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ABSTRACT RESUMEN

Rice biofertilization with Rhizobium increases the growth 
and yield of the crop. However, evidence for this has not been 
observed in Cuban rice cultivars. This research aimed to 
typify two Rhizobium isolates, considering the use of different 
carbon sources, their tolerance to stress conditions, and the 
ability to promote the growth and development of rice. Two 
Rhizobium sp. isolates (Rpr11 and 5P1) were used and their 
facility to grow on different carbon sources, pH, and salinity 
levels was determined. The effect of the inoculation of these 
bacteria on the growth and yield of rice was evaluated under 
controlled, greenhouse, and field conditions. Both isolates 
grew on mannitol, glycerol, maltose, and fructose at the highest 
concentrations of NaCl (1.0, 1.5 and 2.0%). The isolate 5P1 grew 
at all evaluated pH levels, especially at pH 5.0 and pH 8.0. The 
inoculation of both isolates increased the plant biomass and 
the potassium content. The plants inoculated with 5P1 had the 
highest contents of nitrogen, total chlorophyll, carbohydrates 
and proteins, and grain yield. This study is the first in Cuba 
that shows the beneficial effect of Rhizobium inoculation on 
the physiology and yield of rice.  

La biofertilización de arroz con Rhizobium incrementa el 
crecimiento y rendimiento del cultivo. Sin embargo, en culti-
vares cubanos de arroz no se han observado tales evidencias. 
El objetivo de esta investigación fue tipificar dos aislamientos 
de Rhizobium considerando el uso de diferentes fuentes de 
carbono, su tolerancia a condiciones de estrés y la capacidad de 
promover el crecimiento y el desarrollo del arroz. Se emplearon 
dos aislamientos de Rhizobium sp. (Rpr11 y 5P1) y se determinó 
su capacidad para crecer en diferentes fuentes carbonadas, pH 
y niveles de salinidad. Se evaluó el efecto de la inoculación de 
estas bacterias sobre el crecimiento y rendimiento del arroz en 
condiciones controladas, de invernadero y de campo. Ambos 
aislamientos crecieron en manitol, glicerol, maltosa y fructosa 
y en las mayores concentraciones de NaCl (1.0, 1.5, y 2.0%). El 
aislamiento 5P1 creció en todos los niveles de pH, especialmen-
te en pH 5.0 y pH 8.0. La inoculación de ambos aislamientos 
incrementó la biomasa y el contenido de potasio en las plantas. 
Las plantas inoculadas con 5P1 mostraron un mayor contenido 
de nitrógeno, clorofilas totales, carbohidratos y proteínas, y  
rendimiento del grano. Este estudio es el primero en Cuba que 
demuestra el efecto benéfico de la inoculación de Rhizobium 
en la fisiología y el rendimiento del arroz.
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Introduction

Rhizobia are bacteria that establish a symbiotic asso-
ciation with leguminous plants. As a result of complex 
molecular communication between the bacteria and the 
plant, nodules are formed on the roots or stem where 
rhizobia perform biological nitrogen fixation (Taiz et al., 
2015). However, some studies reveal the beneficial effects 
of rhizobia on non-leguminous plants such as corn (Zea 
mays L.), lettuce (Lactuca sativa), tomatoes (Solanum 
lycopersicum) and wheat (Triticum spp.) (García-Fraile et 
al., 2012; Flores-Félix et al., 2013). Furthermore, rhizobia 
have been also found associated with rice (Oryza sativa L.) 

as rhizospheric and endophytic bacteria. The rhizobia-rice 
interaction differs in many ways from that established with 
leguminous plants. These differences are fundamentally 
related to gene induction, cell-cell signaling, the infection 
process, and bacteria distribution inside the vegetable tissue 
(Chen et al., 2015; Wu et al., 2018).

Bradyrhizobium, Sinorhizobium, Mesorhizobium, Azorhi-
zobium and Rhizobium are rhizobia genera that have been 
mostly associated with rice. These microorganisms increase 
the growth of grass mainly by phytostimulation (produc-
tion of indole acetic acid and gibberellins) and enhance 
physiological mechanisms such as photosynthesis (Yanni 
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et al., 2001; Chi et al., 2005; Chen & Zhu, 2013). Previous 
studies report that rhizobia inoculation increases rice yield, 
even with lower doses of nitrogen than those recommended 
(Osorio Filho et al., 2016, Lemes dos Santos et al., 2019). 
However, studies about the potential of rhizobia strains 
to obtain inoculants that increase rice yields in Cuban 
cultivars and that decrease mineral fertilization are scarce. 

