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ABSTRACT RESUMEN

This study proposes a predictive model to determine the concen-
tration of cadmium (Cd) in cocoa beans based on laser-induced 
breakdown spectroscopy (LIBS) and partial least squares regres-
sion (PLSR-1 or PLS-1). The multivariate calibration model was 
developed using 46 cocoa bean samples, with Cd concentra-
tions up to 1 mg kg-1. The increase of the LIBS signal in the Cd 
emission lines was evident when the cocoa bean sample was 
subjected to a solid-liquid-solid transformation (SLST). The 
range error ratio (RER) was 7.92, which allowed it to be clas-
sified as a screening model. Monte Carlo cross-validation was 
used, with 60% of samples for calibration and the remaining 
for testing. The standard error of cross-validation (SECV) and 
standard error of calibration (SEC) were 0.12 mg kg-1 and 0.05 
mg kg-1, respectively. The proposed procedure is framed within 
the alternatives for the chemical analysis of cocoa.

Este estudio propone un modelo para predecir la concentración 
de cadmio (Cd) en granos de cacao basado en espectroscopía 
de plasma inducido por láser (LIBS) y regresión por mínimos 
cuadrados parciales (PLSR-1 o PLS-1). El modelo de calibración 
fue desarrollado a partir de 46 muestras de granos de cacao con 
concentración no mayor a 1 mg kg-1. El incremento en la señal 
LIBS fue evidente cuando la muestra de grano de cacao fue 
sometida a una transformación sólido-líquido-sólido (SLST). 
La razón del rango de error (RER) es 7.92, lo que permite de-
terminar que el modelo es de tamizaje. Se utilizó la estrategia 
de validación cruzada Montecarlo con el 60% de las muestras 
para calibración y las restantes para prueba. El error estándar 
de validación cruzada (SECV) y de calibración (SEC) fue 0.12 
mg kg-1 y 0.05 mg kg-1, respectivamente. El procedimiento pro-
puesto se ubica en el marco de las alternativas de inspección y 
análisis químico del cacao.

Key words: inorganic contaminants, heavy metals, partial least 
square regression, atomic spectroscopy.
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Introduction

Cocoa (Theobroma cacao L.) and its derivatives can be 
considered commodities with health benefits due to their 
high content of polyphenols and antioxidants (Oliveira et 
al., 2021). Nevertheless, cocoa has been identified as an 
important source of cadmium (Cd), which is a transition 
metal without biological function and of recognized toxic-
ity in humans that affects the kidneys and calcium absorp-
tion in bones (Järup & Akesson, 2009; Satarug, 2018). 

Cadmium is released naturally in soils through the weath-
ering of rocks, where it is usually found in concentrations 
of less than 0.2 mg kg-1 (Gramlich et al., 2017). However, 
anthropogenic activities such as mining, agrochemical 

industry (fertilizers, pesticides), in addition to its consid-
erable mobility in soil, significantly increase its content. 
Cadmium absorption by cocoa plants occurs through 
the roots and is conducted through its vascular system to 
finally reside in the leaves and fruits (Checa et al., 2019; 
Vanderschueren et al., 2020). 

The raw material for the cocoa industry comes mainly from 
Africa, Central and South America. For the latter, numer-
ous studies have shown that cocoa beans (nibs and shells) 
have relatively high concentrations of cadmium (Bertoldi 
et al., 2016; Argüello et al., 2019; Rodríguez Albarrcín et 
al., 2019; Bravo et al., 2021). In the Americas, Colombia has 
the potential as a bean exporter with increasing produc-
tion. In the period 2020-2021, production reached 70205 t 
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of dry beans, corresponding to its highest historical record 
(Fedecacao, 2021). Around 95% of exported beans were 
categorized as Fine Flavour Cocoa (FFC). FFC is a market 
category established by the International Cocoa Organi-
zation (ICCO) that recognizes sensory attributes such as 
flowery, fruity, caramelly, and nutty (Escobar et al., 2020; 
Escobar et al., 2021). 

