ANÁLISIS MORFOESTRUCTURAL DEL CERRO MANIZALES (ANTIOQUIA) Y SU RELACIÓN CON POSIBLES MANIFESTACIONES AURÍFERAS EN EL BATOLITO ANTIOQUEÑO

MORPHO-STRUCTURAL ANALYSIS OF THE MANIZALES (ANTIOQUIA) MOUNTAIN AND ITS RELATIONSHIP WITH POSSIBLE GOLD MANIFESTATION IN THE ANTIOQUIAN BATHOLITH.

Ernesto Gómez Londoño¹ & Luis Antonio Castillo López²

1. Geólogo MSc. Geofísica Exploración, 2. Dr. Profesor Universidad Nacional de Colombia egomezl@unal.edu.co, lacastillol@unal.edu.co

Recibido para evaluación: 07 de Abril de 2010 / Aceptación: 1 de Julio de 2011 / Recibida versión final: 19 de Julio de 2011

RESUMEN

Este trabajo reúne los resultados de las observaciones geológicas realizadas en campo en el año 2006 en el sector del cerro de Manizales (Corregimiento de Cristales – Departamento de Antioquia), los cuales permiten postular una hipótesis acerca de la ocurrencia de posibles manifestaciones auríferas, los cuales tienen una estrecha relación con la presencia de diques andesíticos post-Batolito Antioqueño y con la Zona de Cizalla Cristales, la cual ejerce a su vez un control morfoestructural de los cerros Manizales y Cristales, cambiando adicionalmente el curso de la Quebrada Negra.

Existen numerosas mineralizaciones agrupadas alrededor de Cristales, filones presentando dirección predominantemente Noreste, con numerosas venas paralelas a subparalelas; la mineralización está constituida por pirita, escasa calcopirita y galena ocasional, a la cual se relaciona la presencia de bonanzas en algunos filones. La ganga es fundamentalmente de cuarzo - variedad lechoso, con oro libre; y aunque las explotaciones de oro se encuentran abandonadas en el Cerro Manizales, la explotación se basó, a través de venas delgadas, de menos de 20 cm, llamadas agujas.

Así se propone la existencia de un depósito de oro de alta sulfuración controlado por la Zona de Cizalla Cristales, manifestada por la tendencia general N-NE del rumbo de las vetas del Cerro Manizales, cuya dirección puede estar controlada por ejes de extensión, en donde el vetilleo sea perpendicular a los ejes de máxima extensión (σ_1).

Palabras Clave:

Mineralización, depósitos de oro, Batolito Antioqueño, geología estructural, geología, veta, vetilleo, Antioquia, Colombia.

ABSTRACT

Field observations about the geology of the Manizales Hill, during 2006 located in proximities of the Cristales Town (Antioquia) are presented. A hypothesis is postulated about the occurrence of possible auriferous manifestations, its narrow relationship with the presence of andesitic post-Antioqueño Batolith dikes, and with the Cristales Shear Zone, which in turn exerts a morpho-structural control of the hills in turn Manizales and Cristales, additionally changing the course of the Negra Stream.

There are numerous mineralizations grouped around Cristales, the seams have predominantly NE direction, with numerous parallel and subparallel veins; the mineralization consists of pyrite, little chalcopyrite, galena casual, which is related to the presence of booms in some seams. The gangue is mainly quartz milky variety, with free gold; and although gold workings are abandoned in the Cerro Manizales, the operation was based, through veins thin, less than 20 cm, called veinless or needles.

This suggests the existence of a high sulfidation gold deposit, controlled by the Cristales Shear Zone, manifested by the general tendency N-NE of the veins strike of the Manizales Hill, whose strike can be controlled by the stretching axes, where the veinlets are perpendicular to the axis of maximum extension (σ_1).

Keywords:

Mineralization, gold deposits, Antioquian Batholith, structural geology, geology, vein, veinless, Antioquia, Colombia.

1. INTRODUCCION

El objetivo principal del trabajo es dar a conocer los resultados de las observaciones geológicas de campo, para exploración de oro, realizada en el mes de Abril de 2006 en la zona de Cristales (Antioquia), siguiendo el modelo de exploración para sistemas de oro relacionados con intrusivos (Lang *et. al.*, 2000).

El área del Cerro Manizales hace parte del Batolito Antioqueño de edad Cretáceo Tardío-Paleoceno (González, 2001), mencionado inicialmente por Boussignaultd (1825: En González, 2000). Corresponde al batolito más grande y septentrional de la Cordillera Central en los Andes Colombianos. Tomó su nombre del departamento donde se ubica (Botero, 1940), cuya capital Medellín se sitúa hacia el Oeste del Batolito Antioqueño (Figura 1). Presenta contactos discordantes con rocas encajantes, generalmente intrusivos (*Feininger* et. al., 1970; González, 2001), presenta forma trapezoidal y se caracteriza por su homogeneidad petrográfica y petroquímica (Álvarez, 1983).

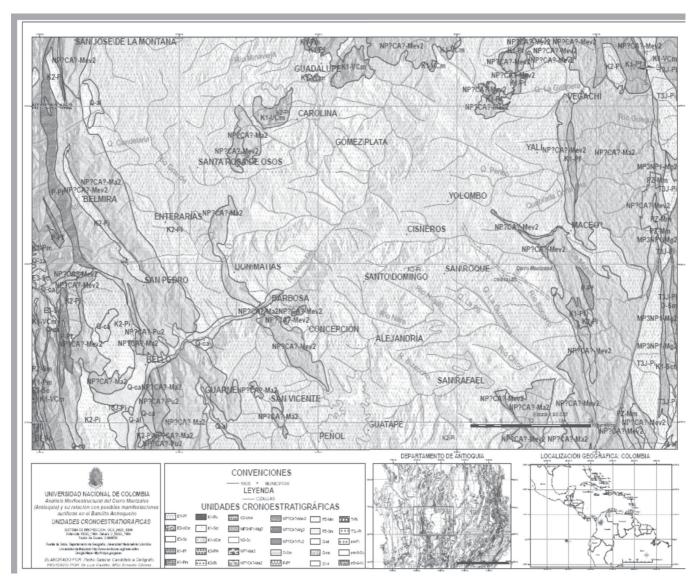


Figura 1. Mapa Geológico del Batolito Antioqueño - BA (Modificado de Ingeominas, 2009).

