Human infection by *Trichostrongylus* spp. in residents of urban areas of Salvador city, Bahia, Brazil

Robson Paixão Souza, Joelma Nascimento Souza, Joelma Figueiredo Menezes, Leda Maria Alcântara, Neci Matos Soares, Márcia Cristina Aquino Teixeira

Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal da Bahia, Bahia, Brasil

Introduction: Nematodes of *Trichostrongylus* genus are mainly parasites of herbivores, although sporadic human infections have been reported in many countries.

Objective: To describe the frequency and seasonality of *Trichostrongylus* spp. infection in individuals attended at a public clinical laboratory.

Materials and methods: Fecal samples of 9,283 individuals were evaluated by spontaneous sedimentation (Lutz) in the Parasitology Laboratory of the Pharmacy College, Federal University of Bahia, Brazil, from January of 2006 to May of 2008. The positive samples for either *Trichostrongylus* spp. or hookworms were further examined to evaluate the morphometry of nematode eggs.

Results: One-hundred and ten patients (1.2%) were confirmed to be infected by *Trichostrongylus* spp. The positive cases were significantly more frequent in females (1.6%; *p*<0.05), with higher distribution in the age group between 11-20 years (1.9%), compared to those aged 51-60 (0.8%) and older than 60 years (0.9%)(*p*<0.05), independent of gender. *Trichostrongylus* spp. infections were more common from March to May (40 cases) and showed a homogeneous distribution over the other periods of the year (21-25 cases). The hematological analyses of 60 *Trichostrongylus*-infected patients showed normal levels of eosinophils in most of the positive cases.

Conclusions: The data reveal that the occurrence of infection by *Trichostrongylus* spp. in residents of Salvador is more frequent than those reported in other urban regions and that it is essential to distinguish the parasite from other nematodes in routine parasitological examination.

Key words: *Trichostrongylus*, infection; diagnosis, differential; eosinophilia, seasons.

doi: http://dx.doi.org/10.7705/biomedica.v33i3.770

Authors' contributions:
Márcia Cristina Aquino Teixeira designed the study.
Robson Paixão Souza and Leda Maria Alcântara, Robson Paixão Souza and Neci Matos Soares wrote the manuscript.
Joelma Nascimento Souza and Joelma Figueiredo Menezes performed the laboratory work.
The weather is one of the major factors influencing the transmission of the parasite, which usually occurs in regions that have warm temperatures (22 °C to 26 °C) and high humidity (80-100%). Thus, inter-tropical humid areas offer the most conducive conditions, while environments present the least conducive conditions for larval development. Sandy soil and large-size grasses also contribute to the spread of *Trichostrongylus*, by facilitating the movement of larvae and their survival, respectively (2,14). The transmission of the parasite to humans is often related to the ingestion of water or unwashed vegetables contaminated with infective larvae, especially where manure is used for soil fertilization (7-9,15).

Trichostrongylus spp. human infections are usually asymptomatic. However, in the most severe cases, the hematophagism of the L₄ larvae and adult forms can cause inflammation of the bowel mucosa and tissue damage. The clinical symptoms are cramping, abdominal pain, flatulence, nausea and diarrhea. Infections with a heavy worm load can progress to eosinophilia and anemia (12,13,16). Treatment is similar to that used for other helminthes: albendazole, mebendazole, pyrantel pamoate or ivermectin (15-19).

The diagnosis of *Trichostrongylus* infection is mainly performed by detecting eggs in stool examinations using spontaneous sedimentation or formalin-ether methods (15,17,20). While there is a similarity between *Trichostrongylus* and hookworm eggs, the former are longer and elongated (6,15,20). Despite the vast literature in veterinary medicine on parasites of ruminants, scientific reports on the prevalence of *Trichostrongylus* spp. in humans are scarce. Reported frequencies after 1990’s are usually very low, ranging from 0.01% to 2.6%, usually associated with rural workers who work directly with cattle, goats and sheep (13,21-23). In Brazil, there are very few reports of the frequency of *Trichostrongylus*, especially in the northeastern region of the country. This is most likely due to difficulties in distinguishing the parasite eggs from other nematodes, such as hookworms. Therefore, the aim of this study was to evaluate the frequency and seasonality of *Trichostrongylus* infection in individuals living in urban areas of the city of Salvador in northeastern Brazil and to discuss the importance of its differential diagnosis.

