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ABSTRACT RESUMEN

The use of water with a high concentration of salts has been 
increasingly frequent in vegetable production. This reduces 
the development and productivity of vegetables, raising the 
importance of the search for techniques to mitigate deleterious 
effects. In this sense, vitamins have the potential to improve 
conditions for plant development. The study was conducted to 
evaluate the effects of the application of B vitamins in lettuce 
plants submitted to irrigation with saline water. The treatments 
consisted of Control: irrigated with water and without applica-
tion of vitamins; NaCl: irrigated with saline solution (50 mM 
NaCl, equivalent 5.18 dS m-1) and without application of vita-
mins; NaCl+B1: irrigated with saline solution and application of 
vitamin thiamine (100 mg L-1); NaCl+B3: irrigated with saline 
solution and application of vitamin niacin (100 mg L-1). These 
treatments were applied to two lettuce cultivars, “Pira Roxa” and 
“Valentina”. Both vitamins increased net photosynthesis when 
compared to the NaCl treatment. However, only the applica-
tion of thiamine resulted in a mitigating effect on the losses of 
plant dry mass accumulation. Thus, the exogenous application 
of these vitamins alleviates the effects caused by salinity in let-
tuce plants, reducing stress on photosynthetic mechanisms and 
increasing photosynthetic activity. In addition, thiamine helps 
to reduce the deleterious effects of salinity on the accumulation 
of biomass.

El uso de agua con alta concentración de sales ha sido cada vez 
más frecuente en la producción de hortalizas. Esto reduce el 
desarrollo y la productividad de las hortalizas, lo que plantea la 
importancia de la búsqueda de técnicas para mitigar los efectos 
nocivos. En este sentido, las vitaminas son sustancias que tienen 
el potencial de mejorar las condiciones para el desarrollo de 
las plantas. El estudio se realizó para evaluar los efectos de la 
aplicación de vitaminas B en plantas de lechuga sometidas a 
riego con agua salina. Los tratamientos consistieron en: Tes-
tigo: irrigación con agua y sin aplicación de vitaminas; NaCl: 
irrigación con solución salina (50 mM NaCl, equivalente 5.18 
dS m-1) y sin aplicación de vitaminas; NaCl+B1: irrigación con 
solución salina y aplicación de vitamina tiamina (100 mg L-1); 
NaCl+B3: irrigación con solución salina y aplicación de vitami-
na niacina (100 mg L-1). Estos tratamientos se aplicaron a dos 
cultivares de lechuga, “Pira Roxa” y “Valentina”. Ambas vita-
minas incrementaron la fotosíntesis neta en comparación con 
el tratamiento NaCl. Sin embargo, sólo la aplicación de tiamina 
resultó en un efecto mitigador sobre las pérdidas de acumu-
lación de masa seca de la planta. Así, la aplicación exógena de 
vitaminas alivia los efectos provocados por la salinidad en las 
plantas de lechuga, reduciendo el estrés sobre los mecanismos 
fotosintéticos y aumentando la actividad fotosintética. Además, 
la tiamina ayuda a reducir los efectos deletéreos de la salinidad 
sobre la acumulación de biomasa.
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Introduction

The growing demand for food in the world has led to an 
increase in the use of water bodies, depleting or contami-
nating rivers, lakes and surface waters, making access to 
drinking water more difficult, especially for human con-
sumption (Santos & Spolador, 2022). This fact leads to 
restrictions on the use of drinking water in agriculture, 
increasing the use of water of inferior quality, such as saline 

water, in irrigation. Thus, the difficulty in accessing high 
quality water has accelerated the search for viable alterna-
tives for food production (Zhang & Shen, 2019; Singh, 2021).

For the production of vegetables, the continuous use of 
soil and the high number of production cycles can lead 
to an increase in salt concentrations in the soil (Libutti & 
Monteleone, 2018). Also, wastewater from agro-industrial 
processes or low-quality water from other sources has been 
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increasingly frequent in agriculture. This action results in 
significant productivity losses due to the presence of resi-
dues that can limit the development of plants, including 
lettuce (Adhikari et al., 2019; Zhang et al., 2021).

Irrigation with saline water is possible for many plant 
species, which have different levels of tolerance to this 
condition. However, many commercially important spe-
cies have low salinity tolerance, and excess salts can lead 
to plant death (Hajihashemi et al., 2020). For these species, 
reduced fertility, changes in the physical and chemical 
characteristics of soils, in addition to the accumulation of 
Na both in the plants and in the soil, reduce germinative 
efficiency and promote physiological disorders, affecting 
the photosynthetic system, cell division and, consequently, 
the development of plant structures (Singh, 2021).

The impact of excessive use of soil and water resources 
can be reduced by applying alternative solutions that al-
low maintaining development without further damage to 
natural resources. The exogenous application of vitamins 
in plants can lead to increase in vigor, higher reproductive 
rates, and resistance to edaphoclimatic conditions (Contieri 
et al., 2018; Vendruscolo et al., 2019), among other physi-
ological increments that allow cultivation under conditions 
of increased stress.