Feininger y Botero (1982), efectuaron un estudio del Batolito Antioqueño en donde mencionan la Zona de Cizalla Cristales (Figura 1) como una prolongación occidental de una falla de intrusión al Oeste de Caracolí. En el año 2000,

el INGEOMINAS publica el Mapa Geológico del Dpto. de Antioquia a escala 1:400.000, en donde se incluye la Zona de Cizalla Cristales. Esta zona de Cizalla en campo, se evidencia por una clara alineación E-W del Cerro Cristales que contrasta con la tendencia NW-SE del Cerro Manizales, paralela a la Zona de Cizalla Cristales (Figura 2). Vale la pena anotar, que la terminación NW del Cerro Manizales cambia de rumbo abruptamente desde el NW-SE a E-W, disponiéndose de forma paralela al Cerro Cristales en la Zona de Cizalla.

2. METODOLOGIA

En el área de estudio no se presentan afloramientos de roca, salvo algunos parches sobre el cauce de la Quebrada Negra. Los datos geológicos y geoquímicos adquiridos en campo fueron tomados dentro de una serie de socavones de minería abandonados en el Cerro Manizales, que ocupa un área de 2 kilómetros cuadrados.

En el levantamiento de la información geológica de los túneles, se utilizó HIP-CHAIN, brújula y GPS con el propósito de georreferenciar los datos de campo, siguiendo la metodología de campo de Compton (1985). La descripción de cada estación (Anexo 1) se dividió en 3 partes: Aspectos litológicos, alteraciones y estructurales.

Litológicos: Se tuvo en cuenta el tamaño de grano dándole un peso numérico de 1 a 3, así:

- 1 Grano Fino
- 2 Grano Medio
- 3 Grano Grueso

Alteración: Se definió su tipo, carácter y de igual manera se le dio un peso numérico de 1 a 3, así:

- 1 Débil
- 2 Moderada
- 3 Alta

Estructurales: Mediante tablas de porcentaje de venas de acuerdo con su espesor, se definió el número de fracturas por metro, porcentaje en volumen, composición de las vetillas vs stringers. Así mismo, se registraron los datos cinemáticos, tales como fallas, anotando su control estructural y tipo.

En sectores donde se presentaba la roca saprolitizada (*SAP ROCK*) o parcialmente cubierta se efectuó el raspado y limpieza de afloramientos. Finalmente, se tomó muestra tanto de la zona de veta como del respaldo de veta (roca caja) con el fin de verificar el contenido de oro de cada una de ellas y poder de esta manera definir su contraste de valores.

3. UBICACIÓN DEL AREA

El área estudiada se ubica en el flanco oriental de la Cordillera Central entre las coordenadas X_1 :716.000 y X_2 :718.000; Y_1 :509.000 y Y_2 :511.500.

En la zona prevalece un clima tropical húmedo, con alturas que oscilan entre los 1000 m.s.n.m a 2000 m.s.n.m y temperatura promedio de 17 a 23 °C. Las lluvias ocurren en dos estaciones: Abril-Junio y Septiembre-Noviembre.

El Cerro Manizales se encuentra ubicado hacia el NE del corregimiento de Cristales, presenta una morfología relativamente suave de lomajes redondeados y valles en forma de "U" (Quebradas Negra y Manizales), en contraste

con el cerro donde se ubica Cristales, que presenta una morfología mucho más abrupta de un cerro estrecho, empinado y agudo terminado en punta, con una diferencia de cota de 200 m.

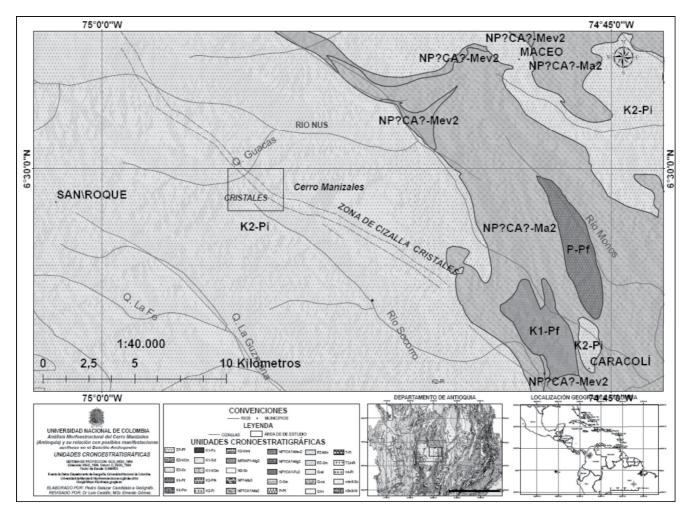


Figura 2. Mapa Geológico Regional. El área de estudio se ubica dentro del rectángulo. Fuente Ingeominas

4. CLASIFICACION DE ROCAS GRANITICAS

Los sistemas de clasificación de rocas graníticas se pueden dividir en dos clases principales: Uno composicional dependiente de los datos de medida mineralógicos o geoquímicos. Sin embargo un sistema alternativo de clasificación de rocas graníticas proporciona una valiosa información adicional en cuanto a sus relaciones y situaciones geológicas en las cuales ellos ocurren. Por lo tanto, es conveniente utilizar los elementos mineralógicos, litológicos y geoquímicos en combinación con otros criterios estructurales o tectónicos que se han considerado importantes porque reflejan algunos aspectos del origen del granito o del emplazamiento del cuerpo intrusivo, debido a que existe un vinculo entre la composición de la región fuente del cuerpo ígneo o roca fuente y el ambiente tectónico en el cual el granito fue generado (Cobbing, 2000).

