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ABSTRACT RESUMEN

We tested the hypothesis that the intensity and duration of 
Macrosiphum euphorbiae infestations in tomato depend on 
both the age (phenological stage) of the host plant and the 
initial number of aphids present in the colony. We compared 
the effects of three initial levels of infestation and two pheno-
logical stages of the plant (pre-flowering and flowering stages) 
on infestation curves. The position of the infestation peak over 
time was significantly affected by the plant phenological phase. 
Populations of M. euphorbiae reached the highest peak of abun-
dance on plants infested at the pre-flowering stage compared 
to those subsequently infested. Within a phenological phase, 
the maximum abundance also varied according to the initial 
aphid density on the plant. The implications concerning the 
management of the pest in the field are briefly discussed.

Se planteó la hipótesis que la intensidad y duración de las in-
festaciones de Macrosiphum euphorbiae en el tomate dependen 
simultáneamente de la edad (etapa fenológica) de la planta 
hospedera y del número inicial de áfidos de la colonia. Se 
compararon los efectos de tres niveles iniciales de infestación 
y dos fases fenológicas de la planta (fases de pre-floración y 
floración) sobre las curvas de infestación. La posición del pico 
de infestación a lo largo del tiempo estuvo afectada significa-
tivamente por la fase fenológica de la planta. Las poblaciones 
de M. euphorbiae alcanzaron su máximo pico de abundancia 
en las plantas infestadas en la fase de pre-floración compa-
radas con las plantas infestadas en fases posteriores. Dentro 
de la fase fenológica, la máxima abundancia varió también 
de acuerdo con la densidad inicial de áfidos en la planta. Las 
implicaciones concernientes al manejo de la plaga en campo 
se discuten brevemente. 
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Introduction

Aphids are r-strategist (Gadgil & Solbrig, 1972) insects 
characterized by their capacity for extremely rapid popula-
tion growth together with a transient relationship with the 
host plant (Powell et al., 2006). Aphid colonies typically 
decline after an initial period of rapid growth. This last 
phase is largely due to the production of winged morphs 
and is stimulated by crowding, the presence of natural 
enemies, and the decrease in plant quality (Müller et al., 
2001; Irwin et al., 2007). The curve of infestation for the 
same aphid species can be dramatically affected by the host 
plant despite keeping all the other factors equal (Larocca 
et al., 2011).

Macrosiphum euphorbiae (Thomas, 1878) (Hemiptera: 
Aphididae) is an important aphid pest that causes the most 
significant direct damage among the aphid species that 
attack tomato (Solanum lycopersicum L. 1753) (Perring et 
al., 2018). In a previous study concerning the development 
of M. euphorbiae colonies on tomato plants, we observed 
that cultivars and water stress affect the peak but do not 
interfere with the length of the infestation (Rivelli et al., 
2013). This result was confirmed by field observations 
(Colella et al., 2014). 

Several models of aphid population dynamics, which 
exclude predator inflicted mortality as a regulating fac-
tor, identify the initial number of aphids as the main 
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determinant of the width of the density curve and/or size 
and the timing of the peak of maximum density (Kindl-
mann et al., 2007). In addition, some of these models take 
into account variations in the “aphid-carrying capacity” 
due to changes in host plant quality over time. Plant qual-
ity may largely depend on its phenology, which modifies 
the physiological priorities for resource allocation (Boege 
& Marquis, 2005).

In this study, we hypothesized that the initial number of 
aphids and/or the age of the plant are significant factors 
that can influence the duration and, consequently, the 
harmfulness of M. euphorbiae infestations in tomato. 

Materials and methods

Tomato plants of the cultivar Rio Grande (pear-shaped 
processing tomato for paste and concentrated juice) were 
used for both M. euphorbiae rearing and the experiment. 
We bought tomato plants in polystyrene trays from a nurs-
ery that used seeds produced by OLTER (Piacenza, Italy). 
Seedlings were transplanted and grown individually in 
plastic pots (18 cm diameter, 19 cm height) with commercial 
soil (COMPO SANA® universal potting soil, International 
Kingenta Group, Italy).

Macrosiphum euphorbiae individuals were originally col-
lected in a tomato crop in Scafati (Salerno, Italy) and reared 
on tomato plants at 20 ± 1°C, 65 ± 5% relative humidity, 
and a photoperiod of 18 h light:6 h dark.