In general, atomic emission/absorption spectral techniques 
allow for the quantitative determination of Cd concentra-
tions in cocoa beans, among them: inductively coupled 
plasma mass spectrometry (ICP-MS), inductively coupled 
plasma optical emission spectrometry (ICP-OES), graphite 
furnace atomic absorption spectrometry (GF-AAS), and 
f lame atomic absorption spectrometry (FAAS). These 
methods for the assessment of Cd concentrations in cocoa 
are characterized by their robustness and limit of detec-
tion (LOD). In ICP-OES, for example, we found LODs 
near 0.043 mg kg-1 (Rodríguez et al., 2022). However, the 
large number of supplies, as well as the generation of envi-
ronmentally aggressive waste, lead to a search for analysis 
strategies that minimize these factors. By contrast, laser-
induced breakdown spectroscopy (LIBS) has become a 
useful technique for food analysis that is relatively simple 
and with a minimum production of polluting waste. 

LIBS is suitable for the detection of cadmium in agricul-
tural materials and food (Menegatti et al., 2019; Nicolodelli 
et al., 2019; Senesi et al., 2019). Chemometrics and LIBS 
have been proposed for the determination of Cd in fruits 
and vegetables (Yao et al., 2017; Shen et al., 2018). Zhao et 
al. (2019) determine Cd in lettuce leaves using enhanced 
LIBS by adding silver nanoparticles (NELIBS); the en-
hanced signal of the 214.4 nm line allows prediction of Cd 
concentrations less than 60 µg kg-1 (Zhao et al., 2019). Yang 
et al. (2019) proposes a simple and low-cost pre-treatment 
method for rice grain samples, called solid-liquid-solid 
transformation that improves the signal to noise ratio for 
Cd lines in LIBS spectra, obtaining detection limits near 
2.8 µg kg-1. Very recently, univariate and multivariate cali-
bration methods, such as partial least squares regression 
(PLSR), least squares support vector machines (LS-SVM), 
and extreme learning machines (ELM) in combination with 
LIBS were proposed for quantitative analysis of Cd in the 
rice roots (Wang et al., 2021). 

Previous studies on the determination of Cd in cocoa beans 
using ICP-OES were developed by Chavez et al. (2015) and 
Oliveira et al. (2021). Gramlich et al. (2017) study cadmium 
uptake in soils and cocoa beans by FASS. Also, in Colombia, 
the organs of cocoa plants and soil are analysed by ICP-MS 

for the determination of heavy metals, with emphasis on 
Cd (Aguirre-Forero et al., 2020).

In this research, a predictive model was proposed to de-
termine Cd concentration in cocoa beans of Colombian 
origin, based on LIBS, FAAS (as a reference technique) 
combined with PLSR-1 (partial least squares regression). 
This took advantage of the agility to generate LIBS spec-
tra that together with the Cd concentrations determined 
by FAAS and the chemometric procedures allowed the 
construction of the model and a reduction in the time of 
analysis with respect to conventional spectral methodolo-
gies. If the procedure proposed in this study is compared 
with the FAAS technique, the time required to obtain LIBS 
data is estimated as 1 h (including SLST transformation). In 
contrast, FAAS requires digestion processes that typically 
take more than 48 h.

Materials and methods

Samples of cocoa beans of Colombian origin that were 
dried and ground were collected for one year from dif-
ferent laboratories. Prior to calibration, all samples were 
homogenized using a mortar.

Determination of cadmium concentration 
by FAAS: reference method

Sample treatment
Initially 65 samples of cocoa beans of Colombian origin 
were treated for analysis of the concentration of cad-
mium by FAAS. The cocoa beans were obtained from 
different plantations, but the precise geographic location 
is unknown.