4.1 Sistemas Tipológicos

Fueron enunciados inicialmente por Chappell & White (En: Cobbing, 2000) quienes distinguieron dos tipos de granitos: Tipo S y Tipo I, de acuerdo con sus características geológicas, geoquímicas e isotópicas. Consideraron que los Tipo S derivan de una corteza de protolito sedimentario, los Tipo I se derivan a partir de un protolito ígneo y que la composición de la región fuente se refleja en la composición del granito.

Barbarín (1990) resumió todos los conceptos anteriores en la Tabla 1, en donde se deduce que, de acuerdo con las características geológicas y mineralógicas del Cerro Manizales, el área fuente correspondiente es Mixta (Corteza + Manto), el tipo de granito ha sido generado como resultado de un evento de generación de magma Tipo I, calco-alcalino metalumínico (Bajo K – Alto Ca), básicamente tonalitas calco-alcalinas a granodioritas calco-alcalinas, correspondientes a granitos orogénicos de zonas de subducción. Así mismo, con base en los conceptos de Barbarín (1990), el granito Tipo I también es llamado Andino o Cordillerano, que se caracteriza por tener un rango composicional desde gabro a granito y de composición predominantemente tonalítica a granodiorítica. En el área de estudio hay presencia de pequeños cuerpos dioríticos hacia el Este en el sector de El Diluvio y en el cauce de la Quebrada Negra.

Tabla 1. Relación entre fuente, tipología y marco tectónico. El área fuente del posible depósito aurífero del Cerro Manizales, sería mixta (Modificado de Barbarín, 1990).

S	ISTEMA ALTERNATIVO DE CLASIFIC	ACION E	DE CUERPOS GRANITICOS IN	ITRUSIVOS	
FUENTE	TIPO DE GRANITO		MARCO T	ECTONICO	
	Leucogranitos	S			
CORTEZA	Granitos Autóctonos Peralumínicos (Alto K - Bajo Na Ca)	S	COLISIONAL Y POST COLISIONAL		
	Granitos Peralumínicos (Alto K - Bajo Na Ca)	S		GRANITOS OROGENICOS	
MIXTA (Corteza +	Granitos Calco-Alcalinos potásicos Metalumínicos (Alto K - Bajo Ca)	1			
Manto)	Granitos Calco-Alcalinos Metalumínicos (Bajo K - Alto Ca)	I	ZONAS DE SUBDUCCION		
	Granitos Toleíticos de Arco de Islas	М			
MANTO	Granitos Toleíticos de Dorsal Oceánica	М	RIFT OCEANICO	GRANITOS	
	Granitos Alcalinos y Peralcalinos	А	ZONAS DE EXPANSION Y DOMINIO CONTINENTAL	ANOROGENICOS	

5. ESTRATIGRAFÍA

5.1 Mesozoico

La actividad ígnea en la Cordillera Central iniciada en el Pérmico (González, 2001), durante la Orogenia Hercínica, se extendió hasta el Triásico con la intrusión de stocks adamelíticos en el flanco occidental de la Cordillera Central y continuó de una manera más intensa durante el Jurásico con la intrusión de los Batolitos de Segovia y Sonsón, siguiendo hasta finales del Cretáceo, con dos ciclos magmáticos bien definidos; uno en el Cretáceo Temprano y otro en el Cretáceo Tardío, ciclos a los que corresponde el gran Batolito Antioqueño, emplazado en la parte central del Departamento de Antioquia (Figura 1).

En la zona de estudio afloran en general rocas magmáticas intrusivas de composición intermedia, pertenecientes al Batolito Antioqueño: Tonalita (To), granodiorita (Gdr) y diorita (Di). Adicionalmente, se encuentran una serie de diques

o intrusiones a modo de filón, formados por rocas extrusivas afaníticas, que intruyen estos cuerpos plutónicos. Los depósitos recientes se encuentran en pequeños parches a lo largo de las Qdas. Negra, Guacas y Río Socorro (Figura 2).

5.1.1 Facies Tonalítica

La facies tonalítica conforma la mayor parte del Cerro Manizales, constituye una variedad de diorita cuarcífera que adicionalmente a la plagioclasa (PG), anfíbol (AMP) y biotita (BI), contiene hasta un 10% de cuarzo (QZ) y ortoclasa (OR). La roca fresca presenta un color gris rosado amarillento (5YR 8/1), mientras que la roca meteorizada presenta coloraciones marrón pálido (5YR 5/2), con contenidos promedio del 70% goetita, 20% jarosita y 10% hematita. (Figura 3). En general los aspectos litológicos son: Tamaño de grano medio, contenido de hornblenda < biotita (Hb < Bi) y grado de meteorización medio a alto (Anexo 1).

Figura 3. Hacia 180°, Facies Tonalítica: Fotografía de socavón en el Cerro Manizales (Nótese veta de 20 cm. de espesor con Control Estructural (CE): E-W/10°N).

5.1.2 Facies Granodiorítica

La facies granodiorítica ocupa el sector NW del Cerro Manizales; y se caracteriza, porque el feldespato de la roca granodiorita es fundamentalmente PG. La roca fresca presenta un color gris rosado amarillento (5YR 8/1), mientras que la roca meteorizada presenta coloraciones marrón moderado (5YR 4/4), con contenidos promedio del 50% goetita y 50% jarosita (Figura 4).

En general los aspectos litológicos son: Tamaño de grano medio y grado de meteorización medio a alto (Anexo 1).

Figura 4. Hacia 270°. Facies Granodiorítica: Fotografía de socavón en el Cerro Manizales. Nótese vetilleo con CE: N20°E/50°NW en Gdr.