In Cuba, rice is a prioritized crop since annual consump-
tion is around 72 kg per capita, one of the highest in Latin 
America (Galán, 2017). However, imports are the main 
source for supplying the cereal in this country (FAO, 
2019). Cuban rice cultivars INCA LP-5 and INCA LP-7 
are widely distributed in the country (Galán, 2017) due to 
their positive characteristics that ensure high grain yields 
and resistance to diseases. 

Only four reports about the rhizobia/non-leguminous crop 
interactions have been reported for Cuba. Two of them 
showed the beneficial effect of rhizobia inoculation on 
the growth and yield of corn. However, the rhizobia used 
in these trials were isolated from legume nodules and not 
from the crop’s rhizosphere itself (Pérez-Pérez et al., 2019). 
The other two studies explored the rhizobia-rice interac-
tion but did not show the effect of rhizobia inoculation 
on the physiology and yield of rice (Hernández Forte & 
Nápoles García, 2017, 2019). Therefore, Cuban rice cultivar 
biofertilization with Rhizobium could be an alternative for 
reducing contamination and improving rice yield produc-
tion and soil fertility in the country.

About 30% of Cuban soils and 15% of the country’s agricul-
tural area are affected by acidity and salinity, respectively. 
Around 104,000 ha dedicated to rice cultivation in Cuba 
are affected by salinity (Mesa, 2003). To increase produc-
tivity, mineral fertilizers are irrationally used (Goulding, 
2016; Toledo, 2016). The use of tolerant microorganisms for 
stressful soil conditions could be an alternative for decreas-
ing the application of mineral fertilizers and increasing 
rice yields. This research aimed to typify two Rhizobium 
isolates, considering the use of different carbon sources 
as a nutrient, their tolerance to stress conditions, and the 
ability to promote the growth and development of rice. 

Materials and methods

Biological material
We used two isolates, Rpr11 and 5P1, belonging to the genus 
Rhizobium (accession numbers: MT387213 and MT759831, 
respectively) from the bacteria collection of the Laboratory 

of Microbiology of the Department of Plant Physiology 
and Biochemistry at the National Institute of Agricultural 
Sciences (INCA), Cuba. Isolate Rpr11 was obtained from 
rice cultivar INCA LP-5 rhizoplane (Hernández Forte & 
Nápoles García, 2017) and isolate 5P1 from rhizospheric 
soil of rice cultivar INCA LP-7 plants. Both cultivars were 
cultivated under flood conditions, in a petroferric nodule 
ferruginous gleysol soil from Pinar del Río, Cuba (Hernán-
dez Jiménez et al., 2015). The isolates were inoculated on 5 
ml of yeast-mannitol (YM) medium (Vincent, 1970) and 
kept under shaking conditions at 150 rpm for 16 h at 30°C. 
The optical density (OD) (λ = 600 nm) of the inoculum 
was adjusted to 0.05.

Certified rice seed cultivars INCA LP-5 and INCA LP-7 
were used in inoculation tests under controlled and 
greenhouse conditions. Seeds were disinfected and pre-
germinated with 70% ethanol for 5 min and 6% (v/v) 
sodium hypochlorite for 30 min. Then, they were washed 
ten times with sterile distilled water, put onto plates with 
water agar medium (0.8%, m/v), and incubated at 30oC for 
3 d in the dark (Hernández Forte & Nápoles García, 2019).

Rhizobium sp. growth on different carbon sources
Several multiplication tactics were carried out with the 
Rhizobium isolates. Microbial growth was determined 
in tubes with 4.5 ml of YM medium and in four variants 
where mannitol was replaced by maltose, lactose, glycerol 
and fructose (10 g L-1). Every medium was inoculated with 
500 µl of inocula and incubated in a thermostated shaker 
(HEIDOLPH-UNIMAX-2010, Schwabach, Germany) at 
150 rpm and 30ºC for 24 h. The OD (λ = 600 nm) was 
measured every 2 h for 24 h. Five replicates of each isolate 
were used in each culture medium with different carbon 
sources. 

Rhizobium sp. growth at different pH and salinity levels
Tubes containing 4.5 ml of YM medium with three pH 
levels (4.0, 5.0, and 8.0) and three concentrations of sodium 
chloride (1.0%, 1.5%, and 2.0%) were used. The tubes were 
inoculated with 500 µl of inocula and incubated at 150 rpm 
at 30ºC. Yeast-mannitol medium with pH 6.8 and 0.01% 
sodium chloride (Vincent, 1970) was used as a positive 
control. The inocula OD (λ = 600 nm) with different pH 
levels was determined every 2 h for 16 h, whereas the rea-
dings of inoculum with different concentrations of sodium 
chloride were performed every 2 h for 24 h. The pH and 
salinity of the culture medium were not controlled during 
the evaluation period. Three replicates were used for each 
isolate and for each pH and salinity condition. 
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Effect of Rhizobium sp. inoculation on rice growth 

In vitro growth conditions
Disinfected and pre-germinated rice seeds were placed in 
pots with 0.21 kg of non-sterilized petroferric nodule fe-
rruginous gleysol soil. Three seeds were placed in each pot. 
The chemical characterization of the soil showed a slightly 
acidic pH, medium organic matter content, high levels of 
phosphorus, adequate contents of calcium, magnesium, 
and sodium (Hernández et al., 2015), and a low potassium 
level (Paneque Pérez et al., 2010) (Tab. 1).

