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Introduction: Strongyloides venezuelensis is a nematode whose natural host is rats. It is 
used as a model for the investigation of human strongyloidiasis caused by S. stercoralis. 
The latter is a neglected tropical disease in Ecuador where there are no specific plans to 
mitigate this parasitic illness.
Objective: To evaluate the stages of S. venezuelensis in an experimental life cycle using 
Wistar rats. 
Materials and methods: Male Wistar rats were used to replicate the natural biological cycle 
of S. venezuelensis and describe its morphometric characteristics, as well as its parasitic 
development. Furthermore, the production of eggs per gram of feces was quantified using 
two diagnostic techniques and assessment of parasite load: Kato-Katz and qPCR.
Results: Viable larval stages (L1, L2, L3) could be obtained up to 96 hours through fecal 
culture. Parthenogenetic females were established in the duodenum on the fifth day post-
infection. Fertile eggs were observed in the intestinal tissue and fresh feces where the 
production peak occurred on the 8th. day post-infection. Unlike Kato-Katz, qPCR detected 
parasitic DNA on days not typically reported.
Conclusions: The larval migration of S. venezuelensis within the murine host in an 
experimental environment was equivalent to that described in its natural biological cycle. 
The Kato-Katz quantitative technique showed to be quick and low-cost, but the qPCR had 
greater diagnostic precision. This experimental life cycle can be used as a tool for the study 
of strongyloidiasis or other similar nematodiasis.

Keywords: Strongyloides; Nematoda; life cycle stages; intestinal diseases, parasitic; Wistar 
rats; Ecuador.

Evaluación microscópica y molecular de Strongyloides venezuelensis en un ciclo de 
vida experimental utilizando ratas Wistar

Introducción. Strongyloides venezuelensis es un nematodo cuyo huésped natural son 
las ratas. Se utiliza como modelo para la investigación de la estrongiloidiasis humana 
producida por S. stercoralis. Esta última es una enfermedad tropical desatendida que afecta 
al Ecuador, donde no existen planes específicos para mitigar esta parasitosis. 
Objetivo. Evaluar experimentalmente los estadios del ciclo de vida de S. venezuelensis 
utilizando ratas Wistar. 
Materiales y métodos. Se emplearon ratas Wistar macho para replicar el ciclo biológico 
natural de S. venezuelensis y describir sus características morfométricas y su desarrollo 
parasitario. Además, se cuantificó la producción de huevos por gramo de heces mediante 
dos técnicas de diagnóstico y valoración de carga parasitaria: Kato-Katz y qPCR. 
Resultados. Se obtuvieron estadios larvarios viables (L1, L2, L3) hasta las 96 horas del 
cultivo fecal. En el duodeno se establecieron hembras partenogenéticas a partir del quinto 
día de la infección. Se observaron huevos fértiles en el tejido intestinal inspeccionado y en 
las heces frescas, en las que el pico de producción ocurrió al octavo día de la infección. A 
diferencia del método Kato-Katz, la qPCR detectó ADN parasitario en días que usualmente 
no se reportan. 
Conclusiones. La migración larvaria de S. venezuelensis dentro del ratón en un ambiente 
experimental fue equivalente al descrito en un ciclo biológico natural. El método cuantitativo 
de Kato-Katz dio resultados inmediatos a más bajo costo, pero la qPCR tuvo mayor 
precisión diagnóstica. Este ciclo de vida experimental puede usarse como una herramienta 
para el estudio de la estrongiloidiasis u otras nematodiasis similares.