5.1.3 Facies Diorítica

La facies diorítica se observa en el cauce de la Qda. Negra y en el camino El Diluvio-Manizales, donde aflora una diorita constituida en general por PG, AMP, BI, magnetita (MT) y cuarzo (QZ). La roca fresca presenta un color gris medio (N5), mientras que la roca meteorizada presenta tonalidades marrón pálido (5YR 6/1) con contenidos promedio del 80% jarosita y 20% goetita (Figura 5).

En general los aspectos litológicos son: Tamaño de grano medio, contenido de Hb < Bi y grado de meteorización alto (Anexo 1).

Figura 5. Hacia 150°. Facies Diorítica: Fotografía de socavón en cercanías a la margen derecha de la Qda. Negra. Nótese veta con CE: N50°E/70°SE en Di. La roca de respaldo de veta presenta MT.

5.1.4 Diques

El Batolito Antioqueño es cortado por innumerables diques con contactos en forma de cuchillo que presentan un rango composicional desde andesita a felsita y alaskita (Figura 6). Los más abundantes son color gris oscuro a verde grisáceo, grano muy fino a afanítico de composición intermedia.

En algunos socavones del Cerro Manizales se presentan diques andesíticos (AndDike) con control estructural: E-W/30°N, que cortan la roca encajante, se encuentran íntimamente relacionados con vetas que alcanzan los $20 \, \text{cm}$. de espesor y presentan un control estructural: E-W/ 10° N.

Figura 6. Hacia 230°. Fotografía sector NW Cerro Manizales. Diques Andesíticos: El martillo indica la intrusión de un AndDike en To. La veta en este sitio (parte derecha de la foto) alcanza el máximo espesor del área (0.90 m.) y un CE: N40°E/90°.

6. ESTRUCTURAS

Estructuralmente el Batolito Antioqueño está limitado por dos grandes sistemas de fallamiento; hacia el Oeste el Sistema de Falla Romeral y hacia el Este por el Sistema Palestina (Figura 1). El estudio de la geología estructural del Batolito Antioqueño se dificulta por la poca existencia de afloramientos de roca fresca. Sin embargo, se pueden efectuar observaciones en afloramientos esporádicos y bloques angulares caídos. Para el caso del Cerro Manizales los datos estructurales se tomaron básicamente en los túneles (Figura 7), debido a que la explotación que se ha efectuado en el sitio es artesanal y no se ha utilizado voladura.

Figura 7. Hacia 120°. Socavón del Cerro Manizales. Presencia de liso de Falla dextral N20°W/75°NE, cuyo plano de falla coincide con una vetilla.

El área de influencia de Cristales (Cerro Manizales), pertenece al sistema de Fallas de rumbo dextral Palestina (Feininger *y Botero*, 1982), con rumbo N10° a 20° E, al cual pertenecen otras fallas dextrales como la de Cocorná, Mulato y Jetudo (Figura 1). Adicionales a las anteriores se presentan una serie de fallas antitéticas a la Palestina, con dirección aproximada NW-SE, de Sur a Norte, las Fallas que derivan sus nombres de los Ríos: Guatapé, Nare y Nus respectivamente. Entre las Fallas de Nare y Nus se presenta una gran falla de intrusión (Feininger *et. al.*, 1982), paralela a las anteriores, que pasa al Sur del Corregimiento de Caracolí y cuya prolongación NW corresponde a la Zona de Cizalla Cristales, cuyo trazo pasa por el sector que divide los Cerros Manizales y Cristales (Figuras 1 y 2).

6.1 Fallas de Intrusión

En el Batolito Antioqueño se encuentran una serie de fallas extensas con rumbo NW al noroeste de Yalí y sur de San Carlos, en contraste con otras mucho más cortas con rumbo NE, encontradas entre San Carlos y Caracolí, originadas por la fusión diferencial de una cúpula subhorizontal dentro del magma del Batolito durante o al poco tiempo de la intrusión. La fusión del magma se realizó en forma regular y las rocas encajantes del NW de las fallas de rumbo NE fundieron a las del SE, y las rocas encajantes NE de las fallas de rumbo NW fundieron a aquellas del SW (Feininger y *Botero*, 1982).

6.2 Zona de Cizalla Cristales

Su trazo se encuentra localizado entre las Fallas de los Ríos Nare y Nus (Figura 1); controla un tramo del Río Nus hacia el sur de La Gitana (Figura 1), presenta una dirección principal NW-SE. En la zona de estudio su línea de trazo pasa cerca y hacia el noreste del Corregimiento de Cristales. Hacia el Este y sureste del Río El Socorro, controla el curso de las Quebradas La Chinca y Palomanchado, terminado en una falla con el mismo rumbo NW-SE, que pasa hacia el sur de Caracolí, que a su vez corresponde a una falla antitética de la Falla Palestina (Figura 8).

Su trazo en campo se evidencia por una clara alineación E-W del Cerro Cristales que contrasta con la tendencia NW-SE del Cerro Manizales, paralela a la Zona de Cizalla Cristales (Figura 2). Vale la pena anotar, que la terminación NW del Cerro Manizales cambia de rumbo abruptamente desde el NW-SE a E-W, disponiéndose de forma paralela al Cerro Cristales en la Zona de Cizalla.

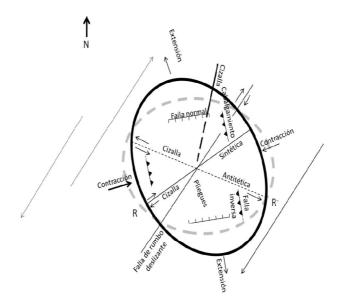


Figura 8. Diagrama esquemático para mostrar el desarrollo de sistemas de fallas antitéticas (Zona de Cizalla Cristales) a partir de sistemas de fallas de rumbo dextrolaterales (Sistema de Fallas Palestina). La Falla Palestina rumbo SW-NE y la antitética Zona de Cizalla Cristales con rumbo NW-SE.

6.3 Vetas

La mayoría de las zonas de cizalla relacionadas con vetas contienen cuarzo y calcita. Adicionalmente, pueden contener feldespato, mica, óxidos de Fe (FEOX), óxidos de manganeso (MNOX), sulfuros y yeso, los cuales son depositados por fluidos que aprovechan las fracturas abiertas rellenadas por material de vena.

