported by different authors on the reduction of 
AMF diversity in agricultural systems (Mason et al., 1992; 
Munyanziza et al., 1997; Cowden and Peterson, 2009).This 
study verified the presence of “generalist” species (accord-
ing to Oehl et al., 2003). These are AMF species that can 
be isolated under different soil and climatic conditions, 
in contrast to “specialist” species that only occur under 
specific soil or climatic conditions. Generalist species can 
be isolated under different edaphic conditions and at dif-
ferent altitudes, showing their high tolerance for diverse 
soil and climatic conditions, including: G. macrocarpum; 
G. brouhtii; G. microcarpum, C. claroideum, C. luteum, E. 
infrequens and E. nevadensis. The existence of “generalist” 

Location

Cundinamarca Boyaca

ALBAN MOSQUERA ZIPACON GRANADA COMBITA ARCABUCO

A M Z1 Z2 G1 G2 G3 G4 C1 C2 C3 A1 A2

Sample season R D R D R D R D R D R D R D R D R D R D R D R D R D

Species

Racocetra tropicana * * * * * * * *

Cetrospora pellucida * * * * * * *

Intraspora sp * * * * * * * *

Archeospora trappei * * *

Ambispora sp * * * *

Ambispora appendicula * * *

Paraglomus occultum * * *

Paraglomus laccatum *

Species 13 21 7 12 10 21 7 15 4 9 13 19 4 7 18 33 8 11 10 17 6 12 6 11 9 13

CONTINUATION TABLE 2. Distribution of AMF genus and species in soil samples cultivated with cape gooseberry in an altitudinal transect between 
1636 and 2869 m a.s.l. (R: Rainy, D: Dry).
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species has been reported by different authors (Oehl et al., 
2003, 2010; Castillo, 2005; Öpik et al., 2006; Guadarrama 
et al., 2007; Stümer and Siqueira, 2008). Glomus macrocar-
pum has been reported as a “generalist” species in several 
ecosystems and agroecosystems (Oehl et al., 2004; Castillo 
et al., 2005; Oliveira Freitas et al., 2014; Rabelo et al., 2014). 
Guadarrama et al. (2014) identified 10 species considered as 
generalist, while Rabelo et al. (2014) identified 4 generalist 
species among 40 identified species.

In the case of fungi of the genus Glomus, their predomi-
nance in diverse edaphoclimatic conditions was reported 
in several plant species (Gavito et al., 2008; Wang et al., 
2008; Schnoor et al., 2011; Boonlue et al., 2012; Mahdhi et 
al., 2017). The high presence of species of the genus Glo-
mus was probably associated with their high sporulation 
capacity favoring the colonization of roots in different 
environments, especially in environments with agronomic 
operations (Caprioni et al., 2003; Rabelo et al., 2014). This 
quality results in the species of this genus being more abun-
dant in manmade systems, especially in agroecosystems 
like the one in the present study, where fungi of the order 
Glomerales and specifically species of the genus Glomus 
showed wide dispersion and high abundance in soils of the 
Colombian Andes.

Other species of fungal genera, such as Acaulospora and 
Glomus, predominate in the Chilean Andes (Castillo, 2005; 
Castillo, et al., 2005), showing similarity to those found in 
this study in Colombia, possibly because of the affinity of 
some of the edaphic characteristics, such as the presence of 
volcanic ash (allophane), soil acidity, low P contents in the 
soil and high organic matter (OM), although they differ in 
altitude and latitude. In contrast, in studies in the Peruvian 
Andes Sénes et al. (2014) found that Funneliformis mossseae 
was the most predominant species in both the soil and root 
of potato plants. This species is an early stage colonizer and 
seems to be adapted to frequent soil disturbances, such as 
contamination by hydrocarbons, fungicides, heavy metals, 
salinity, drought and cold climates (Abdel-Azeem et al., 
2007; Huang et al., 2007; Zarei et al., 2010; Hassan et al., 
2011; Krishnamoorthy et al., 2014).