Palabras clave: Strongyloides; Nematoda; estadios del ciclo de vida; parasitosis 
intestinales; ratas Wistar; Ecuador.
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Strongyloides is a genus of helminths made up of about 50 species of 
which mainly two, S. stercoralis and S. fülleborni, are gastrointestinal parasites 
that may be affecting up to 3,700 million people across the world (1,2). In Latin 
America, the disease is underestimated due to generally unreliable diagnosis 
methods. However, there are regions, including Ecuador, that have reported 
a prevalence between 0,7 % and 4.1 % depending on the ecosystems (3,4). 
Thus, it is important to acknowledge this parasitic illness as a latent public 
health risk, especially for inhabitants of underdeveloped areas with precarious 
health conditions and immunosuppressed patients. For these reasons, 
strongyloidiasis has been recognized as a tropical neglected disease by the 
World Health Organization.

Strongyloidiasis is a zoonotic disease produced by S. stercoralis, a 
nematode that lives on the ground as part of its life cycle and can enter 
the human organism through the skin mainly if the person is barefoot. The 
parasite has been detected in species such as dogs and primates and it may 
be accidentally transmitted to humans upon contact with infected faeces (5,6). 

The disease may remain asymptomatic for a long time, eventually 
producing itchiness or hives as the parasite moves under the skin, as well as 
cough, wheezing, and chronic bronchitis during the infectious stage in lungs 
or abdominal pain and diarrhea during the intestinal infectious stage. It may 
also produce autoinfection in the perianal area or in the bowel. The adult larvae 
penetrate the mucosa, mature, and produce eggs that enter into the lymphatic 
system and the general circulation and are scattered everywhere in the body 
where they hatch causing sepsis in various tissues (7). The infection may 
be fatal in cases of immunodeficiency and diagnosis is established through 
genome amplification in stool samples, serologic tests, and direct microscopy. 
Ivermectin, thiabendazol, and albendazole are used in the treatment (8). 

Strongyloides venezuelensis and S. ratti, which infects rats, have a 
lifecycle and migration pattern similar to S. stercoralis, except they cause no 
autoinfection and they do not excrete larvae in the faeces. Both parasites 
exhibit transmammary transmission in different phases. The most notorious 
difference among both species is that S. venezuelensis is less pathogenic 
than S. ratti as a high larval concentration is needed for developing the 
disease and S. ratti larval development is faster, to the point that free living 
mature females and males may be detected (9). Thus, S. venezuelensis 
can be used in inference-based studies to improve the strategies for 
strongyloidiasis control. A detailed experimental study of the S. venezuelensis 
biological cycle can optimize molecular biology analyses, as well as the 
knowledge on parasite-host interactions for therapeutic assays to obtain 
heterologous antigens and develop immunological techniques (10-13).

In this study, we evaluated by microscopic and molecular analyses of 
S. venezuelensis in an experimental life cycle using Wistar rats housed 
in artificial tropical conditions in an animal facility in Quito, Ecuador. The 
standardization of this parasite as a model for strongyloidiasis allowed us to 
describe the morphological and morphometric characteristics of the parasite 
during its different stages both inside and outside the host. Additionally, we 
were able to evaluate different diagnostic techniques to detect the parasite in 
faces and quantify the progress of the infection when evaluating the presence 
of eggs in stools.
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Materials and methods

Animals

We used male Wistar rats (Rattus novergicus) obtained from Charles River 
Laboratories, USA, kept in the experimental animal facility at the Instituto 
Nacional de Investigación en Salud Pública Dr. Leopoldo Izquieta Pérez in Quito, 
Ecuador, at 29°C, 35% humidity, 12/12 light-dark cycle, and 2,850 masl altitude. 

The animals selected were 8 weeks old and weighed between 120 and 
180 g. Once the experiment ended, the rats were sacrificed using deep 
intraperitoneal sedation with 10 mg/kg of xylazine (Dormi-Xyl™, 2) and 60 mg/
kg of ketamine (Ket-A-100™) for cervical dislocation.

Infection of biomodels 

Healthy biomodels were inoculated with 3,000 infective L3 larvae (iL3) in the 
inner side of the leg subcutaneous tissue. The inoculated larvae’s morphology 
was typically filariform with acceptable motility to light and viability over 95%. 
The parasites were obtained from the Institute of Biological Sciences at the 
Universidade Federal de Minas Gerais, Brazil.