Materials and methods

Samples and parasitological analysis

A total of 9,283 fecal samples from patients seen at the Clinical Analysis Laboratory of the Pharmacy College, Federal University of Bahia, were analyzed from January 2006 to May 2008.
using spontaneous sedimentation (Lutz method). Approximately three grams of feces were dissolved in water and filtered through gauze into a 200 ml tapered glass cup for spontaneous sedimentation. After two hours, the supernatant was discarded and the pellet was suspended in water. The sedimentation process was repeated twice to clarify the sediment. For each sediment sample, three slides were examined under light microscopy at 100x and 400x magnification, using an iodine stain. Positive samples for hookworms, *Trichostrongylus* spp or *Meloidogyne* spp. eggs were re-analyzed using an ocular micrometer lens to measure the eggs. *Trichostrongylus* eggs are elongated and range in size from 75-95 µm long by 40-50 µm wide. They are similar to hookworm eggs, however, the eggs of hookworms are 60-75 µm long by 35-40 µm wide and have a shorter length:width ratio. Hookworm eggs also show a clear space between the morula and egg shell, decreasing over the egg maturation. The eggs of *Meloidogyne* spp are ovoid or ellipsoid, measuring 82-120 µm in length and 24-43 µm in width. They may present rounded or oval corpuscles, which resemble the drops of fat found between the morula and the shell.

Analysis of data

Data referencing age, gender, address, physical complaints, levels of blood eosinophilia of *Trichostrongylus*-infected individuals and month of fecal analysis were collected from patient laboratory records. Comparisons of frequencies of *Trichostrongylus*-positive cases, according to the age and gender of patients and the month of detection of infection were performed using the chi-square test. Values of *p*<0.05 were considered significant. We evaluated the *Trichostrongylus* infection seasonality by distributing the diagnosed cases into four periods of three months: September to November, December to February, March to May and June to August (with the June to August period corresponding to the rainy season in Salvador).

Ethical considerations

All adult individuals and parents or legal guardians of minors with confirmed *Trychostrongylus* infection were required to sign an informed consent upon receiving laboratory results. This work was approved by the Ethics Committee of the Gonçalo Moniz Research Center, Oswaldo Cruz Foundation.

Results

The parasitological examination of 9,283 fecal samples detected 110 (1.2%) *Trichostrongylus*-infected patients. All cases were confirmed by further analysis of the size and shape of eggs in order to differentiate them from other smooth, thin-shelled, ellipsoidal nematode eggs found in human feces (figure 1). The positive cases were significantly (*p*<0.05) more frequent in females (1.6%) than in male patients (0.7%) as seen in table 1. The age group between 11-20 years old was the most affected by *Trichostrongylus* infection (1.9%). The positivity observed in this cluster was significantly higher than those found in people aged 51-60 and above 60 years (*p*<0.05) (table 1).

![Photomicrographies of nematode eggs in iodine wet mount of fecal samples showing *Trichostrongylus* (A), hookworm (B) and *Meloidogyne* sp. (C), a plant-parasitic nematode, rarely found in human feces.](image)

Figure 1. Photomicrographies of nematode eggs in iodine wet mount of fecal samples showing *Trichostrongylus* (A), hookworm (B) and *Meloidogyne* sp. (C), a plant-parasitic nematode, rarely found in human feces.
The majority of *Trichostrongylus*-infected patients (62.7%; 69/110) were mono-infected. Co-infection with other helminths included: *Trichuris trichiura* (n=4), *Strongyloides stercoralis* (n=2), *Schistosoma mansoni* (n=2), hookworm (n=1) and *Enterobius vermicularis* (n=1). The hematological analyses of 60 *Trichostrongylus*-infected patients showed normal relative levels of eosinophils (1-6%) in 48 individuals and discrete to intense eosinophilia in the 12 remaining cases (table 2). This final group had *Trichostrongylus* associated with *Trichuris trichiura* (n=1) and *Strongyloides stercoralis* (n=2) co-infection (table 2).

Trichostrongylus spp. human infection in Salvador was more common from March to May (40 cases) and showed a homogeneous distribution over the other periods analyzed, with 21 cases from December to February, 25 cases from June to August and 24 cases from September to November, as shown in table 3. However, no statistical difference was found in the distribution of *Trichostrongylus* infection in this population according to the period of year.

Most *Trichostrongylus*-infected individuals (67 cases) lived in urban areas close to the laboratory location, which is considered a middle-class neighborhood. The other 43 positive cases resided in distant urban boroughs (more than 10 Km distance from the laboratory) of lower socioeconomic characteristics.

Discussion

Human infection by *Trichostrongylus* spp. varies according to the population and geographical region studied, with rates of prevalence higher in rural areas (9). In addition to greater contact with animals, the socioeconomic conditions and hygiene in rural zones tend to be lower than those found in urban areas (11-13).

In comparison with the urban network of other Brazilian cities, Salvador is considered a national metropolitan center. Salvador has 2.6 million
The source of *Trichostrongylus* spp. human infection in urban areas is uncertain. Disturbances in water reservoirs for human consumption caused by contamination with feces of ruminants, rodents or even humans might be implicated (9). Furthermore, water used for irrigation of leaves of lettuce, green onions, parsley, and other greens frequently used to prepare salads and sandwiches, might be contaminated with infective larvae.