The increment of the available phosphorus in the soil pro-
duced a reduction of AMF root colonization, which was 
previously reported by Jansa et al. (2009) and Selvam and 
Mahadevan (2002). Low levels of phosphorus in the soil 
favor and promote the establishment and development of 
symbiosis, and therefore, AMF multiplication. Phospho-
rus deficiency in the soil is one of the main activators of 
recognition signals between plants and HFMA (Ramírez 

and Rodriguez, 2010). It was found that 32% of AMF spe-
cies, especially Glomerales, were favored by increasing 
the contents of this element in the dry season, while 17.4% 
were negatively affected in the wet season. This type of 
interaction has been previously reported (Jeffries et al., 
1988; Sieverding, 1991; Oehl et al., 2003; Landis et al., 
2004; Uhlmann, et al., 2004; Bashan et al., 2007), showing 
correlations between phosphorus contents and richness 
and abundance of AFM species. There are reports of the 
presence of HFMA in soils with high phosphorus contents 
(Davidson and Christensen, 1977; Allen and MacMahon, 
1985), showing the great versatility of adaptation that AMFs 
have. The soils of the Andean region have high phosphorus 
fixation, so at relatively high phosphorus levels, but with 
low availability, the abundance of certain HFMA species 
can be favored.

The tolerance of some species to edaphoclimatic conditions 
is a desirable characteristic of species considered “general-
ist” since it allows species to be easily adapted to changes 
in the environment. This is a common situation in agro-
ecosystems, where the edaphic environment is modified by 
cultural practices associated with crops. In addition, the 
identification and use of “generalist” species can facilitate 
the establishment of symbiosis under different conditions 
in cape gooseberry because of the high mobility of the crop 
as an escape mechanism for diseases. The high frequency 
of isolates along the altitudinal transect of some species 
showed the high adaptability of these species to condi-
tions of biotic stress and strong changes in agroecosystems 
from practices such as fertilizer applications (Sturmer and 
Siqueira, 2008; Zangaro and Moreira, 2010). In this study, 
species such as G. macrocarpum were seen under rainfall 
conditions below 20 mm/month as well as with rainfall 
between 150 and 300 mm/month, while other species only 
occurred in the dry season.

In the case of AMF species considered as “specialists”, be-
cause their presence is associated with specific conditions 
(climate, soil or both), it was found that R. agregatum, R. 
irregulare, G. sinuosum, two species of Glomus sp., F. coro-
natus, F. monosporum, S. hoi, S. constrictum, C. walkeri, 
E. nevadensis, Acaulospora sp, P. occultum and P. laccatum 
were exclusively associated with climate, while S. constric-
tum, C. walkierii, Acaulospora sp2 and P. laccatum were 
associated with the soil type, specifically soils cultivated 
with Physalis peruviana. These AMF characteristics, which 
present a “specialist” behavior for soil types, climate and 
moisture regimen, have been reported in AMF community 
analysis studies in tropical ecosystems, such as humid for-
ests and semi-arid zones of Brazil and Africa, in tropical 
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savannas and the Swiss Alps (Landis et al., 2004; Uhlmann 
et al., 2004; Lekberg et al., 2007; Oehl, et al., 2010). Al-
though they are not ecologically similar to the Colombian 
Andes, they showed a trend of AMF behavior. Rabelo et 
al. (2014) identified 26 intermediate and 19 exclusive spe-
cies or specialists in communities composed of 40 species. 
The identification of “specialist” species allows species to 
adapt to specific stresses, which can occur both in space 
and time because of anthropic intervention or global or 
local phenomena, such as climate change and variation.

Relative abundance and species richness of AMF
The relative abundance exhibited higher values in the 
dry season than in the rainy season, related to the greater 
number of species collected and identified at that time. A 
relative abundance of more than 71% was obtained for the 
sample from G4, whereas for that same sample in the rainy 
season, only 60% was reached. The samples from G1 and 
G3 had the lowest relative abundances. It is evident that in 
C1, A2 and G2, the relative abundance of the species was 
higher in the rainy season, while in the other samples it 
was always higher in the dry season (Fig. 4).

Species richness varied between 1.57 and 8.30 in the dry 
season and between 0.87 and 4.95 in the rainy season, re-
flecting the differences between the two sampling periods. 
The highest species richness values were observed in the 
samples from A and G4, and the lowest values in G1 and G3.

Frequency of species isolates in soil samples
In the rainy season, the frequency of isolation ranged 
between 7.6% from isolated species in a sample to 100% 

of isolated species in all samples. According to Oehl et al. 
(2003), this analysis allows the determination of “genera-
list” species (15%), such as G. macrocarpum, G. brohutii, 
C. claroide, C. etunicatum, G. microcarpum, G. intrara-
dices and E. infrequens, which were isolated from a high 
number of samples in rainy and dry seasons with a clear 
predominance of Glomus species in terms of isolation 
frequencies. The species that can be considered as “spe-
cialists” corresponded to 8.7% of the species: Septoglomus 
constrictum, Claroideoglomus walkierii, Acaulospora sp2 
and Paraglomus laccatum, as they were isolated in a single 
sample and in one single season.