Las vetas pueden ser excelentes guías como indicadores de zonas de cizalla debido a que su orientación puede ser controlada por ejes de extensión. La mayoría de las vetas se forman perpendiculares a los ejes de máxima extensión σ_1 (Figura 9), debido a que ésta es la dirección en la cual se forman fracturas de tensión.

Las vetas se formarán a 45° de la zona de cizalla, vista en planta (Figura 9) en la deformación no-coaxial (cizalla simple), indicando como éstas pueden ser claros indicadores de movimiento, en este caso dextral (Davis y Reynolds, 1996), para el caso hipotético de la Zona de Cizalla Cristales.



Figura 9. Orientación de las venas para una deformación no-coaxial en una cizalla simple (Adaptado de Davis y Reynolds, 1996).

Las venas se forman paralelas a la rata de máximo acortamiento σ_3 (S3) y perpendicular la rata de máxima extensión σ_1 (S1), (Davis y Reynolds, 1996).

Una zona de cizalla puede reactivarse y cambiar el patrón de movimiento. El reconocimiento de tales eventos geológicos puede tener mayores implicaciones para el entendimiento de la evolución tectónica de la región o para el modelamiento de los recursos naturales (Davis y Reynolds, 1996).

Como lo muestra el Anexo 1, existe una clara tendencia en la dirección de las vetas N30°E/65°SE-90° en los diferentes sectores de exploración en el cerro Manizales, las cuales alcanzan hasta los 90 cm. de espesor, siendo el promedio de 20 cm.; las Vetillas guardan una disposición en dirección N30°-60°E en los sectores de El Diluvio, Manizales. En el sector de la Quebrada Negra, las vetas alcanzan su máximo espesor (35 cm.), pero existe un control estructural debido a fallamiento e intrusión de AndDike que cambian la tendencia regional del vetilleo.

Se presenta una dirección de diaclasamiento según el plano E-W/10°N-90° en los sectores de El Diluvio - Manizales, Quebrada Negra, que coincide con la dirección de emplazamiento de algunos AndDike. Adicionalmente, presencia de fallas normales con dirección N60°W, de rumbo dextral N20°W y sinestral N60°E, observadas en el Cerro Manizales.

Teniendo en cuenta el análisis de la información bibliográfica disponible y las observaciones estructurales de campo, se concluye que:

- Existe una clara tendencia N-NE de las vetas y vetillas en el área de estudio que confirman la existencia de la Zona de Cizalla Cristales con rumbo NW-SE
- Se intuye una estrecha relación de las intrusiones de los AndDike tardíos con la presencia de vetas y vetillas en la zona de estudio.
- Los filones mineralizados agrupados alrededor de Cristales, presentan una dirección predominantemente NE, con numerosas venas paralelas a subparalelas.
- Se evidencia que existe un control estructural sobre las venas mineralizadas, debido a fallamiento e intrusión de AndDike, que cambian la tendencia regional del vetilleo.
- Eventualmente, el depósito de oro, estaría controlado por la Zona de Cizalla Cristales, manifestada por la tendencia general N-NE del rumbo de las vetas del Cerro Manizales; cuya dirección puede estar así mismo, controlada por ejes de extensión, en donde el vetilleo sea perpendicular a los ejes de máxima extensión (σ_1).

7. ALTERACIÓN

En todos los sectores recorridos se observó básicamente silicificación dominante; alteración cuarzo-sericítica (Qtz-Ser) moderada a alta dominante a subordinada en El Diluvio-Manizales y Quebrada Negra; piritización (Py) baja a moderada subordinada a traza en los sectores de Manizales y Qquebrada Negra; cloritización (Chl) baja a moderada subordinada a traza en El Diluvio-Manizales.

8. MINERALIZACIÓN

Una vez analizada la información resultante de las observaciones realizadas en campo, se concluye que se trataría de un depósito de oro de alta sulfuración, cuyas características generales se presentan en la Tabla 2.

Es interesante la presencia de sulfuros e intrusiones de diques andesíticos en To en el Cerro Manizales. Se reporta la existencia de MT que posiblemente sea producto de mineralización y no corresponda a la fracción de minerales accesorios.

Tabla 2. Características Generales de los Depósitos Epitermales de Alta Sulfuración (AS), (Modificado de Camprubí, et. al., 2003)

CARACTERÍST	ICAS GENERALES DE LOS DEPÓSITOS EPITERMALES DE ALTA SULFURACIÓN (AS)
Rocas volcánicas	Vulcanismo subaéreo, rocas ácidas a intermedias (esencialmente andesita-riodacita).
relacionadas	Encajante de cualquier tipo.
Controles de emplazamiento	Fallas a escala regional (Zona de Cizalla Cristales)
Extensión de la zona de alteración periférica	Área extensa (comúnmente varios km2) y visualmente prominente.
Alteración asociada	Extensa alteración propilítica en zonas adyacentes con baja relación agua/roca. Depósitos profundos: intensa alteración pirofilita-mica blanca. Depósitos someros: núcleo de sílice masiva, con un estrecho margen de alunita y caolinita que hacia el exterior es de mica blanca y arcillas interestratificadas. Depósitos subsuperficiales: ingente alteración argílica. Clorita: raramente. Generalización: alt. argílica avanzada → argílica (±sericítica).
Geometría del cuerpo mineralizado	Relativamente pequeño y equidimensional.
Características distintivas o notables	Presencia de niveles calentados por vapor (niveles superficiales), cuarzo poroso o vuggy (niveles intermedios), mineralización superpuesta a depósitos porfíricos (en profundidad).
Carácter de la mineralización económica	Típicamente diseminada, tanto en zona de mica blanca–pirofilita como en sílice masiva. Poco común como relleno de cavidades o porosidad. La mineralización está asociada habitualmente a alteración argílica avanzada, típicamente con abundante pirita.
Ganga de cuarzo	De grano fino, masivo, originado principalmente por reemplazamiento; el cuarzo es residual (vuggy).
Abundancia de sulfuros	10-90% del volumen total, sobre todo de grano fino, pirita con textura parcialmente laminada.
Minerales metálicos clave	Pirita, enargita–luzonita, calcopirita, calcosita, covellita, bornita, tetraedrita-tenantita, oro (esfalerita, galena, telururos).
Edad	Por lo general, Terciaria o más reciente.
Metales predominantes	Cu, Au, As (Ag, Pb)