Rice seedlings of cultivars INCA LP-5 and INCA LP-7 were 
inoculated with 300 µl of Rhizobium sp. isolates Rpr11 and 
5P1 at 5x109 colony-forming units (CFU) ml-1. Rice seed-
lings inoculated with sterile YM medium were considered 
as a negative control. Ten pots were used for each treatment 
in a completely randomized design. The pots were placed in 
trays containing diluted Hoagland nutrient solution (1:2). 
The plants were grown in a 12 h light/12 h dark photoperiod 
at 26°C/22°C (day/night) and 70% relative humidity. At 7 d        
after inoculation (DAI), two plants were removed leaving 
only one plant per pot.

At 50 DAI the following variables were evaluated: plant 
height (cm), root length (cm), shoot dry weight (g), and 
root dry weight (g). The content of N, P and K in shoots 
and roots (%) was also determined from three samples of 
0.2 g of the dry weight of each plant part per treatment. The 
samples were digested with sulfuric acid (H2SO4) and the 
color was subsequently developed with Nessler’s reagent to 
determine the N content and with molybdenum blue for P 
and K (Paneque Pérez et al., 2010).

Greenhouse conditions
Pots containing 1.2 kg of non-sterilized petroferric nodule 
ferruginous gleysol soil were used. The inoculation of the 
seedlings was carried out similarly to the test under con-
trolled conditions. Two control treatments were used in the 
experiment. The negative control consisted of seedlings 
inoculated with sterile YM medium. As a positive control, 
the Herbaspirillum seropedicae Z67 strain was inoculated 
at the same volume and concentration as Rhizobium. Six 
pots were used for each treatment in a completely rando-
mized design.

The plants were irrigated every other day with running 
water. Two plants were removed 7 DAI, leaving one plant 
per pot. At 70 DAI, the following variables were evaluated: 
plant height (cm), root length (cm), shoot dry weight (g), 
and root dry weight (g). The relative index of total chlo-
rophyll content (SPAD) was measured in the flag leaf and 
other randomly chosen leaves, using a chlorophyll reader 
(SPAD-502, Konica Minolta, China). The total soluble 
carbohydrates (mg g-1) were determined by the anthrone 
technique (Leyva et al., 2008) and proteins (µg g-1 fresh 
weight) were quantified by the microLowry method (Sun, 
1994) in leaves and roots. In all cases, six replicates were 
evaluated per treatment.

Field trial
A field experiment was carried out at the Basic Technolo-
gical-Scientific Unit “Los Palacios” in Pinar del Rio, Cuba 
(22°44’ N, 83°45’ W). The experimental area has petroferric 
nodule ferruginous gleysol soil (Hernández et al., 2015) 
with the following chemical properties: pH (in water) of 
6.46, 2.86% organic matter, 46.80 mg kg-1 of P2O5 and 0.18 
cmolc kg-1 of K+. 

Rice plants were obtained from certified INCA LP-7 rice 
seeds. The seeds were sown in plastic trays (60 cm length 
x 30 cm width x 3 cm depth) with a 5400 cm3 mixture of 
petroferric nodule ferruginous gleysol soil and organic mat-
ter (1:1). Triple superphosphate (27 g m2), urea (7 g m2) and 
potassium chloride (4 g m2) were applied to the mixture. 
After 5, 10 and 15 d, urea and potassium chloride were ap-
plied again at the same concentration. One thousand six 
hundred plants were cultivated in each tray and irrigation 
was carried out with permanent watering.

Fifty plants were collected at 28 d, and the roots were 
embedded into the inoculum base of the selected Rhizo-
bium strain (5 x 109 CFU ml-1) for 10 min. Non-inoculated 
plants were used as a negative control of the experiment. 
The plants were taken to the plots (total area of 9 m2) and 
sowing was carried out with one plant per node, leaving 
25 cm between plants.