The rodents were kept in a cage with wood chips, ad libitum access to 
water, and a food ration of 15 g/animal/day. On the 5th. day post-infection, the 
rats were transferred to a metabolic cage. The cage ground had two strips of 
absorbent paper moistened with distilled water over which a wire net with a 1 
cm2 aperture was placed to separate the feces from the cage floor and the rats.

Bronchoalveolar lavage for parasite recovery

For the confirmation of larval migration to the lungs, we used 
bronchoalveolar lavage in a group of infected animals on the 2nd. day post-
infection. After euthanasia, dissection was carried out making a 2 cm incision 
along the middle line in the ventral area of the trachea at one-third cm from 
the entrance to the thorax. An Nº 18 catheter was introduced and fixed with a 
knot using silk thread. 

To develop the bronchoalveolar lavage, 5 ml of phosphate-buffered 
saline 1X (PBS) with 0.6 mm ethylene-diamine-tetraacetic acid (EDTA) 
was introduced through the catheter. The fluid obtained was transferred to 
polypropylene tubes placed on ice. The same procedure was repeated until 
a total volume of 15 ml was collected, then the tubes were centrifuged at 
455g for 15 min at 4°C. The supernatants were discarded and the pellets 
suspended in 3 ml of RPMI at 4°C to then be transferred to a 24-well culture 
tissues plate. The cultured plate was observed on the inverted microscope to 
verify the presence of S. venezuelensis larvae.

 Egg counting in feces

From the 5th. day post-infection, the feces of the infected rats kept in the cages 
on dampened paper were collected daily. We took a 5 g previously homogenized 
sample from the pool of feces to count the number of eggs using the Kato-Katz 
method with a 41.7 mg template (14,15). The slides were immediately observed 
with 100X magnification in an optical microscope (Motic, Hong Kong, China) 
coupled to the Images Plus 2.0™ software (Motic, Hong Kong, China) for the 
morphometric analyses. The total eggs observed were counted and the final 
value was multiplied by 24 to calculate de number of eggs per gram of feces.
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Stool culture and larvae maturation

For egg hatching and larval maturing at the first, second, and third stages 
we used the feces culture obtained from each cage. The feces were mixed 
with fine-grained vermiculite and sterile water in 28% of the initial stool weight 
and the culture was then incubated at 28°C.

We collected the larval stages with the modified Baermann technique 
(15,16). The stool cultures were wrapped in six layers of gauze. Each wrap 
was suspended over sterile water at 42°C contained in cone-shaped crystal 
cups and maintained idle for 60 minutes to allow the mobilization of the larvae 
towards the cup bottom by thermotropism. We eliminated three-fourth parts 
of the supernatant with a suction pump and one-fourth of the remaining 
parts was homogenized and transferred to a 10 ml test tube. The tubes were 
centrifuged for 3 min at 600g and the excess liquid was eliminated leaving 
approximately 2 ml of the supernatant liquid with sediment. The content 
was homogenized and 2 μl were extended on a slide twice. The slide was 
visualized at 40X magnification in an optical microscope (Motic, Hong Kong, 
China) coupled to the Images Plus 2.0™ software (Motic, Hong Kong, China) 
for the morphometric study. 

To study the larval stages, we used the modified Baermann technique 24, 
48, 72, and 96 hours after preparing the stool culture. The percentage of larval 
stages was estimated by visual differentiation and the counting of larvae with 
motility by calculating the relative frequency percentage for each one of the 
time periods.