Prior to microwave oven assisted digestion (MWAD), 0.5 g 
of cocoa beans was immersed in 8 ml of HNO3 (MERCK, 
65%), for 48 h, using teflon vessels (adapted from Oliveira et 
al. (2021)). After this period, 2 ml of H2O2 (30%) was added. 
Samples were introduced into the microwave digestion sys-
tem (Multiwave GO Anton Paar, GmbH), according to the 
following procedure: (a) starting from room temperature 
to reach 80°C in 5 min, remaining at that temperature for 
5 min; (b) from 80°C to 150°C for 5 min and staying at that 
temperature for 5 min; (c) from 150°C to 180°C for 3 min 
and remaining at that temperature for 25 min. The teflon 
vessels were allowed to cool to room temperature and care-
fully opened. The digestion product was transferred to a 
25 ml balloon and filled with HNO3 (0.5%). The washing 
of the glass and teflon material was carried according to 
AOAC Official (Jorhem & Engman, 2000).
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Atomic absorption analysis
The standard solution was obtained by dissolving 1 g of Cd 
powder (Cadmium EMSURE® Merck KGaA, Darmstadt, 
Germany, particle size 0.3-1.6 mm) in 21 ml of HNO3, in 
a 1:1 ratio (v/v) and then filled to 1 L with deionised wa-
ter. From this standard solution a calibration curve was 
constructed with six Cd concentrations: 0.02, 0.5, 1, 1.5, 
2, and 3 mg kg-1.

The analysis was performed on a FAAS spectrometer 
(Thermo Electron Corporation, USA). The wavelength of 
the radiation emitted by the Cd hollow cathode lamp was 
228.8 nm (current 4 mA). The flame was an air/acetylene 
oxidising flame with a flow rate of 1.2 L min-1 and a flame 
height of 7 mm. Slit width was 0.5 mm. Each concentra-
tion was determined by triplicate and its average value 
(± standard deviation) is shown in Table 1.

Detection of cadmium in cocoa beans by LIBS

Determination of cadmium in pellets
In LIBS, the most common process for the analysis of 
samples is the formation of pellets after its homogeniza-
tion (Sezer et al., 2017; Yang et al., 2018; Senesi et al., 2019). 
Pellets were produced from 500 mg of cocoa beans, pre-
viously macerated, by applying 2 t cm-2 of pressure for 2 
min using a hydraulic press (Carver Inc., USA). However, 
it was only possible to determine Cd in pellets previously 
contaminated with a high concentration (>15 mg kg-1) of 
this element. To detect Cd in samples with lower concentra-
tions, it was necessary to implement the SLS transforma-
tion, proposed by Yang et al. (2019) that is described in the 
next section. SLST is a commonly used procedure for the 
quantification of heavy metals in food samples. In cocoa 
beans, Cd is bound in the chemical forms with other ele-
ments (among others: CdCl2, CdOH+, CdCl3

- and organic 
ones). At low concentrations of Cd, it is difficult to extract 
it by laser. For this reason, the addition of 0.1 N HCl allows 
the release of Cd+2 and the formation of soluble salts with 
the Cl- ion (Yang et al., 2019).

Solid-Liquid-Solid Transformation (SLST)
To 1 g of macerated cocoa beans, 14 ml of 0.1 N HCl solu-
tion was added. The solution was submitted to an ultrasonic 
bath for 15 min. From the supernatant, 200 µl were taken, 
deposited on a glass sample holder, and allowed to dry at 
a temperature of 70°C. In this way, a layer of the material 
was obtained; the process was repeated to a total of five 
layers (Yang et al., 2019).

The experimental parameters were as follow: added volume 
of 0.1 N HCl solution (10, 12, 14, and 16 ml), and the fol-
lowing ultrasonic bath times using a Branson ultrasonic 
cleaner 1510, Japan of 5, 10, 15, and 20 min were studied 
according to the criterion of maximising the area under the 
spectral curve of the (concatenated) array of the 214.44 nm 
and 226.50 nm emission lines of the LIBS spectra. Unlike 
the volume of solution added and the ultrasonic time, the 
number of layers did not exhibit a maximum (the area un-
der emission line). On the contrary, from the second layer, 
it grew monotonically as the number of layers increased. 
Given that more layers mean longer sample preparation 
time, five layers resulted in a good compromise between 
sample preparation time and signal intensity. 

The emission line of Cd 214.44 nm, Figure 1A-C depicted 
the behaviour of these experimental parameters. Similar 
characteristics followed for the Cd 226.50 nm emission 
line. Table 2 shows the experimental parameters used for 
the SLS transformation.