Before transplantation and 10 d after transplantation, 20% 
of the recommended nitrogen fertilization (Ministerio 

TABLE 1. Chemical characteristics of petroferric nodule ferruginous gleysol soil used in inoculation of rice plants.

pH
(KCl)

OM
(%)

P2O5

(mg 100 g-1 soil)
Ca2+ Mg2+ Na+ K+

(cmolc kg-1)

6.57 + 0.27 3.05 +0.70 75.1 + 6.5 11.62 + 0.97 4.75 + 0.1 Traces 0.80 + 0.02

OM - organic matter.
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de la Agricultura, 2014) was applied to the plants. Plants 
with 100% mineral fertilizer (Ministerio de la Agricultura, 
2014) were used as positive controls and non-inoculated 
and non-fertilized plants were used as an absolute control. 
A randomized block design with three replicates for each 
treatment was used.

Fifteen plants were randomly selected and the tiller number 
was determined at 35, 42, 50, 57, 63, 71, 78, 85, 92, 99 and 
105 d after transplanting. At 105 d, plants were harvested 
and the number of filled grains per panicle, the weight 
of 1000 grains (g), and yield (t ha-1) (14% grain moisture) 
were determined.

Statistical analysis
Absorbance values obtained in the growth tests and multi-
plication dynamics at different carbon sources, pH levels, 
and salinity, as well as the data from the inoculation tests 
under controlled and greenhouse conditions were subjected 

to the normality test (Bartlett test) and homogeneity of 
variance (Kolmogorov-Smirnov test). A simple classifi-
cation analysis of variance was applied with the Tukey 
HSD (inoculation assay under controlled and greenhouse 
conditions) or Duncan (assay under field conditions) mean 
comparison tests for P<0.05. The Statgraphic Plus program 
version 5.0 was used for statistical processing of the data 
and Microsoft Excel 2010 for its representation.

Results

Rhizobium uses different carbon sources as nutrients
The results showed that isolate Rpr11 growth in glycerol 
was lower than in the rest of the carbon sources at 8 h. 
However, the isolate showed increased growth in this 
alcohol after 20 h. The isolate Rpr11 showed lower growth 
in maltose and fructose than in mannitol from 12 h to 20 
h after which no differences were found between mannitol 
and fructose (Fig. 1A).
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FIGURE 1. Multiplication dynamics of isolates Rpr11 (A, C, E) and 5P1 (B, D, F) in medium with different carbon sources, pH and NaCl concen-
trations. The data points and bars represent the means and standard errors of the mean from three replicates at each sampling time (Tukey HSD 
P<0.05, n = 3). OD - optical density.
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Mannitol and glycerol caused the highest growth of isolate 
5P1 at 4 h. However, the bacteria increased the growth 
in fructose and maltose after 8 h. This isolate showed 
higher growth in fructose, maltose, and glycerol than in 
mannitol after 12 h. No differences were observed in the 
growth of 5P1 in fructose and maltose from 16 h to 20 h. 
This isolate showed greater growth in fructose than in 
the rest of the carbon sources at 24 h (Fig. 1B).  It can be 
summarized that both isolates can use mannitol, glycerol, 
maltose, and fructose as carbon sources. 

Rhizobium isolates tolerate acidity, basicity, 
and salinity conditions in the medium
The isolate Rpr11 showed the highest growth at pH 6.8 
after 6 h. However, no differences were observed between 
pH 6.8 and pH 5.0 between 12 h and 14 h. The bacteria 
did not grow at pH 4.0 (Fig. 1C). The isolate 5P1 grew at 
the lowest pH levels, although this isolate could multiply 
at all the tested pHs. The most acidic condition   allowed 
a better growth of this bacterium (Fig. 1D). 

Regarding the dynamics at different salinity levels, isolate 
Rpr11 showed higher growth in 1.0% and 1.5% of NaCl 
than did the control treatment from 12 h. Similar behavior 
was observed after 14 h, when the isolate had the great-
est growth at 1.0%, 1.5% and 2.0%. The lowest bacterial 
growth occurred at 2.0% NaCl, from 6 h to 10 h. However, 
this isolate had the greatest growth in the last two hours 
of the assay (Fig. 1E).

The isolate 5P1 showed a similar performance with in-
creased growth in the most saline media after 10 h. No 
differences were displayed in the media with 1.0%, 1.5% 
and 2.0% of NaCl from 12 to 24 h (Fig. 1F).

Rhizobium promotes the growth of rice plants 
under in vitro, greenhouse and field conditions 
Under controlled conditions, an inoculation assay was 
carried out to determine the effect of inoculation with 
isolates Rpr11 and 5P1 on rice plant growth. The results 
showed that plants inoculated with isolates Rpr11 and 
5P1 increased the root and shoot dry weight, respectively 
(Tab. 2). 