Although *Trichostrongylus* spp. infection occurs across all ages and in both genders, women were significantly the most affected group with 1.9% of cases with age between 11-20 years. This may suggest an influence of dietary habits in this cluster (higher intake of fruits or other raw vegetables) predisposing them to infection (27,28), with the development of resistance leading to reduction of the prevalence in older people, as observed herein. Nevertheless, there is no published data about the role these factors play in the susceptibility of *Trichostrongylus* infection. This is most likely due to the low prevalence of this parasite in humans.

In this work, a higher number of *Trichostrongylus* cases were diagnosed between March and May, the months immediately preceding the rainy season, which corresponds with the autumn months. Salvador has a tropical rainforest climate with no discernible dry season. Temperatures are relatively constant throughout the year, with hot and humid weather conditions. The driest month of the year is January and the rainy season is mainly between May and July, with 789 mm of rainfall. In another study conducted in Brazil, most of the L_3 larvae of *Trichostrongylus colubriformis* were recovered from the forage apex of the *Panicum maximum* (*Aruana grass*) during autumn months, while in springtime, the biggest L_3 recovery occurred at the 21-28 cm stratum from both *Aruana* and *Brachiaria decumbens* (14). The results of this study suggest that the migration of *T. colubriformis* larvae is more influenced by weather conditions than by forage species. The increased vertical migration of larvae on vegetation during March to May might have favored the spread of the parasite among animals and then on to areas with water reservoirs or vegetable plantations intended for human consumption in Salvador. In fact, in tropical and subtropical areas, clinical infections in animals with weight loss and diarrhea can be observed right after the summer, during periods of rain due to rehydration of larvae in hypobiosis (1,2,6).

Concerning the differentiation of the species of the genus *Trichostrongylus*, this usually can be accomplished by evaluating the morphology of larvae, by analyzing the spicules and copulatory bursa of male adults, or by molecular techniques (10,15). In this study, the only evolutionary forms detected in fecal samples were eggs. Therefore, it was not possible to determine the species involved in the positive cases since it would have been necessary to either analyze the morphology of infective larvae (L_3) obtained from fecal culture, or the morphology of adult worms, which are rarely found in feces.

Studies on the epidemiology and diversity of the genus *Trichostrongylus* in human infections are still very limited. The real prevalence may be underestimated because most of the patients are

Table 3. Frequency of *Trichostrongylus* positive cases according to the month period of diagnosis of infected subjects.

<table>
<thead>
<tr>
<th>Three-month period</th>
<th>Parasitological analysis of individuals</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tested n (%)</td>
</tr>
<tr>
<td>December to February</td>
<td>1,826 (19.7)</td>
</tr>
<tr>
<td>March to May</td>
<td>2,872 (30.9)</td>
</tr>
<tr>
<td>June to August</td>
<td>2,132 (23)</td>
</tr>
<tr>
<td>September to November</td>
<td>2,453 (26.4)</td>
</tr>
<tr>
<td>Total</td>
<td>9,283 (100)</td>
</tr>
</tbody>
</table>
asymptomatic or develop mild gastrointestinal disorders (13,16). Patients infected with *Trichostrongylus* may be asymptomatic, with normal eosinophilia. Conversely, a high worm burden can lead to marked eosinophilia and development of symptoms, including epigastric pain and diarrhea (12). Most *Trichostrongylus* human cases diagnosed in our study had no complaints of gastrointestinal symptoms and presented normal levels of blood eosinophils and low worm burden, as observed by the few parasite eggs detected in feces. These data suggest that *Strongyloides stercoralis* co-infection was the likely etiology of eosinophilia in two patients with discrete and intense blood eosinophil levels, respectively, as the correlation between asymptomatic persistent eosinophilia and *strongyloidiasis* is well documented (29). Furthermore, the parasite eggs may be confused with those from hookworms, and, therefore, the use of an ocular micrometer to measure the eggs for a parasitological diagnosis is necessary. In fact, a recent study conducted in a rural village in Laos, 93.5% (from 43 to 46) of parasitological cases initially diagnosed as hookworm were later confirmed as *Trichostrongylus colubriformes* by analyzing adult worms eliminated after treatment with albendazole (30). These results show a high transmission of *Trichostrongylus* in the Laos Province and point to a misdiagnosis of the nematode.

Further studies on the *Trichostrongylus* spp. prevalence in human hosts should be carried out using more sensitive diagnostic techniques, such as the agar plate culture, which also permits the identification of L3 infective larvae. Finally, the appropriate differentiation between hookworms and the genus *Trichostrongylus* is crucial in order to adopt specific measures to control widespread parasitic infections.

Conflict of interest

The authors confirm that there are no conflicts of interest.

Financial support

This work was supported by the Fundação de Amparo à Pesquisa do Estado da Bahia (FAPESB) and Universidade Federal da Bahia (UFBA), Brazil.

References