TABLE 1. Cadmium concentrations (mean±standard deviation (SD)) 
determined by FAAS in 46 samples of dry cocoa beans. In the calibra-
tion of the predictive model, only concentrations below 1 mg kg-1 were 
considered (negative concentrations that resulted from the FAAS curve 
were discarded).

Sample
Cd concentration 

Mean±SD (mg kg-1)
Sample

Cd concentration 
 Mean±SD (mg kg-1)

M01 0.29±0.01 M24 0.02±0.01

M02 0.84±0.06 M25 0.05±0.01

M03 0.72±0.04 M26 0.05±0.01

M04 0.32±0.01 M27 0.02±0.01

M05 0.23±0.03 M28 0.02±0.01

M06 0.61±0.04 M29 0.30±0.01

M07 0.96±0.10 M30 0.03±0.01

M08 0.54±0.01 M31 0.03±0.01

M09 0.61±0.03 M32 0.29±0.01

M10 0.19±0.01 M33 0.05±0.02

M11 0.32±0.01 M34 0.05±0.01

M12 0.22±0.01 M35 0.03±0.01

M13 0.17±0.04 M36 0.08±0.02

M14 0.17±0.04 M37 0.02±0.01

M15 0.17±0.01 M38 0.02±0.01

M16 0.17±0.01 M39 0.0058±0.0015

M17 0.16±0.01 M40 0.07±0.01

M18 0.13±0.01 M41 0.21±0.01

M19 0.17±0.01 M42 0.15±0.02

M20 0.29±0.46 M43 0.16±0.01

M21 0.06±0.01 M44 0.28±0.02

M22 0.06±0.03 M45 0.96±0.01

M23 0.03±0.01 M46 0.06±0.01
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TABLE 2. Result of the optimization of the parameters of the solid-liquid-
solid transformation. 

SLST-Parameter Value

Volume of 0.1N HCl solution added 14 ml

Ultrasonic time 15 min

Number of layers 5

Optimization of instrumental parameters for LIBS
LIBS spectra were recorded using a Q-switched Nd:Yag 
laser (Q-smart, Quantel, Inc., USA) operating at 1064 nm. 

Adopting the same optimization criterion as in the SLST, 
we proceeded to set the LIBS instrumental parameters, 
namely, the delay and lens-sample distance. For a five-layer 
sample, delays of 200, 400, 800, and 1000 ns were tested 
with a lens-sample distance of 19.5 cm and 100 shots. 
Keeping the delay and number of shots constant (200 ns 
and 100 shots, respectively), the lens-sample distance was 
varied in the range 18 cm to 19.5 cm. Finally, the number 
of laser shots on the sample was between 10 and 200, at 
delay (200 ns) and lens-sample distance (19.5 cm). To 
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ensure that each laser impact covered a different region 
on the sample, the glass sample holder was supported on 
a turntable (with stepper motor). The selected parameters 
were as follow: a delay of 200 ns, integration time of 5 µs, 
lens-sample distance of 18 cm and number of shots of 200, 
pulse duration 5 ns, a repetition rate 10 Hz. As the number 
of shots increased so did the area under the emission line; 
however, the sample size limited this number to 200. The 
laser energy was 150 mJ/pulse. The behaviour of the area 
under the emission line 214.44 nm against the delay time 
and the sample lens distance is shown in Figure 1 D-E.

The plasma emission was focused through a quartz lens (fo-
cal length, 50 mm) and collected with a quartz optical fiber 
and introduced into a 0.5 m Czerny-Turner spectrograph 
(Shamrock 500i, Andor Technology, USA). A two thousand 
and four hundred grooves/mm diffraction grating (spectral 
resolution 0.075 nm, dispersion 0.83 nm mm-1, and blazed 
250 nm) was used to disperse the emission spectrum that 
was projected on the image plane of the spectrograph and 
recorded on an intensified charge-coupled device (ICCD) 
detector with an array of 1024 × 256 pixels (iStar DH720, 
Andor Technology, USA). The characteristics of the LIBS 
spectra acquisition setup are shown in Table 3. 