The inoculation of Rhizobium sp. isolates increased the 
nutrient content in the shoot of rice plants (Fig. 2). Plants 
inoculated with isolate Rpr11 showed an increase in the 
potassium content (Fig. 2A), while those treated with 5P1 
showed a higher nitrogen and potassium content than 
non-inoculated rice plants (Fig. 2B).

On the other hand, the results of the inoculation assay with 
the isolate 5P1 on the cultivar INCA LP-7 under greenhouse 
conditions showed that the inoculation increased plant 
height, root length, shoot dry weight, and relative index 
of total chlorophyll, total soluble carbohydrates, and total 
soluble protein contents (Fig. 3, Tab. 3).

The plant inoculation with 5P1 and H. seropedicae Z67 
produced a similar beneficial effect on rice growth (Fig. 3, 
Tab. 3). However, the plants inoculated with 5P1 showed 
a higher total carbohydrate content in leaves than plants 
inoculated with the reference strain H. seropedicae Z67.

Inoculation with 5P1 under field conditions showed a 
higher tiller number than the absolute control plants. 
Fertilized plants showed the highest tiller number at all 
evaluation levels (Fig. 4).
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FIGURE 4. Tiller number of O. sativa L. cv. INCA LP-7 from 35 to 105 d after transplanting under field conditions. The absolute control treatment 
corresponded to non-inoculated plants with 50% mineral fertilization. The fertilized treatment corresponded to plants treated with mineral fertilization 
following the instructions of the Ministerio de la Agricultura (2014). The data points and bars are the means and standard errors of the mean from 
15 replicates at each sampling time according to the Tukey HSD test (P<0.05, n = 15).

TABLE 2. Effect of Rpr11 and 5P1 inoculation on O. sativa L. cv. INCA LP-5 and INCA LP-7 growth at 50 d after inoculation (DAI) under controlled 
conditions.

Treatments Height (cm) Root length (cm) Shoot dry weight (g) Root dry weight (g)

INCA LP-5

Control 53.2 + 1.3 a 25.2 + 1.2 a 0.61 + 0.03 a 0.33 + 0.02 b

Rpr11 52.5 + 1.4 a 25.0 + 1.1 a 0.69 + 0.05 a 0.40 + 0.03 a

INCA LP-7

Control 59.3 + 1.9 a 22.5 + 2.0 a 0.33 + 0.04 b 0.19 + 0.03 a

5P1 62.1 + 1.4 a 24.7+ 2.1 a 0.43 + 0.02 a 0.23 + 0.02 a

Control plants were inoculated with sterile yeast-mannitol medium. Means with the same letter in the same column are not statistically different according to the Tukey HSD test (P<0.05, n = 10).
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TABLE 3. Effect of 5P1 and H. seropedicae Z67 inoculation on chlorophyll, carbohydrate, and protein contents of O. sativa L. cv INCA LP-7, at 70 d 
after inoculation (DAI) under greenhouse conditions.

Treatments Chlorophyll (SPAD)
Total soluble carbohydrates (mg g-1) Total soluble proteins (µg g-1)

Leaf Leaf Root

Control 24.1 + 0.4 b 1.93 + 0.04 b 23.20 + 0.46 b 6.39 + 0.22 b

H. seropedicae Z67 26.2 + 0.6 a 1.90 + 0.08 b 30.32 + 0.46 a 8.71 + 0.46 a

5P1 27.2 + 1.4 a 2.36 + 0.07 a 32.37 + 0.98 a 7.83 + 0.33 a

Control plants were inoculated with sterile yeast-mannitol medium. SPAD - relative index of total chlorophyll content. Means with the same letter in the same column are not statistically different 
according to the Tukey HSD test (P<0.05, n = 6).
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The maximum tiller number of fertilized plants inoculated 
with 5P1 was observed at 71 d after transplanting, while in 
the absolute control plants it occurred at 78 d. Rice tillering 
decreased in all treatments and remained constant from 
99 to 105 d after transplanting. 

No differences were observed in the weight of 1000 grains 
between treatments. However, plants inoculated with 5P1 
increased the number of filled grains per panicle and the 
grain yield by more than 80% compared to the control. The 
fertilizer treatment allowed the greatest increases of filled 
grains per panicle and grain yield (Tab. 4). 

Discussion

Rhizobium sp. isolates Rpr11 and 5P1 are able to use 
different carbon sources, tolerate stress conditions, and 
promote growth of rice plants. Nutritional studies of mi-
croorganisms are essential for designing culture media 
that meets their physiological needs, allowing a greater 
multiplication of the active ingredient in the inoculum. 
Viability, effectiveness, and efficiency are the most impor-
tant characteristics of these bioproducts (Praveen Biradar 
& Santhosh, 2018). 