The experiment was carried out at the University of Ba-
silicata, Italy (40°36’ N, 15°48’ E), in the summertime, in 
a naturally lit and temperature-controlled greenhouse 
maintained at 20°C (with an oscillation between 15°C at 
night and 28°C at 12-14 pm). We compared three initial 
levels of infestation and two phenological phases of the 
plant. Nine plants were infested 7 d after transplant (pre-
flowering stage; 18.0 ± 2.6 cm height; root biomass 0.10 ± 
0.04 g; leaf biomass 0.43 ± 0.08 g) and 9 plants were infested 
26 d after transplant (beginning of flowering; 39.5 ± 4.6 cm 
height; root biomass 1.5 ± 0.3 g; leaf biomass 6.4 ± 3.0 g). 
Three levels of initial infestation were obtained by placing 
6, 10, and 15 M. euphorbiae adults (three replicates for each 
level of initial infestation: R1, R2, and R3), respectively, 
on plants. We selected this range of initial infestation to 
simulate a variable but incipient attack of the pest. We used 
apterous females for simplicity, even if it is more plausible 
that the infestation starts with winged females under 
natural conditions. 

All plants were infested on the same day. The plants in 
the f lower transition stage had been transplanted 19 d 
before the plants in pre-flowering. Plants were placed in 
the greenhouse in a completely randomized experimental 
design and regularly checked. The number of aphids in the 
whole plant was counted using a magnifying glass. 

The infestation curves for each plant stage and each level of 
initial infestation were adjusted to second degree polynomi-
als passing through the origin according to a “cumulative 
density model” (Kindlmann et al., 2007). In the present 
study, we used the polynomial parameters to calculate 
the axes of the vertex of the second-degree polynomials: 
the theoretical values of maximum abundance of aphids 
(the Y axis) and of the day needed to reach the maximum 
abundance (the X axis). The theoretical values of the maxi-
mum number of aphids and of the days needed to reach it 
were then analyzed with factorial ANOVAs, with “stage” (7 
and 26 d after transplant, i.e., pre-flowering and flowering 
stages) and the initial level of infestation as fixed effects. 
The same analyses were also performed on the observed 
values of the maximum number of aphids and of the days 
needed to reach it. All the analyses in this study were per-
formed using the R 3.2.3 software (R Core Team, 2014).

Results and discussion

The response curves for the three replicates of the pre-
flowering and flowering stages are shown separately for 
each level of initial infestation in Figure 1. In all cases, 
values of adjusted R2 are significant and the adjustments to 
second degree polynomial provide plausible values for the 
vertex. Positions of the theoretical and observed vertices 
of all the curves (mean values of three replicates) with the 
respective standard errors are shown in Figure 2. The mean 
value of the peak and time when the peak occurred for each 
plant stage are shown in Tables 1 (theoretical values) and 
2 (observed values).

Aphid population reached a much higher peak on plants 
infested after 7 d from transplant (pre-flowering) com-
pared to those subsequently infested (flowering) (theo-
retical values: F1,12 = 48.18, P<0.001; observed values: F1,12 = 
83.28, P<0.001). Significant differences in the maximum 
abundance were also detected for the level of infestation 
(theoretical values: F2,12 = 4.45, P<0.05; observed values: 
F2,12 = 5.49, P<0.05) but not for the interaction between 
the phenological stage and the level of infestation. These 
differences are mainly due to the peak reached on plants 
initially infested with 15 aphids on the 7th d (Figs. 1C and 
2). The vertices of the other curves are all very close.
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FIGURE 1. Curves of Macrosiphum euphorbiae infestation estimated for 
plants initially infested at the pre-flowering stage or at the beginning of 
flowering. A) Initial infestation: 6 aphids; B) initial infestation: 10 aphids; 
C) initial infestation: 15 aphids. Continuous lines connect the experi-
mental points; dotted lines (theor.) represent the theoretical adjustments 
to second degree polynomial; R1, R2 and R3 are the three replicates for 
each level of initial infestation and stage.

FIGURE 2. Maximum abundance of Macrosiphum euphorbiae colonies 
according to the initial infestation level (6, 10, or 15 aphids per plant) 
and the stage of the attacked plant (pre-flowering and flowering stages).

TABLE 1. Theoretical maximum abundance and time of maximum abun-
dance according to the plant stage at the beginning of infestation and 
the initial number of aphids (mean ± standard error).