Thiamine, known as vitamin B1, has been used as a po-
tential biostimulant in plant production (Vendruscolo et 
al., 2019; Vendruscolo & Seleguini, 2020; Jabeen et al., 
2021). This vitamin acts directly on plant organelles as an 
enzymatic cofactor and indirectly on the respiratory and 
energy generation cycles of plants (Goyer, 2010; Taiz et al., 
2017). The application of exogenous thiamine can stimulate 
the action of defense mechanisms in plants, in addition to 
promoting development and growth (Kaya et al., 2015).

Another substance with application to crop systems is 
niacin (vitamin B3), which is also found in several physi-
ological systems of plants. It helps in vegetative growth 
and accumulation of reserves and minimizes adversities 
that the plant may undergo from stress (Taiz et al., 2017; 
Colla et al., 2021).

Based on the hypothesis that the application of the B vita-
mins, niacin and thiamine can change the characteristics 
of vegetables and mitigate the effects of abiotic stresses, 
the objective of the study was to evaluate the effects of the 
application of vitamins B on lettuce plants submitted to 
irrigation with saline water.

Materials and methods

Plant material and treatments
The experiment was conducted in a greenhouse covered 
with a 150-micron low-density polyethylene film and a 
thermoreflective screen (LuxNet®) with 42/50% shading 
under the film, in April 2021, in the experimental area of 
the State University of Mato Grosso do Sul, Cassilândia 
University Unit, Brazil.

The climate of the region, according to the Köppen classifi-
cation, is tropical rainy (Aw), with rainy summers and dry 
winters (winter precipitation less than 60 mm), with annual 
precipitation of 1,520 mm and an average temperature of 
24.1°C. During the experimental period, the climatic data 
were collected daily using equipment installed inside the 
greenhouse. (Fig. 1). 
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FIGURE 1. Maximum, average and minimum temperature and relative 
humidity during the experiment.

A completely randomized design was used, in a 2x4 facto-
rial scheme, with four replicates. The treatments were com-
posed of two lettuce cultivars (Valentina and Pira Roxa) 
and the four growing conditions, Control: irrigated with 
water and without application of vitamins; NaCl: irrigated 
with saline solution and without application of vitamins; 
NaCl+B1: irrigated with saline solution and application 
of vitamin thiamine; and NaCl+B3: irrigated with saline 
solution and application of vitamin niacin. 

The lettuce seedlings were purchased from a certified pro-
ducer (Agromudas, Jales, Brazil), ensuring phytosanitary 
quality and homogeneity in size. Before planting in the 
containers, the seedlings received a foliar application of 
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water (control) and solutions of thiamine (100 mg L-1) and 
niacin (100 mg L-1), depending on the treatment. The vita-
min solutions were prepared in water, and the treatments 
were applied with a foliar spray, using a plastic hand pump.  
One ml of solution was applied per plant and per treatment. 
After 24 h of application, the plants, containing four leaves 
and 15 cm high, were transferred to the containers with 
substrate. One treatment without application of vitamins 
was irrigated with fresh water (0.48 dS m-1) (control), while 
another treatment without vitamins was irrigated with 
saline solution (50 mM NaCl, 5.18 dS m-1), used as “stress 
control” (NaCl); the other treatments containing thiamine 
(NaCl+B1) and niacin (NaCl+B3) application were irrigated 
with saline solution for 15 d. Four replicates were used, 
consisting of two plants each.

For plant growth, recipients (0.35 dm3) contained a mixture 
of Typic Quartzipsamments (pH 5.0, P 14.0 mg dm-3, K 3.0 
mmolc dm-3, Ca 24.0 mmolc dm-3, Mg 14.0 mmolc dm-3, 
cation exchange capacity 58.0 mmolc dm-3, base saturation 
71.0%, organic matter 13.0 g dm-3, 95 g kg-1 of clay, 50 g 
kg-1 of silt and 855 g kg-1 of sand), vermiculite and tanned 
bovine manure, in a proportion of 3:1:1 (v/v).

Gas exchange and plant weight  accumulation
Fourteen days after the application of the vitamins, during 
the morning hours, the net photosynthesis (A; µmol CO2 
m-2 s-1), stomatal conductance (gs; mmol m-2 s-1), intracellu-
lar CO2 concentration (Ci; µmol mol-1) and transpiration (E; 
mol H2O m-2 s-1) were evaluated, using a portable infrared 
gas exchange meter (LCi, ADC Bioscientific, Hertfordshire, 
UK). Also, water use efficiency (A/E) and the instantaneous 
carboxylation efficiency (A/Ci) were calculated.

After obtaining the physiological characteristics, the aerial 
part of the plants was harvested and dried in a forced 
ventilation oven at 65°C, until a constant dry mass (SDW) 
was obtained. Also, the percentage loss of dry mass was 
calculated based on the control treatment.