The rhizobia inoculum requires a minimum bacterial 
concentration of 108 CFU ml-1 or g-1 (De Gregorio et al., 
2017). The carbon source choice is essential to increase 
bacterial growth and keep its viability in the inoculum. 
This is especially relevant for heterotrophic bacteria such 
as rhizobia (Zafar et al., 2017). 

The results showed the versatility of two Rhizobium sp. 
isolates for growing in four carbon sources. It has been 
reported that rhizobia strains isolated from wild legumes 
(Genista microcephala and Argyrolobium uniflorum) grow 
in different sugars as a carbon source (Dekak et al., 2018). 
The use of different sugars as carbon and energy sources 
constitutes advantages for the bacteria since they can 
survive saprophytically to compete in the rhizosphere 
colonization.

The multiplication dynamics suggest that Rhizobium sp. 
isolates differ in their ability to use carbon sources, re-
gardless of the fact that both belong to the Rhizobium sp. 
group. This is especially evident when bacterial growth was 
compared in the glycerol, maltose and fructose. Several 
bacteria prefer some sugars over others as carbon sources, 
since they have the necessary enzymes to oxidize them 
in the culture medium. Recent studies show the diversity 
of Rhizobium strains for using different carbon sources 
(Degefu et al., 2018; Dekak   et al., 2018).

The growth of isolates 5P1 and Rpr11 in fructose and 
maltose as carbon sources offers the possibility of using 
relatively cheap raw materials to replace mannitol, the 
main component of the YM medium. The use of refined 
sugar, which is rich in fructose, could be an alternative for 
the industrial production of inocula with both rhizobia 
isolates. Chemical or enzymatic processing of starch as 
the main reserve material in plants constitutes a maltose 
source for this purpose (Wang et al., 2015).

 Acidity and salinity affect rhizobia viability and the infec-
tion and colonization processes (Plá & Cobos-Porras, 2015; 
Shahid et al., 2018). However, inoculation with tolerant 
rhizobia improves the establishment of some crops in forest 
areas and perennial legumes such as pigeon pea (Cajanus 
cajan) (Manet et al., 2016; Sethi et al., 2019).

Most rhizobia grow optimally at a pH of 6-7. The methods 
used to isolate these bacteria confirm it (Koskey et al., 2018). 
Therefore, it is expected that the growth of both studied 
Rhizobium isolates would be lower at acidic pH than at 
pH 6.8. However, the growth of isolates Rpr11 and 5P1 at 
pH 5.0 and the isolate 5P1 at pH 4.0 demonstrates their 
tolerance to acidity. Usually, Rhizobium is a bacterium that 
acidifies the culture medium as it grows, and the pH of the 
culture medium may decrease with its growth. Therefore, 
isolates such as 5P1 could have higher tolerance to acidity 
conditions. Recent studies show the ability of Rhizobium 
to live under acid conditions (Pádua Oliveira et al., 2017; 
Tullio et al., 2019). 

TABLE 4. Effect of 5P1 inoculation and mineral fertilization on 1000 seed weight and crop yield of O. sativa L. cv. INCA LP-7, at 105 d after trans-
planting under field conditions.

Treatments Grains filled per panicle 1000 grain weight (g) Grain yield (t ha-1) Increase (absolute control) (%)

Absolute control 30.8 + 0.9 c 29.9 + 0.8 a 1.0 + 0.1 c -

Fertilized 111.7 + 2.5 a 29.2 + 0.4 a 7.7 + 0.2 a 87.0

5P1 103.5 + 1.8 b 28.2 + 0.8 a 6.4 + 0.1 b 84.4

Absolute control - non-inoculated and non-fertilized plants. Fertilized plants - 100% mineral fertilization, according to the instructions of the Ministerio de la Agricultura (2014). Means with the 
same letter in the same column are not statistically different according to the Duncan test (P<0.05, n = 15).
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The synthesis of acid shock proteins and lipopolysac-
charides and the proton exclusion to extracellular space 
explains the ability of bacteria to survive and multiply 
under acidic conditions (Geddes et al., 2014; Hawkins et al., 
2017). This constitutes an additional advantage that allows 
plant growth-promoting bacteria (PGPB) to compete dur-
ing rhizosphere colonization. This advantage is especially 
relevant because of rhizosphere acidification due to organic 
acids and proton production from root exudates (Conte & 
Walker, 2011).

The Rhizobium genus produces acids in the culture me-
dium (Koskey et al., 2018) that could explain the growth 
of isolates Rpr11 and 5P1 at pH 8. However, the results 
showed that these bacteria displayed greater growth at 
pH 5.0 than at pH 8.0. Previous studies indicate a similar 
behavior of rhizobia strains from Desmodium triflorum 
nodules (Bécquer et al., 2017).