9. CONCLUSIONES

Se propone la existencia de un depósito de oro de alta sulfuración controlado por la Zona de Cizalla Cristales, manifestada por la tendencia general N-NE del rumbo de las vetas del Cerro Manizales, cuya dirección puede estar controlada por ejes de extensión, en donde el vetilleo sea perpendicular a los ejes de máxima extensión (σ_1).

La presencia de espejos de fricción en fallas de rumbo de los AndDike intruyendo To, indica que éstos son posteriores al intrusivo; es decir son post-Batolito Antioqueño; es decir, de edad Terciaria o más reciente. Existe una clara tendencia N-NE de las vetas y vetillas en el área de estudio que confirman la existencia de la Zona de Cizalla Cristales con rumbo NW-SE.

Se intuye que existe una estrecha relación de las intrusiones de los AndDike tardíos con la presencia de vetas y vetillas en la zona de estudio.

BIBLIOGRAFIA

Álvarez, J., 1983. Geología de la Cordillera Central y el Occidente Colombiano y petroquímica de los intrusivos granitoides Meso-Cenozoicos. Boletín Geológico Ingeominas. Volumen 26. pp. 1-175. Bogotá.

Barbarín, B., 1990. Granitoids: Main petrogenetic classifications in relation to origin and tectonic setting. Geological Journal No. 25, pp. 227-238.

- Botero, A. G., 1940. Sobre el Ordoviciano de Antioquia. Proc. Eight Pan-American Scientific Congreso, LVI, Núm. 1V, pp. 19-25.
- Boussingault, J. B., 1825. Sur L'existence d'iode dans L'eau de une saline de la Province d'Antioquia. Paris, Ann. de Chemie et Physique, V. 30, pp. 91-96.
- Camprubí, A., González, E., Jordi, G. y Carrillo-Chávez, A., 2003. Depósitos Epitermales de Alta y Baja Sulfuración: Una Tabla Comparativa. Boletín de la Sociedad Geológica Mexicana, Tomo LVI, Núm. 1, pp. 10-18
- Cobbing, J., 2000. The Geology and Mapping of Granite Batholiths. Springer Editors, pp. 56-60.
- Compton, R., 1985. Geology in the Field. Wiley Editors. New York, pp. 312-316
- Davis, G. and Reynolds, S, 1996. Structural geology of rocks and regions, Second Edition, Jhon Wiley & Sons, Inc. pp. 531–533.
- Feininger, T., 1970. The Palestina Fault, Colombia. Geological Society America. Bulletin Vol. 81. pp. 1201 1216.
- Feininger, T. and Botero, G., 1982. The Antioquian Batholit, Ingeominas, Sp. Publ., Bogotá, pp. 37-45.
- Feininger, T., Barrero, D., Castro, N., Ramírez, O., Lozano, H. y Vesga, J., 1970. Mapa Geológico del Oriente de Antioquia. Cuadrángulo I-9 y parte de los Cuadrángulos H-9, H-10, I-10, J-9 y J-10. Escala 1:100.000. Ingeominas. Bogotá.
- González, H, 2000. Mapa Geológico de Antioquia. Escala 1:400.000. Ingeominas. Bogotá.
- González, H, 2001. Mapa Geológico del Departamento de Antioquia. Escala 1:400.000. Memoria Explicativa. Ingeominas. Bogotá.
- INGEOMINAS, Instituto colombiano de Geología y Minería. 2009, Mapa Geológico a escala 1:500.000.
- Lang, J.R., Baker, T., Hart, C.J.R., and Mortensen, J.K., 2000. An Exploration Model for Intrusion-Related Gold Systems. SEG Newsletter No. 40, pp. 5-15.

Anexo 1. Muestreo de roca sectores: Cerro Manizales, Qda. Negra y El Diluvio

Datos Cinemáticos Datos Cinemáticos	Socavón 8: Muestra de Dump Mine Float	Duplicated. Socavón 9 – VeinMat	Duplicate – VeinMat
nlets // 55NW // 55NW // 540E			
TURALES TURALES Datos Cinemáti N30E/55NW N10E/30SE N10E/30SE			
TUTR O O SW O O O O O O O O O O O O O O O O			
Veins N10 N10 W/50SW		N10E/65SE	N10E/65SE
Pse No Volúmen Fracturas/m 4 8 8 4 8 8 10 2 (5 cm espesor) 2 4 3 mm 2 4 (3 mm espesor) 3 2 (1.5 cm	esbesor)	1 (15 cm espesor)	1 (15 cm espesor)
		15	15
Oss Carácter 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1	7 -	7 1
PARAMETROS ON Si Si Si Si Si Si Si Si Si S	Si	Si	Si
ALTERACION Abundancia Minerales 1 Si 3 CT 3 CT 1 Si 1 Si 1 Si 1 Si 1 Si 1 Si	1	2	2
(Grado) (Grado) 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	2	2 1	1 2
Sil	Sil	Sil	Sil
Grado Meteorización 3 3 3 3 3 3 3 3 3 3 3 3	2	7	71
Tamaño Relación Grano Bi-Hb Metec 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1		1
Tamaño Grano Grano 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	7	-	-
COORDENADAS N W 717128 510136 717118 510087 717118 510087 717115 510069 717125 510069 717125 510069 717126 510043 717128 509957 7171289 509957 7171289 509957	510204	510259	510259
COORDI N 717128 717118 717125 717125 717125 717126 717154 7171289	717179	717201	717201
SECTOR			
MUESTRA 12003557 12003559 12003560 12005101 12005104 12005104 12005106 12005106	12005109	12005110	12005111