TABLE 3. Characteristics of the LIBS spectra acquisition setup.

Instrumental parameter for LIBS Value

Laser wavelength 1064 nm

Delay time 200 ns

Number of laser shots 200

Lens-sample distance 18 cm

Laser energy/pulse 150 mJ

Integration time 5 µs

Pulse duration 5 ns

Repetition rate 10 Hz

Figure 2 shows the LIBS signal of cocoa bean sample 21 
(0.06±0.01 mg kg-1) before and after SLS transformation. 
The increase of the signal in the Cd II emission line 214.44 
nm is evident. 

PLSR model development
PLSR-1 is a well-known chemometric technique for the 
implementation of predictive models (Otto, 2007). It is 
characterized by its simplicity and the possibility of obtain-
ing good performance without over-fitting. In developing 
a prediction model, a compromise must be maintained 
between the number of latent variables (predictors) and 
the degrees of freedom (ASTM E1655-05, 2012).

In a PLS-1 predictive model, the relationship between the 
predictors x, and the estimated response, ŷ, is established 
according to Equation 1:

	 ŷ = bx	 (1)   

where ŷ corresponds to an estimated concentration of Cd in 
cocoa beans; b is the vector of coefficients of the regression 
in the partial least squares sense (including the independent 
term); and x is a vector consisting of 33 intensity values 
(concatenated, with baseline correction and normalised 
by the area under the spectral curve) of the emission lines 
214.44 nm and 226.50 nm. The concatenated array is 
formed by uniformly sampling over 17 and 16 points the 
intervals [214.3, 214.7] and [226.4, 226.7] (Fig. 3). Although 
in FAAS the 228.88 nm emission line is the reference for 
the measurements, it was not considered for the develop-
ment of the predictive model due to interference with the 
iron emission lines.

The multivariate calibration was performed with Monte 
Carlo cross-validation (MCCV) to ascertain the complexity 
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of the model, i.e., the number of latent variables (LVs) of 
the PLS model (Xu & Liang, 2001). This cross-validation 
strategy requires splitting the samples into two sets, one 
with nC samples for training (testing or calibration), and 
the other with nCV for validation. In all cases, the training 
set contained the samples with the highest and lowest Cd 
concentration values. Therefore, the regression model is 
only valid for interpolating values in that range. 

The criteria used to define the number of LVs were the fol-
lowing: the square root of the standard error of calibration 
(SEC) and cross-validation (SECV), defined according to 
Equations 2 and 3:
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where dx = nx–(k+1) (with x, c or cv for calibration or 
cross-validation samples, respectively) corresponds to the 
degrees of freedom, and k is the number of latent variables 
(LVs). In Equations 2 and 3, ŷi is the estimated value of 
Cd concentration corresponding to the i-th sample with a 
measured value yi. Another criterion used to determine the 
number of LVs was the correlation between two successive 
b-vectors (the b-vectors are the average of the b-vectors 
resulting from each partition, according to Equation 1) 
(Andrade-Garda, 2009).

Other figures of merit, which allowed us to evaluate the 
performance of the calibration model developed were as 
follows: the F-test with degrees of freedom, (k–1) (numera-
tor) and (nC–k) (denominator) given by Equation 4:
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where y is the average of the Cd concentrations used in the 
calibration group.

The range error ratio, RER, defined according to Equation 
5, was calculated as follows:
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with yMAX and yMIN being the maximum and minimum 
values of Cd concentration in cocoa beans (range for cross-
validation sample set), respectively, determined by FAAS. 

The confidence limit at a level of 95% for the performance 
of the model was calculated as ŷi ± t.SEC.√(1 + hii), where 
t is the student’s t value for dC degrees of freedom. For 
each training sample, with an estimated value ŷi, hii, is a 
scalar taken in order from the main diagonal of the matrix 
T × T ,̓ where scores T are the coordinates of the sample 
in the principal components space (ASTM E1655-05, 
2012). Finally, as usual, the coefficients of determination 
for both the set of calibration, R2

C   and cross-validation R2
C V 

are reported.