Analysis of parthenogenetic females 

After sacrificing the Wistar rats, we dissected the abdominal cavity, 
removed the duodenum opening lengthwise, and carefully chopped it. The 
intestinal tissues were placed over six layers of gauze and the adult larvae 
were picked up after 3 hours using the modified Baermann method and 
0.9% NaCI saline solution as a medium. The resulting fluid was discharged 
on tissue culture plates to visualize the presence of adult larvae with 40X 
magnification in an inverted microscope (Motic, Hong Kong, China) coupled 
to the Images Plus 2.0 software™ (Motic, Hong Kong, China) for their 
morphological analyses.

Molecular assays

Feces samples from infected rats were collected in triplicate at the 1st., 
3rd., 4th., 5th., 7th., 8th., 11th., 15th., 21st., 28th., and 31st. days post-infection and 
conserved in 2.5% potassium dichromate at -80°C until the DNA extraction 
process. The genomic DNA was extracted using the MagaZorb DNA Mini-Prep 
Kit™ (Promega, Madison, USA) following the manufacturer’s protocols. The 
DNA was quantified in a NanoDrop2000™ spectrophotometer (Thermo Fisher 
Scientific, Massachusetts, USA) at 260–280 nm absorbance. As a positive 
control, we used a sample of S. venezuelensis eggs confirmed and quantified 
by the Kato-Katz method and as a negative control, DNA isolated from the 
Ascaris suum, Trichuris trichiura, and Taenia saginata tissues. 

We performed qPCR with primers FW5´GAATTCCAAGTAAACGT
AAGTCATTAGC-3´, RV5´TGCCTCTGGATATTGCTCAGTTC-3´, and 
FAMACACACCGGCCGTCGCTGC- BHQ1 to amplify 101 bp of the 18S rRNA 
region of S. stercoralis and S. venezuelensis (17) in a CFX96 Real-Time PCR 
Detection System Thermal Cycler™ (Bio-Rad, California, USA). Each reaction 
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was prepared in a total volume of 20 μl containing 1 μl of the sample, 10 μl 
of Master Mix 2X of the GoTaq Probe qPCR Master Mix Kit™ (Promega, 
Madison, USA), 18 μM of each primer, and 0.8 μM of the FAM fluorophore. 
The qPCR included an initial denaturation at 95°C for 2 minutes, followed by 
40 cycles (95 °C for 3 s, 60°C for 30 s, 72°C for 40 s), and a final elongation 
step at 72°C for 5 min. The data analysis was carried out using the CFX 
Manager Software™, version 3.1 (Bio-Rad, California, USA). 

The qPCR results were considered negative if the values of the threshold 
cycle (Ct) were greater than 34 cycles. This value was the detectable limit of 
the serial dilutions with which the standard qPCR curve was constructed for 
the molecular quantification of the parasitic load.

Data analysis

GraphPad Prism software™, version 6.01 (GraphPad Software Inc., 
California, USA) was used to estimate eggs per gram values on days post-
infection and also to calculate the larval stages relative frequency percentage 
in stool cultures based on incubation hours.

Ethical considerations 

The methodology used was certified and approved by the experimental 
animal facility of the Instituto Nacional de Investigación en Salud Pública 
Dr. Leopoldo Izquieta Pérez. All the experimental procedures were carried 
out according to bioethical manuals of experimentation and animal welfare 
and adjusted to the three R principle, the supervision protocols, the five 
freedoms principles, and the criteria for humane endpoints, as well as the 
other recommendations established in the Guide for the Care and Use of 
Laboratory Animals of the Institute of Laboratory Animal Resources and the 
National Research Council, USA.

Results

Experimental life cycle and detection of the parasite in Wistar rats

After the subcutaneous inoculation to the experimental models, the iL3 
larvae (figure 1a) migrated through the tissues toward cardiac blood. After 
the 2nd. day post-infection, they were observed in the lungs (figure 1b) with 
similar morphologic features as those in the infective stage. The larvae then 
mobilized to the trachea during the next 24 to 48 hours as the animals had 
been indirectly swallowing them when feeding and hydrating. Afterwards, 
they migrated to the small intestine on the 5th. day post-infection where they 
matured to the adult form (figure 1c). In this stage, the parasites were hooked 
on the bowel tissue and the female larvae released many eggs in the stool by 
parthenogenesis (figure 1d). 