Plant stage at the 
beginning  
of infestation

Initial 
number of 

aphids

Time of maximum 
abundance (d)

Maximum 
abundance

Pre-flowering 6 35.05 ± 2.4 364.3 ± 120

Pre-flowering 10 35.63 ± 0.5 357.7 ± 36

Pre-flowering 15 38.16 ± 6.3 689.4 ± 102

Flowering 6 15.93 ± 2.4 71.7 ± 25

Flowering 10 18.65 ± 1.7 73.4 ± 26

Flowering 15 17.51 ± 1.4 99.0 ± 30

TABLE 2. Observed maximum abundance and time of maximum abun-
dance according to the plant stage at the beginning of the infestation 
and the initial number of aphids (mean ± standard error).

Plant stage at the 
beginning  
of infestation

Initial 
number of 

aphids

Time of maximum 
abundance (d)

Maximum 
abundance

Pre-flowering 6 34.67 ± 1.3 745.3 ± 209

Pre-flowering 10 36.00 ± 0.0 617.7 ± 95

Pre-flowering 15 33.33 ± 1.3 1186.3 ± 26

Flowering 6 15.00 ± 3.0 94.3 ± 35 

Flowering 10 13.67 ± 2.6 116.0 ± 39

Flowering 15 11.33 ± 1.5 154.0 ± 35
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The position of the peaks of infestation over time (the day 
after infestation when the aphid population reached its 
maximum abundance) was significantly affected only by 
the plant stage at the start of infestation (theoretical values: 
F1,12 = 57.35, P<0.001; observed values: F1,12 = 191, P<0.001).

Our results show that the duration of M. euphorbiae in-
festation in tomato mainly depends on the phenological 
stage of the host plant (it is higher and persists longer on 
early infested plants), while the degree of infestation seems 
to be irrelevant considering the initial levels used in this 
experiment. 

Plant defense significantly changes with plant development 
from the seedling to juvenile to mature and senescent stages 
(Barton & Boege, 2017). Ontogenetic changes in plant de-
fenses observed in many species do not only concern the 
intensity of the defensive response but also the mechanisms 
involved. This can be partially explained by the fact that 
allocation costs and resource allocation priorities vary as 
plants develop (Boege & Marquis, 2005). 

Two important changes that can impact the development 
of insect infestations occur during the flower transition: 
the negative regulation of herbivory-induced jasmonic acid 
(JA) signaling (Gaquerel & Stitz, 2017) and the increase of 
the C:N ratio in the phloem sap (Corbesier et al., 2002). 
The repression of the JA signaling-based induction ex-
plains why the ability of tomato plants to induce defenses 
against Manduca sexta (Linnaeus, 1763) is lost when the 
reproductive stage is reached (Wolfson & Murdock,1990). 
The down-regulation of the JA signaling pathway mainly 
favors chewing insects. On the other hand, the increase of 
the C:N ratio in the phloem sap is unfavorable for aphids 
since amino acid availability significantly affects their 
growth and reproduction (Ponder et al., 2000; Karley et 
al., 2002). In the case of aphids, the nutritional quality of 
the host plant can have an even higher impact than that of 
the induced defenses (Battaglia et al., 2013).

In addition to the nutritional aspects, we must consider 
that plants have evolved multiple defense strategies against 
aphids, including constitutive as well as inducible factors 
(Nalam et al., 2019) that may change during ontogenesis. 
For example, expanded leaves have greater trichome den-
sity and resistance in tomato plants in reproductive stages 
than in vegetative ones (Mymko & Avila-Sakar, 2019). 
Furthermore, herbaceous plants usually show a significant 
increase in secondary chemistry across the entire ontoge-
netic trajectory (Barton & Koricheva, 2010).

The ontogenetic changes in the nutritional quality of the 
plant and in the defense strategies may explain the greater 
development of aphid colonies we observed when we in-
fested tomato plants in the pre-flowering stage compared 
to the flowering stage. Our results confirm the better per-
formance of aphids on young plants previously reported 
for other aphid-plant systems, as in the case of Diuraphis 
noxia (Kurdjumov 1913) on barley (Ma & Bechinski, 2009), 
and Myzus persicae (Sulzer, 1776) and M. euphorbiae on 
potato (Karley et al., 2002). 

The best performance of aphids on young plants has practi-
cal consequences on the development of aphid infestations 
in the field and, therefore, on the control strategies that can 
be implemented. In fact, the extent of aphid infestations not 
only depends on the number of winged forms that move 
from the winter host to the herbaceous crops but also, to a 
large extent, on the phenological stage in which crop plants 
are at the time of the aphid invasion. The anticipation of 
the sowing time, when possible, allows plants to reach a less 
suitable phenological stage before aphid colonization takes 
place. This could be a strategy for the control of aphids, as 
several field studies also suggest (Perring et al., 1988; John 
et al., 2017; Alam et al., 2020).
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