Results and discussion

The limit of detection (LOD) for FAAS analysis resulted in 
0.056 mg kg-1. This figure of merit was calculated according 
to the expression: LOD=Cblank+3 σ, where Cblank corresponds 
to an average concentration of ten blanks with σ =0.0019 
mg kg-1 (standard deviation). Except for the addition of 
cocoa, the blanks were subjected to the treatment previ-
ously described in the sample treatment section. A recovery 
percentage of 98% was obtained, which means that the 
sample treatment process and the analytical measurement 
is acceptable. From the initial set of 65 samples, those whose 
FAAS analysis resulted in a negative concentration were 
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discarded (negative value means, in this case, Cd concen-
tration below of limit of detection). In addition, due to the 
small number of samples with concentrations above 1 mg 
kg-1, the predictive model was limited to this value, taking 
46 samples for its development.

The concentration of Cd in cocoa beans using LIBS and 
FAAS was carried out by applying PLS-1 implemented on 
Matlab R2019b (MathWorks, Inc.) using the statistically 
inspired modification of the partial least-square (SIMPLS) 
algorithm (De Jong, 1993; Otto, 2007; Faber & Ferré, 2008). 
A total of 1000 partitions generated the same number of 
models for each of the first 20 LVs. Each partition con-
sisted of 60% of the samples for training (28 samples) and 
the remaining 40% for validation (18 samples). Usually, 
the number of LVs in the model is selected according to a 
minimum in SECV (Fig. 4B) that is suggested in this case 
to be between 12 and 13 LVs.

To respect the degrees of freedom of the calibration mode, 
this quantity of LVs requires a larger number of samples 
than those available. For this reason, we use the criterion 
given by the correlation of two consecutive b vectors. In Fig-
ure 4A, typical oscillations in this correlation are observed 
up to the eighth latent variable. Beyond this number of LVs, 
the correlation tends to remain constant, indicating that 
there is scarce new information about the model. Based on 
this behaviour, we selected eight LVs for the construction 
of the predictive model. The uncertainty reported (vertical 
bars) were the standard deviations, for each metric, from 
the 1000 partitions using b-vectors.

A moderately optimistic model could be proposed by 
selecting a partition with SECV greater than (or equal to) 
SEC, and with the smallest distance to the line of identity 

in the SECV-SEC plane (Fig. 5). It is an empirical fact that 
when SECV and SEC are calculated for different partitions, 
using b-vector in Equation 1, a set of points distributed 
over an arc segment is obtained. In the SECV-SEC space, 
moderately optimistic models are located close to the 
identity line (Niño et al., 2019). Thus, taking the partition 
closest to this line, the performance metrics of the proposed 
model are calculated. 
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For the selected partition, in the eighth LV, the SEC has a 
value of 0.05±0.0066 mg kg-1 with the SECV 0.12±0.0092 
mg kg-1. Similarly, the coefficient of determination for 
calibration and cross-validation samples, R2

C   and R2
C V are 

0.97±0.0093 and 0.79±0.0042. 

The FCal (calculated F) was 99.23, which must be compared 
with the FTab(0.95,7,20), (tabulated F, with a confidence 
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brackets) is shown in Table 5. The correlation shows that the 
model responds to the performance indicators explained in 
the previous paragraph, following the procedure suggested 
for the evaluation of trends in residuals of multivariate 
calibration models by permutation test (Filgueiras et al., 
2014). A total of 50.000 permutations allows us to obtain 
distributions of the linear (β1) and quadratic (β2) coef-
ficients, with p-values (β1=0.50 and β2=0.34) greater than 
0.05, indicating the absence of linear and quadratic trends, 
or equivalently, a random behaviour of the residuals with 
respect to the reference values. Finally, Figure 7 shows the 
histogram of the residuals for both calibration and cross-
validation samples, note that the peak is close to zero.

margin of 95%, NC=28 and k=8). Since FCal > FTab=3.01, we 
can argue that the model appropriately fits the data. On 
the other hand, the selected partition has a RER of 7.92± 
2.92, therefore the proposed model can be considered for 
screening. The performance metrics for the proposed 
model are summarised in Table 4.