Salinity tolerance was another trait identified in the studied 
Rhizobium isolates. Around 9.30 % of Pinar del Río soils, 
the origin of these isolates, are affected by salinity (1.0% 
of salts approximately) (Mesa, 2003). In this research, 
the tolerance of two Rhizobium isolates to different NaCl 
concentrations (1.0, 1.5 and 2.0%) was studied. These 
concentrations are lower than those found in previous 
studies with rhizobia (Cardoso et al., 2017; Franzini et al., 
2019; Nohwar et al., 2019) but higher than those found in 
the studied soils. NaCl is not the only salt that contributes 
to soil salinity (Shao et al., 2019); however, it is used in 
many PGPB characterization studies to determine the salt 
bacteria tolerance in the culture medium (Numan et al., 
2018; Jiang et al., 2020).

Salinity decreases the colonization of roots by rhizobia 
(Tewari & Sharma, 2020). However, rhizobia tolerant to 
salinity could survive, grow, and effectively associate with 
their plant hosts (Yanni et al., 2016). This seems to be the 
case of isolate 5P1 that had the highest values of optical 
density when it was cultured at the highest concentration 
of NaCl. Tolerance to salinity may be due to a plasmid-
mediated resistance and salt resistance can be rapidly trans-
ferred from tolerant to sensitive bacteria (Kajić et al., 2016).

Around 8000 ha dedicated to rice production in Cuba 
are affected by salt excess, a factor that decreases crop 
yield (Lamz Piedra & González Cepero, 2013). This is an 
opportunity to establish biofertilization strategies with 
salinity-tolerant microorganisms such as 5P1 and Rpr11. 
Isolating Rhizobium strains adapted to stressful conditions 
and increasing their concentration in these soils from 

their inoculation could have a positive ecological effect 
on ecosystems.

Isolate Rpr11 increases the growth of rice plants of the 
cultivar INCA LP-5 (Hernández Forte & Nápoles Gar-
cía, 2019). So, in this research the effect of inoculation 
of this bacterium on the nutrient content of rice plants 
was determined. The positive contribution of isolate 5P1 
inoculation on the plant rice cultivar INCA LP-7 growth 
was shown for the first time. The acidity tolerance of both 
Rhizobium sp. isolates could explain their establishment on 
the slightly acidic petroferric nodule ferruginous glaysol 
soil used, which is similar to the soil where both bacterial 
isolates originated (Hernández Forte & Nápoles García, 
2017). The non-sterilization of the soil used would suggest 
diverse interactions between the inoculated bacteria and 
the resident microbiota, which is a very important aspect 
in plant-microorganism interaction (Čapek et al., 2018).

Growth promotion in non-leguminous plants such as rice, 
sorghum (Sorghum bicolor), and corn (Zea mays) when 
inoculated with rhizobia is already known (Solaiman et 
al., 2011; Bécquer et al., 2012; Singh et al., 2013). The pro-
duction of indole acetic acid, gibberellins, and vitamins of 
the B group are some mechanisms that rhizobacteria use 
to increase plant height, shoot dry weight, and root dry 
weight in rice plants (Gopalakrishnan et al., 2015). Some 
of these mechanisms could explain the positive effects of 
inoculation with isolates Rpr11 and 5P1 in rice plants cv. 
INCA LP-5 and INCA LP-7, respectively.

The increase of root dry weight in rice plants cv. INCA 
LP-5 inoculated with isolate Rpr11 under controlled con-
ditions could have favored greater potassium absorption, 
mainly when its concentration was low in petroferric 
nodule ferruginous gleysol soil. The inoculation of rice 
plants with strains of rhizobia causes the modification of 
the roots, favoring the expanded root architecture (Yanni 
& Dazzo, 2015). This allows us to explore a larger reservoir 
of nutrients from the existing resources in the rhizosphere; 
and, thus, increase the absorption of nutrients and the dry 
weight of plants. Previous research reports that Rhizobium 
inoculation increases the nutrient content in plants since 
it promotes root growth and enhances the plant́ s ability 
to absorb it (Osorio Filho et al., 2016). This last case could 
be the mechanism used by isolate 5P1 which increased the 
potassium and nitrogen content in the rice shoot without 
promoting root growth. 

Taiz et al. (2015) report that chlorophyll synthesis is 
closely related to nitrogen availability in soil and to the 
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plant’s ability to absorb it. Therefore, the increase of the 
nitrogen content in the shoot of rice plants cv. INCA LP-7 
inoculated with isolate 5P1 could explain the increase of 
the chlorophyll content. A higher content of these mol-
ecules enhances photosynthesis, allowing the synthesis of 
carbohydrates (Degiovanni et al., 2010), an effect shown 
with the inoculation of isolate 5P1 in rice plants cv. INCA 
LP-7 under greenhouse conditions. The enhancement of 
photosynthesis is one of the main mechanisms that explains 
the growth promotion of rice inoculated with Rhizobium 
(Chi et al., 2010).