12005128	12005127		12005126	12005124	12005123	12005122	12005121	12005120	12005119	12005118	12005117	12005116	12005115	12005114	12005113	12005112		MUESIKA		_
									Manizales									SECTOR		
717116	717116		717068	717068	717068	717158	717158	717300	717300	717300	717300	717378	717169	717169	717212	717201		Z		
510962	510962		510359	510359	510359	510278	510278	510413	510413	510413	510413	510438	510217	510217	510239	510259		W		COORDEINISDIN
2	2		2	2	2	2	2	2	2	1	2	2	2	1	2	12	CIALIC	Tamaño		
1				1	-	-		1				1	1		1	1	D11-110	Relación	LITOLOGICOS	
2	2		2	ω	ω	2	_	ω	ω	2	2	ω	ω	2	S	2	INTERCOLIZACION	Grado	ICOS	
	Qtz-Ser	Sil	Qtz-Ser	Qtz-Ser	Qtz-Ser		Sil		Qtz-Ser		Sil Qtz-Ser	Qtz-Ser		Sil Qtz-Ser	Sil Qtz-Ser			Tipo		
	2	2 12	2	2	2		2		1		2	2		2 3	23		(Orado)	Intensidad		
	2	2	1	1	1		1		2		2	1		1 2	2			Abundancia	ALTERACION	
	QZ – SE	S1	QZ – SE	QZ – SE	QZ – SE		Si		QZ – SE		Si QZ – SE	QZ – SE		Si QZ – SE	Si QZ – SE			Minerales	Ż	LAKAMETROS
	2		2	2	2		2		2		2	2		2	2			Carácter		Š
	20		6	ω	ω		15		ω		10	_		6	10		ACIMITICIT			
	espesor)	1 (20 cm	3 (2 cm	6 (3 mm espesor)	6 (3 mm espesor)		1 (15 cm espesor)		11 (3 mm espesor)		1 (10 cm espesor)	2 (1.5 mm espesor)		1 (6 cm espesor)	2 (5 cm espesor)		T.I decidi de/III	No	H	
	N60E/90		N30E/90				N30E/70SE				E-W/70N			N60E/50NW	N60E/55NW		Veins		ESTRUCTURALES	
				N40E/60SE	N40E/60SE				N20E/55NW			N60E/55NW		7	7		Veinlets	Datos Cinemáticos	ALES	
		Rumbo?)	NIOW/60SW (Falla	-					N20E/55NW (Falla)			N60W/65SW / (Espejo de Falla)		N60E/50NW (Falla Normal)			Otros	cos		
Respaldo de 12005127 – To	VeinMat Socavón 16:	Venitiviat	S	52	Socavón 15: Respaldo de 12005126 con veinlets - To	Respaldo de 12005121 – To Duplicated –	Socavón 14: VeinMat	Socavón 13: Estéril de mina – To	Socavón 13: Zona de veinlets (respaldo enminado) – Gdr	Socavón 13: Respaldo de 12005117 – IntFel	Socavón 13: VeinMat	Socavón 12 : To	Socavón 11: Respaldo de 12005114 – To	Socavón 11: VeinMat	Socavón 10 : To	Socavón 9: Respaldo de 12005110-11 – To		OBSERVACIONES		

	OBSERVACIONES		Office Cocarón 16: Zona da	veinlets – To		V20W/75NE Socavón 17: Zona (Falla de veinlets, costado Dextral) derecho de la falla – To	N20E/80SE (Falla Socavón 18: VeinMat Normal)	Socavón 18: Respaldo de 12005133 – To	N60E/65SE Duplicated – Socavón (Falla 19: VeinMat Sinestral)	3 Duplic	Sinestral) VeinMat	Socavón 19: Respaldo de 12005135-36 – To	VeinMat	E-W/30N Socavón 20: VeinMat (And Dike)	1400111000111	(Joint) Socavón 20: To		E-W/30N Socavón 20: Respaldo (Falla) de 12005140 – To	Socavón 20: Muestra	de Dump Mine Float (Cuarzo tipo Vuggy)		Socavon 21: veiniviat	Socavón 21: Respaldo	de 12005142 To
	ALES	Datos Cinemáticos	Veinlets	N20W/30SW	NZ	<u> </u>			Ž, W	Ż				7) 1		T.		ш						_
	ESTRUCTURALES		Veins				N20E/65NW		N60E/65SE	N60F/65SF	7000000		N60E/40NW	E-W/10N		N40E/90					1 (1) (1) (1) (1) (1)	N&UE//SNW		
	I	No Fracturas/m	6 (hasta	de 4 cm espesor)	2 (hasta de 2 mm espesor)	2 (hasta de 2 mm espesor)	1 (15 cm espesor)	6 (3 mm espesor)	1 (20 cm espesor)	1 (20 cm	esbesor)		1 (10 cm espesor)	1 (10 cm espesor)	1,00	espesor)					1 (20 cm	espesor)		_
		% en Volímen		10		-	15	т	20	02	ì		10	10		20					ć	07		_
sos		Carácter		7	2	2	2	2	2	c	1		2	2	2	Diss	1	1		7	,	7	1	
PARAMETROS	7	Abundancia Minerales		QZ – SE	QZ – SE – Feox	QZ – SE – Feox	Si	QZ – SE –Feox	Si QZ – SE	Si	QZ – SE		Si	Si	Si	QZ – SE	CT	QZ – SE	Si	Py	Si	Py	QZ – SE	-
	ALTERACION	Abundancia		1	1	1	1	-	1 2	1	2		1	1	1	2	3	ε		2	-	2	2	
	A	Intensidad (Grado)		2	2	2	2	2	2 3	3	2		æ	3	3	2	1	1	ю	1	ω	-	1	
		Tipo		Qtz-Ser	Qtz-Ser	Qtz-Ser	Sil	Qtz-Ser	Sil Qtz-Ser	Sil	Qtz-Ser		Sil	Sil	Sil	Qtz-Ser	Chl	Qtz-Ser	Sil	Py	Sil	Py	Qtz-Ser	
	ICOS	Grado Meteorización		3	3	3	2	3	2	C	1	3	1	2		7		2		7	,	7	·	1
	LITOLOGICOS	Relación Ri-Hh		1	1	1		П				1	-	1				1					-	-
		Tamaño		7	2	2	1	2	1	_	-	2	1	2		7		2		_	-	_	r	1
COORDENADAS		≱	_	510962	510987	510987	510919	510919	510959	510959		510959	511018	511032		511032		511032		511032	11140	211148	511178	_
COORDE		z		717116	717076	717076	717058	717058	716998	716998	00011	716998	716927	717183		717183		717183		717183	01.00	/1/248	877712	200111
	SECTOR			_			Monizoles	COLOTION					Qda. Negra						Manizales	CONTRACT				
	MUESTRA			12005129	12005131	12005132	12005133	12005134	12005135	12005136	00100071	12005137	12005138	12005139		12005140		12005141		12005142	00000	12005143	12005144	