TABLE 4. Parameters describing the performance of the proposed cali-
bration model.

Parameter Value

Cd concentration range [0.01-1] mg kg-1

LVs 8

R2
C   0.97±0.0093

R2
C V 0.79±0.0042

RER 7.92±2.92

SEC 0.05±0.0066 mg kg-1

SECV 0.12±0.0092 mg kg-1

FCal  99.23

FTab (0.95,7,20) 3.01

β1 (p-value) 0.50

β2 (p-value) 0.34

LVs, latent variables; R2
C   and R2

C V are the coefficient of determination for calibration and cross-
validation; range error ratio (RER); SEC, standard error of calibration; SECV, standard error of 
cross-validation; FCal and FTab are the F-test statistic values, calculated and tabulated, respec-
tively; p-values for linear (β1) and quadratic (β2) coefficient distributions.

Figure 6 depicts the performance of the proposed calibra-
tion model. Note that a small fraction of the samples falls 
outside the 95% confidence bands (dashed lines). For more 
details, this information (including residuals, written in 

FIGURE 6. Correlation of measured values of Cd concentrations and values predicted by the PLSR-1 model. Dashed lines constitute the 95% confi-
dence band. Samples with measured concentrations close to 0.1 mg kg-1 are presented in the box.

FIGURE 7. Histogram of the residuals for the selected partition. The 
maximum of the distribution is close to zero.

https://en.wikipedia.org/wiki/Test_statistic
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TABLE 5. Predicted cadmium concentrations by LIBS in 46 samples of 
cocoa beans. In parentheses, the residual corresponding to each value 
predicted by the model.

Sample Cd Concentration
(mg kg-1) Sample Cd Concentration

(mg kg-1)

M01 0.19(0.129) M24 0.02(-0.002)

M02 0.87(-0.034) M25 0.01(0.031)

M03 0.68(0.0249) M26 0.009(0.039)

M04 0.46(-0.153) M27 0.05(0.003)

M05 0.29(-0.058) M28 0.08(-0.063)

M06 0.56(0.047) M29 0.08(-0.035)

M07 0.75(0.206) M30 0.014(0.019)

M08 0.61(-0.069) M31 0.04(-0.004)

M09 0.52(0.088) M32 0.31(-0.008)

M10 0.0083(0.183) M33 -0.01(0.059)

M11 0.22(0.094) M34 0.10(-0.049)

M12 0.20(0.018) M35 0.09(-0.069)

M13 0.08(0.096) M36 0.079(-0.004)

M14 0.18( -0.011) M37 0.09(-0.078)

M15 0.07(0.096) M38 0.0716(-0.054)

M16 0.16(0.006) M39 -0.0164(0.022)

M17 0.10(0.065) M40 0.17(-0.100)

M18 0.05(0.076) M41 0.14(0.065)

M19 0.15(-0.003) M42 0.14(0.018)

M20 0.25(0.039) M43 0.12(0.037)

M21 0.04(0.009) M44 0.21(0.074)

M22 0.03(0.025) M45 0.97(-0.012)

M23 0.039(-0.007) M46 0.08(-0.026)

Conclusions

In this research, a PLS-1 predictive model was developed to 
determine the concentration of Cd in cocoa beans from a 
LIBS spectra. The performance metrics (RER) allow clas-
sifying the model as suitable for screening, mainly in the 
range of 0.2 to 1 mg kg-1. The Monte Carlo cross-validation 
strategy allowed the selection of a sample partition that 
yielded a model with adequate correlation, a linear be-
haviour, which was evident from the diagnostic figures 
of merit (R2, residuals and standard errors) and inference 
tests (F-test). Moreover, it was possible to implement the 
SLS transformation for the analysis of cocoa beans using 
LIBS, which significantly improved the signal-to-noise 
ratio of the spectrum allowing the development of this 
predictive model with relative experimental simplicity and 
few chemical reagents, reducing the time compared to other 
methodologies. The enhancement factor in the predicted 
concentrations, before and after SLS transformation, was 
estimated to be around two orders.
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