Of the total species 45.6% showed the highest frequency of 
isolation in the dry season (21), and only 4 showed higher 
frequency in the rainy season (Rhizoglomus proliferum, A. 
longula, A. rehmii and Archeospora tropeii). We observed 
that only 4 species (G. macrocarpum, Glomus sp2, Diver-
sispora celata and Kuklospora colombiana) had the same 
frequency of isolation in the dry and rainy seasons, com-
pared to the total species isolated in each season.

Only 32.6% of the species (15) were isolated in the dry sea-
son: Rhizoglomus agregatum, R. irregulare, G. sinuosum, 
two species of Glomus sp, F. coronatus, F. monosporum, 
Simioglomus hoi, S. constrictum, C. walkeri, E. nevadensis, 
Acaulospora sp, P. occultum and P. laccatum. These were 
“specialists” for the wet regime rather than for soil type or 
altitude. According to the scale proposed by Zhang et al. 
(2004), the dominant species in the rainy season were G. 
macrocarpum, G. brohutii, G. intraradices and C. claroi-
deum, and in the dry season G. macrocarpum, G. brohutii, 

FIGURE 4. Relative abundance (a) and richness (b) of AMF species (g-1 of soil) in soils cultivated with cape gooseberry in Cundinamarca and Boyaca 
in rainy and dry seasons.
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G. intraradices, G. microcarpus, F. mosseae, C. claraideum, 
C. etunicatum, E. infrequens, E.nevadensis, Pacispora sp. 
and Scutellospora sp. The rare species in the rainy season 
were C. drummondii and Ambispora sp., and for the dry 
season, they were S.constrictum, C. walkeri, A. longula, 
Acaulospora sp2, A.rehmi, Archeospora troppei, Ambispora 
appendicula and P. laccatum. Regardless of the season, G. 
macrocarpum, G. brohutii, G. intraradices and C. claroi-
deum were dominant, and most of the rare species in the 

dry season were not isolated in the rainy season, except for 
A. longula, A. rehmi, Archeospora troppei and Ambispora 
appendicula.

Figure 5 shows the abundance of spores for each of the 
identified species in each community. We determined that 
although a species may be present in all evaluated com-
munities, its abundance can vary widely.
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FIGURE 5. Abundance of spores for each of the species identified in the rainy (a and b) and dry (c and d) seasons.

1. Glomus macrocarpum
2. Glomus brohutii
3. Rhizoglomus intraradices
4. Rhizoglomus aggregatum
5. Rhizoglomus irregulare
6. Glomus sinuosum
7. Glomus microcarpus
8. Glomus sp1
9. Glomus sp 2 
10. Rhizoglomus fasciculatum

11. Rhizoglomus proliferus
12. Funneliformis mosseae
13. Funneliformis geosporus
14. Funneliformis coronatus
15. Funneliformis monosporus
16. Simioglomus hoii
17. Septoglomus constricum
18. Clareidoglomus claroideum
19. Clareidoglomus etunicatum
20. Clareidoglomus drummondii

21. Claroideoglomus luteum
22. Claroideoglomus walkeri
23. Diversispora celata
24. Diversispora versiformis
25. Entrophospora infrequens
26. Entrophospora nevadensis
27. Acaulospora longula
28. Acaulospora morrowiae
29. Acaulospora sp 1
30. Acaulospora sp 2

31. Acaulospora sp 3
32. Acaulospora scrobiculata
33. Acaulospora rehmii
34. Acaulospora spinosa
35. Acaulospora denticulata
36. Kuklospora colombiana
37. Pacispora sp
38. Scutellospora nodosa
39. Racocetra tropicana
40. Cetrospora pellucida

41. Intraspora sp
42. Archeospora trappei
43. Ambispora sp
44. Ambispora appendicula
45. Paraglomus occultum
46. Paraglomus laccatum
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Shannon-Wiener Index (H ‘)
In the rainy season, Shannon-Wiener diversity indexes 
were found between 1.33 and 2.8, considered as mean 
values according to Gove et al. (1999). The locations G4, 
A, Z1, C2 and A2 had mean levels of diversity related to 
the number of species found in the samples (Fig. 6A). In 
the dry season, the values were similar, with variations 
between 1.12 and 2.5 with the highest levels of diversity in 
A2, A1, C2, C1, M, G2 and Z1. It is interesting to observe 
how in the same location but in a different sampling area 
the levels of diversity may vary widely either by soil type 
or agronomic management of the lots.

Uniformity index
This index had a range between 0 and 1, with 1 as the maxi-
mum value when all species are present in equal abundance 

and it decreases when the dominance extent of a species or 
morphotype occurs (Hurlbert, 1971).