VeinMat - Di			_		٥	P	w		Pv<5%		_		_			
		N55E/80SE	1 (15 cm 1 espesor) 1	15	Diss	CT	2	1	Chl	3			511790	716839		12005162
						QZ – SE	_	w	Qtz-Ser							
Duplicate – Di		N50E/25NW	2 (3 cm N	6	2	Si	1	2	Sil	ω	1	2	511928	716960	ti tin	12005161
Duplicated – Di		N50E/25NW		6	2	Si	1	2	Sil	3	1	2	511928	716960	El Diluvio	12005160
N60W/75SW Respaldo de (Falla 12005158 – Di	N60W (Fa Norr				1	QZ – SE	1	3	Qtz-Ser	3	1	2	511824	716015		12005159
		N80E/85SE	l (l0 cm l	10	1	QZ – SE		ω	Qtz-Ser	ω		-	511824	716015	•	12005158
					2	QZ – SE	1	2	Qtz-Ser	ω	1	2	511776	716598		12005157
VeinMat		N50E/70SE	espesor)	15	2	QZ – SE	1	2	Qtz-Ser	ω		1	511776	716598		12005156
(And Dike)	(And	100	₩	ċ	t	QZ – SE	2	1	Qtz-Ser	,	,	t			•	i c
N60E/50NW Di	N60E/	N60W/75NF.		15	,)	Si		ω	Sil	J.	_	,	511507	716675		12005154
10		20044000	-	2.5	ı	QZ – SE	2	1	Qtz-Ser		_	ı	211102	710054	•	12005155
		NIKOWI/84CW		25	ر ا	Si	1	s	Sil	'n	_	ა 		716604		12005152
	E-W.									ţ			-	11000	•	10000
N50W/85SW (And Dike)	N50W (And									J.		_	511201	716859		12005152
N40E/80SE Respaldo de (And Dike) 12005148-49 – To	N40E (And									ω	1	2	511025	717560	d.	12005151
			enpenos)			Ру	3	1	Ру						Oda Neora	
//80SE Duplicated –	N40E/80SE	N40E90	1 (90 cm	90	2	QZ – SE	2	1	Qtz-Ser	3			511025	717560		12005149
						Si	1	3	Sil							
	Ç		enpenox)			Py	3	1	Py							
//80SE Duplicated –	N40E/80SE	N40E90	1 (90 cm	90	2	QZ – SE	2	1	Qtz-Ser	ω			511025	717560		12005148
						Si	1	3	Sil							
Respaldo de 12005146 con veinlets interesantes — To	N70E/86NW	N.	3 (2 cm espesor)	6	2	QZ – SE	2	2	Qtz-Ser	2	1	2	511046	717366		12005147
VeinMat		N70E/86NW	_	35	2	Si	1	3	Sil	2		1	511046	717366		12005146
Socavón 22: To		N70E/65NW	2 (5 cm N	10	2	QZ-SE	2	1	Qtz-Ser	3	1	2	511102	717330	Manizales	12005145
ros	Veinlets Otros	Veins	Fracturas/m	volumen				(Grado)		Meteorizacion	B1-Hb	Grano				
	Datos Cinemáticos	Datos	. Z	% en	Carácter	Minerales	Intensidad Abundancia Minerales Carácter	Intensidad	Tipo	Grado	ם	Tamaño	W	Z		
OBSERVACIONES	SE	ESTRUCTURALES	ES			Ź	ALTERACION			ICOS	LITOLOGICOS				SECTOR	MUESTRA
					TROS	PARAMETROS							COORDENADAS	COORD		

		OBSERVACIONES			VeinMat		Veinlets en Di
		soc	Veinlets Otros				
		Datos Cinemáticos	Veinlets				
	ESTRUCTURALES	Datos	Veins		N20E/85SE		
	ESTR	No Fracturas/m			1 (10 cm espesor)		6 (3 mm
		% en Volúmen			10		ю
8		Carácter		2	2	Diss	2
PARAMETROS	N	Minerales		Si	QZ – SE	CT	QZ – SE
P/	ALTERACION	Tipo Intensidad Abundancia Minerales Carácter (Grado)		1	2	3	1
		Intensidad (Grado)	,	т	2	1	2
		Tipo		Sil	Qtz- Ser	Chl	Qtz-
	cos	Tamaño Relación Grado Grano Bi-Hb Meteorización			9		3
	LITOLOGICOS	Relación Bi-Hb					1
		Tamaño Grano			1		2
COORDENADAS		W			717165 511736		717165 511736
COORDE		Z			717165		717165
		SECTOR				El Diluvio	
		MUESTRA SECTOR			12005163		12005164