Using the Kato-Katz technique, parasitic eggs were evidenced as of the 
6th. day post-infection with a peak production on the 8th. day post-infection 
which then descended drastically on the 15th. day post-infection (figure 2a) 
and completely disappeared on the 28th. day post-infection. The molecular 
detection using qPCR allowed to amplify the DNA of the parasite between 
the 5th. and the 31st. day post-infection (figure 2b). The egg peak production 
occurred on the 8th. day post-infection according to microscope data. A 
positive correlation was found (r=0.97) (p-value <0.05) upon correlating the 
results of calculating the eggs per gram.
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Figure 1. Experimental life cycle of Strongyloides venezuelensis in Wistar rats 
(Rattis norvegicus)

Figure 2. EPG values of Strongyloides venezuelensis on the different days post-infection. 
a) Kato-Katz technique analysis (average ± standard error, n=18), b) qPCR assay results 
(EPG: Eggs per gram of feces)
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The stool of the infected animals was cultured for egg maturation 
throughout the different larval stages. As shown in figure 3, within the first 
24 hours of incubation it was possible to detect 79% of L1 larvae, 18% of L2 
larvae, and a maximum of 3% of iL3 larvae. At 48 hours, 6% of L1 larvae, 46% 
of L2, and 48% of iL3 were observed. At 72 hours, 4% of L1, 5% of L2, and 
91% of iL3 were recovered, and, finally, at 96 hours, 1% of L2 and 99% of iL3 
were found. The best time to recover infective stage larvae was at 96 hours 
of incubating stool cultures; those larvae were inoculated to preserve the 
experimental life cycle.

Eggs morphometric evaluation 

The eggs observed in the feces had different stages of development. In 
some stool samples, we were able to differentiate granulated embryos (figure 
4a,4c) and larval eggs (figure 4b, 4d) with larva moving inside. Both phases 
had an oval shape with symmetric polar points and presented a thin chitinous 
cortex with a smooth surface. Additionally, they (n=92) had an average length 
of 43.22 µm (standard error=0.23 µm) and a width of 28.8 µm (standard 
error=0.15 µm).
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Morphometric analysis of larval stages 

The L1 larvae (figure 5a) were characterized for having a rounded shape 
on the front end, a rhabditiform esophagus, and an intestine of approximately 
half of the total length. Additionally, a genital primordium was present in the 
central segment and the larvae ended in a pointed tail. They (n=58) were 
294.99 µm (standard error=0.23 µm) in length and 17.09 µm in width (standard 
error=0.16 µm) in the oesophagus-intestine divide.

The change to L2 larvae produced the enlargement of the entire body. They 
had a rhabditiform esophagus (figure 5b) accounting for approximately 30% 

Figure 5. Stages of Strongyloides venezuelensis larvae obtained from cultures of infected 
Wistar rats’ stool. a) First stage larva (L1). b) Second stage larva (L2). c) Third stage larva (iL3) 
(scale bars: 100 µm). 

Figure 4. Development stages of Strongyloides venezuelensis eggs obtained in feces of infected 
Wistar rats. a, c) Granulated embryo eggs. b, d) Larval eggs. a, b) Without staining. c, d) Lugol 
staining.

Figure 3. Bar graph of the relative frequency percentage of larval stages of 
Strongyloides venezuelensis in stool culture according to incubation hours

RO: Rhabditiform oesophagus; FO: Filariform esophagus; NR: Nervous ring; In: Intestine; GP: Genital primordium 
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of the length of the parasite, which was joined to the intestine, and contained 
a nervous ring in the central part; a genital primordium was located in the 
middle (18,19). The L2 larvae (n=29) presented a total length of 429.56 µm 
(standard error=6.85 µm) and a width in the esophagus-intestine division of 
17.23 µm (standard error=0.29 µm). 