Statistical analysis
Data were submitted to preliminary normality and ho-
moscedasticity tests. Then, the means were submitted to 
analysis of variance (ANOVA) and the Scott-Knott test, 
at the 10% probability level. The analysis was performed 
using the SISVAR statistical software (Ferreira et al., 2014).

Results

The treatments affected the net photosynthesis variable, 
with the highest average obtained in the control treatment, 

followed by the treatments composed of the application of 
vitamins B1 and B3, which differed significantly from the 
treatment composed only by irrigation with saline solution 
(Fig. 2A). Differences in the intracellular concentration of 
CO2 only occurred between the cultivars, with Pira Roxa 
being superior in this variable. In addition, for both tran-
spiration and stomatal conductance, the superiority of the 
control treatment over the others was observed, and of the 
cultivar Pira Roxa over Valentina, without considering the 
treatments (Fig. 2C-D).

For water use efficiency, higher values were found for treat-
ments in which irrigation with saline solution was used 
and, among the cultivars, Valentina was superior (Fig. 3A). 
In addition, for the efficiency of instant carboxylation, the 
control treatment stood out, followed by the treatments 
composed by the application of vitamins, both superior 
to the treatment composed only by irrigation with saline 
solution, while among the cultivars Valentina stood out 
(Fig. 3B).

The cultivars had a similar response for the accumulation 
of dry mass, while, among the treatments, the superiority 
of the control was verified. However, among the treatments 
in which there was irrigation with saline solution, the su-
periority of the application of thiamine was observed (Fig. 
4A), with lower percentage losses of dry mass (Fig. 4B).

Discussion

The presence of salt concentrations in the irrigation water 
affected most of the parameters evaluated compared to the 
control treatment (Figs. 2-4); the resulting osmotic stress 
caused decreases in leaf area, transpiration, osmotic poten-
tial, dry biomass, and photosynthetic rate (Coelho et al., 
2013; Silva Junior et al., 2018); the application of vitamins 
attenuated some of these effects  (Figs. 2-4).

Thiamine is responsible for signaling the presence of stress 
acting on plants; its natural levels in plant tissues decrease 
as stress continues (Goyer, 2010). Thiamine has key roles in 
plant metabolic processes, including carbon assimilation 
and respiratory processes (Fitzpatrick & Chapman, 2020). 
The exogenous application of thiamine acts as priming, 
potentiating the responses to stress through the produc-
tion of secondary metabolites and favoring the plant self-
protection (Goyer, 2010; Kaya et al., 2015).  The treatments 
with this vitamin showed lower losses of dry mass (Fig. 4), 
which may be an indication of the plant self-protection in 
response to stress. As well, the thiamine treatments with 
saline water irrigation led to a positive response for net 
photosynthesis (Fig. 2A).
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When the plant is subjected to stress, the application of 
thiamine results in increases in glycine-betaine, the total 
levels of phenols, the activity of catalase and peroxidase 
enzymes and the levels of proline, which directly protect 
the plants by nullifying reactive oxygen species and helping 
to maintain photosynthetic pigments (Jabeen et al., 2021).

The application of thiamine also increases energy reserves 
(sugars) and nutritional reserves in plant tissues (Kaya et al., 
2015). This increases plant resilience against the deleteri-
ous effects exerted by stress on the growing environment 
(Taiz et al., 2017).

The positive effect observed for the application of niacin 
on photosynthetic activity is related to its participation 
as a constituent of NAD+ and NADP+, acting directly in 
the transport of electrons in cellular and respiratory me-
tabolism (Meyer-Ficca & Kirkland, 2016), with increases 
of the pigment photosynthetic agents and protection of the 
lipid layer in membranes of the leaf cells (Hussein et al., 
2014). However, despite the positive effect reported in the 
literature, the application of niacin did little to alleviate the 
effects of salinity in the present study. This may be related 
to the composition of lettuce plants, which might have high 
levels of niacin. Thus, the exogenous application of this 
vitamin may not have been sufficient to result in significant 
changes in the plants. The application of niacin to a curly 
mustard crop at concentrations close to 485.20 mg L-1 did 
increase plant development (Vendruscolo et al., 2017).

Other authors observed that the application of thiamine at 
different concentrations effectively affects and favors the 
development of rice plants (Vendruscolo et al., 2019) and 

sweet corn (Vendruscolo et al., 2018), especially when the 
plants are subjected to abiotic stresses or field production 
conditions, where environmental factors act on the plants. 
Additionally, the application of niacin has a biostimulant 
effect, promoting the development and productivity of 
species such as corn (Colla et al., 2021) and beans (Abreu 
et al., 2020) in the field.

Conclusions

The exogenous application of vitamins helps to mitigate 
the effects caused by irrigation with saline water on lettuce 
plants, reducing stress on photosynthetic mechanisms and 
increasing photosynthetic activity. In addition, thiamine 
helps to reduce the deleterious effects of salinity on the dry 
mass accumulation in plants.
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