Photosynthesis also influences the synthesis of carbohy-
drates to provide a reduction power for nitrogen assimila-
tion (Degiovanni et al., 2010). The positive effect of isolate 
5P1 inoculation on the chlorophyll content and nitrogen 
absorption could explain the increase in the content of total 
soluble protein in rice plants. The proteomic analyses show 
that the inoculation of rice plants with rhizobia induces 
the production of plant proteins that contribute to a better 
yield compared to non-inoculated plants (Chi et al., 2010).

The nitrogen from the decomposition of soil organic matter 
enhanced with 5P1 could be one possible source of nitrogen 
that rice plants use to increase protein synthesis in leaves 
and roots. Previous studies demonstrate the positive effect 
of rhizobia inoculation as nitrogen-fixing bacteria on plant 
growth and yield. The inoculation of some Rhizobium 
strains allows an increase of dry matter in rice shoots with 
a decrease of 40% of the nitrogen dose (Osorio Filho et al., 
2016; Lemes dos Santos et al., 2019). Therefore, the fixed 
nitrogen could also be another nitrogen source for rice 
plants inoculated with Rhizobium sp. isolate 5P1.

Regarding the effects of 5P1 inoculation on rice production 
areas in Cuba, the number of panicles and filled grains per 
panicle depends on the number of effective tillers, param-
eters that constitute some of the components that explain 
rice yield (Degiovanni et al., 2010). Therefore, the positive 
effect on the number of tillers could explain the increase in 
grain yield obtained in plants inoculated with isolate 5P1.

In rice, tillering requires high amounts of nitrogen (De-
giovanni et al., 2010). This explains why fertilized treatment 
had the highest number of tillers and, therefore, the highest 
yield. Although the application of low doses of chemical 
fertilizer and the inoculation with the 5P1 strain did not 
surpass the fertilized treatment in any of the evaluated 
variables, they surpassed the control treatment. Similar 
results are described by Yanni and Dazzo (2010) who ob-
tain a higher tillering in plants fertilized with N-fertilizers 

compared to the treatments inoculated with rhizobia. How-
ever, the combination of both treatments was even more 
effective. Previous research confirms that the application 
of PGPB such as Bacillus, Pseudomonas and Rhizobium to 
rice and wheat (Triticum aestivum L.) increases the tiller 
number and yields with low nitrogen fertilization under 
field conditions (Tan et al., 2015; Gusain & Sharma, 2019; 
Saber & Qader Khursheed, 2020).

The effect of Mesorhizobium sp. inoculation on rice has 
been previously studied. One study determined that the 
inoculation with this bacterium does not produce statistical 
differences between the control and inoculation treatments 
in the number of grains per panicle and grain yield when 60 
kg ha-1 were used (Hahn et al., 2016). Other authors report 
that Mesorhizobium sp. associated with the recommended 
nitrogen dose provides the same rice grain yield as the 
recommended crop dose (Lemes dos Santos et al., 2019). 
Rice plants inoculated with isolate 5P1 allowed a higher 
number of grains per panicle than those obtained with 
Mesorhizobium sp. The action of PGPBs on rice plants is 
variable since several factors may contribute to the different 
responses of rice to PGPBs inoculation, such as the bacte-
rial strain, edaphoclimatic conditions, and the specificity 
of the plant genotype (Buzo et al., 2019).

Yanni and Dazzo (2015) reported lower means of increased 
yield in five rice cultivars inoculated with Rhizobium le-
guminosarum bv. trifolii than those obtained with isolated 
5P1 in rice cv. INCA LP-7. These authors also emphasize 
the importance of looking for adequate concentrations of 
N-fertilizers and inoculum to ensure a balanced supply of 
nitrogen, since an excess of this element favors the over-
production of extra non-reproductive tillers that do not 
contribute to rice yield. 

Therefore, the results of this study show the potential of 
the isolate 5P1 as promising bacteria for making a biofertil-
izer to inoculate rice, especially under acidity and salinity 
conditions. 

Conclusions

This research revealed the potential of Rhizobium sp. as-
sociated with a Cuban rice cultivar to use multiple carbon 
sources as nutrients to tolerate acidity, basicity and salin-
ity conditions and promote rice growth. This study is the 
first in Cuba to show the beneficial effect of Rhizobium 
inoculation on the physiology, growth and yield of a Cuban 
rice cultivar.
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