Larvae in the third stage or iL3 (figure 5c) presented a rounded front end, 
a long and filariform esophagus making up for half of the entire parasite 
dimension. The esophagus was connected to the intestine and ended in 
a typically sharpened tail. The L3 (n=84) had a total length of 547.14 µm 
(standard error=3.74 µm) and a width in the esophagus-intestine division of 
18.54 µm (standard error=0.08 µm).

Parthenogenetic females’ morphometric study

Adult parasites were found in the mucus of the small intestine of infected rats. 
Morphologically, the females (figure 6a) had a rounded front end with chitinous 
projections like teeth (figure 6b). A cylindrical filariform esophagus was observed, 
which made up approximately one-third of the body length and was connected to 
the intestine extending together with the ovary in a spiral shape throughout the 
parasite (figure 6c). Additionally, the uterus contained granulated embryo eggs 
along the vulva located on the ventral midline of the parasitic body (figure 6d). 
The tail was sharp and the anal hole was viewed at one side of its terminal area 
(Figure 6e). The parthenogenic females (n=49), collected on the 8th. day post-
infection, had a total length of 2.67 mm (standard error=26.21 µm) and a width at 
the esophagus-intestine division of 29.81 µm (standard error=0.23 µm).

Figure 6. Parthenogenic female of Strongyloides venezuelensis. a) Entire view (scale bars: 100 
µm). b) Head portion approach (scale bars: 20 µm). c) Middle portion view (scale bars: 50 µm). d) 
Sexual portion approach (scale bars: 20 µm). e) Last portion view (scale bars: 50 µm). 

FO: Filariform esophagus; In: Intestine; Ov: Ovary; Ut: Uterus; E: Egg; Vu: Vulva; An: Anus; Pr: Projections

Discussion

In this study, we modeled an experimental life cycle of S. venezuelensis 
in Wistar rats maintained on artificial tropical conditions corresponding to the 
Andean region of Ecuador at 2,850 masl. We were able to observe the biological 
cycle features, conduct microscopic and molecular diagnoses comparisons, 
establish morphometric relations, and describe the specific characteristics of the 
species during the different stages both inside and outside the host.
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The methods of parasitic detection we detailed could be used for the 
diagnosis of homologous parasites such as S. stercoralis in humans. From 
the different qualitative tests, such as direct swabbing and coproparasitic 
methods with Lugol staining, and the quantitative assays, such as McMaster 
quantification, serodiagnostic tests (ELISA, IFAT, and immunoblot), or molecular 
amplification (10,11,20-22), we chose the Kato-Katz method as an immediate 
quantitative measurement technique given that S. venezuelensis eggs present 
an easily degradable thin chitinous membrane common in the Rhabditidae 
family (8,23). This technique allowed us to observe eggs in the feces as of the 
6th. day post-infection reaching a maximum peak on the 8th. day post-infection 
with a progressive reduction from the 9th. to the 28th. day post-infection when 
none were detected anymore, which agrees with other studies where peaks 
occurred between the 6th. and the 8th. day post-infection and their expulsion 
took less than one month (10,11,22). The reduction in egg production as of 
the 9th. day post-infection may be attributed to the immune system of the host 
through the activity of the eosinophils present in the intestine mucosa (24), the 
B lymphocytes (25), the mastocytes activated by cytokine stimulus such as 
IL-3, IL-9, IL-18, and IgE and IgG immunoglobulins (26). We did not observe 
subclinical coinfections with Syphacia muris, an oxyurid nematode normally 
occurring in the gastrointestinal tract of rats, in any of the evaluation days (22).