Two measures of uniformity were considered: between 
samples and inside each sample. Results are presented in 
Figure 6 (B and C). In the first case, for the rainy season dif-
ferences in uniformity between the samples were observed 
when the identified species had variations between 0.06 in 
Z1 and 0.82 in G4, representing values of low uniformity 
for Z1 and high uniformity for G4 in relation to the other 
sampling sites according to Hurlbert (1971). This indicates 
that Z1 had few species with high disparity with the other 
samples. In the dry season, there was greater homogeneity 
between the samples with values between 0.29 (G4) and 
0.65 (A2), showing a more homogeneous distribution of 
the species. When measuring the uniformity per sample 
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FIGURE 6. Indexes of diversity of AMF species isolated in cape gooseberry in the provinces of Cundinamarca and Boyaca during the rainy and dry 
seasons. a) Shannon-Wiener Diversity Index; b) Uniformity Index between samples; c) Uniformity Index inside samples and d) Simpson Index 
(dominance).
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(ratio of number of spores to total spores in the sample), 
in the rainy season, there was a low number of spores the 
values were very close to 1 in all of the samples reflecting 
similar values of spores per species in each of the samples. 
In the dry season, the values were high but with greater 
variations, with a range between 0.32 in G4 and 0.91 in G3, 
showing wide variations in the number of spores of each 
species present in the sample.

Simpson’s Dominance Index:
Simpson’s Dominance Index shows the highest values for 
samples G1, G3 and A1 during the rainy season and for Z2, 
G1 and G3 in the dry season, signifying that these samples 
had dominant species (Bouza and Covarrubias, 2005). This 
is consistent with the results of the Uniformity Index since 
these were the same samples that showed lower uniformity 
values (Fig. 6D).

The estimated diversity indexes corroborated the hy-
pothesis of high diversity of AMF in these systems, with 
low-average levels of uniformity between and within the 
analyzed samples and with species dominance in some of 
the analyzed communities, especially in those that had a 
low number of species. The Shannon-Wiener diversity in-
dex values recorded for cape gooseberry (1.1 to 2.8) showed 
that, while the host affects AMF diversity (Vandenkoorn-
huyse et al., 2002), edaphic conditions and altitude also 
play an important role. This is evident in the ranges of 
diversity found in the evaluated altitudinal transect where 
the variations were mainly environmental and not from 
the host. However, the host component can be evaluated 
by comparing the values of the present study with those 
obtained by Helgason et al. (1998) and Tanja et al. (2004), 
who reported ranges from 0.4 in agricultural soils to 2.3 in 
forests, with higher values in cape gooseberry. It is impor-
tant to consider the characteristics of the cape gooseberry 
crop since it is a species that is cultivated in agricultural 
fields but is also in the process of domestication. Cape 
gooseberry originated from Andean ecosystems, where 
the diversity centers of the species are found and has been 
adapted to these ecosystems with restrictive soil-climatic 
conditions, possibly through co-evolution processes with 
AMF. Additionally, these results indicate that the tropical 
Andes of Colombia are a niche with broad AMF diversity.

The previous results confirm the existence of high AMF 
diversity in the ecosystems of the tropical Andes. Although 
only cape gooseberry soils were sampled, the number of 
AMF species was higher to that identified with a greater 
variety of hosts as mentioned previously. The identification 
of “generalist” or “specialist” species is very important for 

the establishment of the AMF-cape gooseberry association 
since this is a “nomadic” crop that changes with location, 
soil, climate and altitude. Due to this, AMF species with 
high adaptability to different climatic and altitude condi-
tions may have a greater possibility of establishing symbio-
sis than those affected by edaphic changes. Knowing the 
factors that can affect the abundance of species allows the 
creation of practices that favor the presence of species of 
interest for an ecosystem or an agroecosystem.

Conclusions

This research contributed to our knowledge of AMF 
diversity in the cape gooseberry (Physalis peruviana L.) 
production system in the evaluated altitudinal transect 
(1500-3000 m a.s.l.). It also determined the relationship 
between diversity, abundance and composition of com-
munities with the characteristics of the soils in which these 
communities of fungi associated with cape gooseberry 
plants are established. This is the first time this kind of 
research has been carried out in the Andes.

The presence of spores and different levels of root coloniza-
tion showed the existence of an active interaction between 
AMF and cape gooseberry plants in Andean soils. This 
high diversity can be considered as a reserve bank of AMF 
species adapted to the conditions in the Colombian Andes, 
which will allow the establishment of symbiotic associa-
tions for sustainable and competitive agricultural systems.
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