We used qPCR to amplify a specific region of the 18s rRNA gene in the 
Strongyloides genus. Although with the Kato-Katz technique we did not 
manage to observe eggs on the 5th. day post-infection, the results observed 
by qPCR at this point indicated a small increase (ΔCt=3.68 equal to 1.71 eggs 
per gram) compared to the negative control. Besides, although the shape of 
the egg production curve by qPCR was similar to that obtained with the Kato-
Katz technique, the concentrations calculated by qPCR were markedly higher, 
especially on threshold days (7th. and 8th. day post-infection). 

These values could be explained by the different diagnostic potential of 
microscopical and molecular tests. Moreover, immature parasites could be 
detected in the small intestine as of 60 hours of infection (27) after presumably 
maturing into adult parasites in a progressive manner, such as that seen for 
the in vitro larvae production. While in this study the 6th. day post-infection was 
not analyzed using qPCR, the microscopic observation of eggs at this point 
confirmed the presence of the parasite and the establishment of a biological 
cycle in the infected animals. However, on the last day of the study (31st. day 
post-infection), a small increase was observed in the relative quantity of eggs 
compared to the previous point (28th. day post-infection). 

This may have indicated that the adult parasites housed in the intestine 
slightly increased the oviposition, but not until the necessary limit to be 
detected by direct microscopy, or that the detected levels could have 
corresponded to the adult parasites eliminated in the feces, a factor attributed 
to the immune response that increases the contraction of the intestinal walls 
favoring their removal (28). Given that this study analyzed the dynamic of the 
biological cycle until the 31st. day post-infection, it would be interesting to see 
the results of the analysis by qPCR after this point to determine the minimum 
possible amplification levels.

While it is true that the Kato-Katz method was less responsive than the 
qPCR, its ease of implementation, low cost, and the fact that it does not 
require sophisticated equipment facilitate its daily use in simple laboratories. 
Additionally, this technique showed high potential as a screening test for the 
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diagnosis of different nematode infections (29,30) such as schistosomiasis 
(15) and, therefore. it could be used in areas lacking the technological 
capacity or sufficient resources.

On the other hand, we were able to study the morphologic changes 
of S. venezuelensis stages during the experimental life cycle. In vivo, 
the iL3 exhibited the typical migration and penetrated blood vessels after 
subcutaneous administration (2,9). Then, we found them in lung fluid using 
bronchoalveolar lavage on the 2nd. day post-infection, thus confirming they 
had reached the alveoli after breaking the capillary membrane and bronchial 
epithelium, an aggregation that caused small hemorrhages known as 
pulmonary petechiae (18).

Subsequently, they mobilized out of the organism across the trachea to the 
pharynx where the larvae were swallowed by the animals through food and 
water. Then, they typically migrated across the digestive tract and matured 
into adult parasites in the duodenal mucosa and the upper part of the jejunum. 
The eggs were produced via parthenogenesis by the female larvae and 
then expelled with the intestinal contents (2,9,31). Thus, the migration of S. 
venezuelensis was comparable to other parasites of the Secernentea class 
and similar to other species of the Strongyloides genus. 

The most important difference between S. stercoralis and S ratti resided 
in the capability to develop infective larvae in the large intestine apt to 
disseminate and create autoinfection and/or hyperinfections in the small 
intestine or other organs (7,9). Ex vivo, the production of larvae in vitro was 
related to the number of eggas per gram in feces and a larger production 
of larvae on the 8th. day post-infection. The larval development was 
asynchronous before reaching the 96 hours of stool culture incubation due 
to the progressive maturation of eggs produced by adult females (20). At that 
point, it was possible to find a greater proportion of L3 larvae making it an 
ideal collection point of infective larvae that may be used in different studies.

In conclusion, this study describes the implementation of an experimental 
model of S. venezuelensis in a manageable and reproducible system. 
The biological cycle we standardized provides a study tool for parasitic 
biology, toxicology, host-parasite interactions, and the development of 
new technologies or therapies for strongyloidiasis management or other 
helminthiasis caused by nematodes of regional importance.
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