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Introduction: The coronavirus disease 2019 (COVID-19) has become a significant public 
health problem worldwide. In this context, CT-scan automatic analysis has emerged as a 
COVID-19 complementary diagnosis tool allowing for radiological finding characterization, 
patient categorization, and disease follow-up. However, this analysis depends on the 
radiologist’s expertise, which may result in subjective evaluations.
Objective: To explore deep learning representations, trained from thoracic CT-slices, to 
automatically distinguish COVID-19 disease from control samples. 
Materials and methods: Two datasets were used: SARS-CoV-2 CT Scan (Set-1) and 
FOSCAL clinic’s dataset (Set-2). The deep representations took advantage of supervised 
learning models previously trained on the natural image domain, which were adjusted 
following a transfer learning scheme. The deep classification was carried out: (a) via an 
end-to-end deep learning approach and (b) via random forest and support vector machine 
classifiers by feeding the deep representation embedding vectors into these classifiers. 
Results: The end-to-end classification achieved an average accuracy of 92.33% (89.70% 
precision) for Set-1 and 96.99% (96.62% precision) for Set-2. The deep feature embedding 
with a support vector machine achieved an average accuracy of 91.40% (95.77% precision) 
and 96.00% (94.74% precision) for Set-1 and Set-2, respectively.
Conclusion: Deep representations have achieved outstanding performance in the 
identification of COVID-19 cases on CT scans demonstrating good characterization of 
the COVID-19 radiological patterns. These representations could potentially support the 
COVID-19 diagnosis in clinical settings.

Keywords: Coronavirus infections/diagnosis; tomography, X-ray computed; deep learning.

Representaciones basadas en aprendizaje profundo como apoyo del diagnóstico de 
la COVID-19 en cortes de tomografía computarizada

Introducción. La enfermedad por coronavirus (COVID-19) es actualmente el principal 
problema de salud pública en el mundo. En este contexto, el análisis automático de 
tomografías computarizadas (TC) surge como una herramienta diagnóstica complementaria 
que permite caracterizar hallazgos radiológicos, y categorizar y hacer el seguimiento de 
pacientes con COVID-19. Sin embargo, este análisis depende de la experiencia de los 
radiólogos, por lo que las valoraciones pueden ser subjetivas.
Objetivo. Explorar representaciones de aprendizaje profundo entrenadas con cortes de 
TC torácica para diferenciar automáticamente entre los casos de COVID-19 y personas no 
infectadas. 
Materiales y métodos. Se usaron dos conjuntos de datos de TC: de SARS-CoV-2 CT 
(conjunto 1) y de la clínica FOSCAL (conjunto 2). Los modelos de aprendizaje supervisados 
y previamente entrenados en imágenes naturales, se ajustaron usando aprendizaje por 
transferencia. La clasificación se llevó a cabo mediante aprendizaje de extremo a extremo 
y clasificadores tales como los árboles de decisiones y las máquinas de soporte vectorial, 
alimentados por la representación profunda previamente aprendida.
Resultados. El enfoque de extremo a extremo alcanzó una exactitud promedio de 92,33 % 
(89,70 % de precisión) para el conjunto 1 y de 96,99 % (96,62 % de precisión) para el conjunto-2. 
La máquina de soporte vectorial alcanzó una exactitud promedio de 91,40 % (precisión del 95,77 
%) para el conjunto-1 y del 96,00 % (precisión del 94,74 %) para el conjunto 2.
Conclusión. Las representaciones profundas lograron resultados sobresalientes al 
caracterizar patrones radiológicos usados en la detección de casos de COVID-19 a partir 
de estudios de TC y demostraron ser una potencial herramienta de apoyo del diagnóstico.

Palabras clave: infecciones por coronavirus/diagnóstico; tomografía computarizada por 
rayos X; aprendizaje profundo.
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Coronavirus disease 2019 (COVID-19) emerges nowadays as the major 
public health problem worldwide and it is the third coronavirus outbreak in 
the last two decades (1,2). According to the Center for Systems Science and 
Engineering (CSSE), until June 2021, there were 176’349,164 confirmed 
cases worldwide (3) and in Colombia, there were 3’777,600 confirmed cases 
and 96.366 deaths associated with the disease (3). COVID-19 is a disease 
caused by the severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) (2,4), which belongs to the betacoronavirus genus; it takes a mean 
of 5 days for incubation and its initial manifestations are similar to those by 
another respiratory tract virus (2,4). The infection may progress to the lower 
respiratory tract with symptoms ranging from dyspnea with progressive oxygen 
desaturation to severe pneumonia, usually present in the second or third week. 
In advanced stages, there is the risk of acute respiratory distress syndrome 
(2,4) requiring specialized clinical interventions in the intensive care units to 
avoid possible asepsis, septic shock, and even death. Such requirements can 
overwhelm public health systems limiting the adequate provision of services 
and causing increased mortality in the affected population (5).

The early detection of the infection is the most effective strategy to treat 
and follow patients, as well as to decrease disease transmission allowing 
quick reactions such as timely lockdowns (6). The gold standard test for 
COVID-19 diagnosis is the reverse transcription-polymerase chain reaction 
(RT-PCR) (7), however, a high false-negative rate has been reported ranging 
between 20% and 67% (8). This variability may respond to the difficulty of 
obtaining high-quality samples and the timing of testing (4). A recent study 
estimating the sensitivity of the RT-PCR on 1,194 inpatients and 1,814 
outpatients concluded that it was moderate at best (9). The authors reported 
that when taking into account highly suspicious cases (which never tested 
positive), the estimated sensitivity (95% CI) was 67.5% (62.9–71.9%) for 
inpatients, 34.9% (31.4–38.5%) for outpatients, and 47.3% (44.4–50.3%) 
for all. Additionally, the delay in the result of the RT-PCR test interferes with 
an early diagnosis of the disease (10). For those reasons, radiological-
image analyses have emerged as a powerful technique to support the 
diagnosis and characterize symptomatic cases and a complementary tool 
in the personalized characterization of the disease (11-14). Among others, 
the analysis of radiological visual patterns over CT scans allows to stratify 
the disease, define specific treatments, and follow the evolution from a 
personalized perspective. In a study by Bai, et al. (15), a group of radiologists 
with different levels of experience were evaluated at the task of differentiating 
COVID-19 disease from viral pneumonia on thoracic CT-scans obtaining a 
sensibility ranging between 56% and 98%. Nevertheless, the same study 
showed a low specificity (25%) among radiologists with little experience 
(15,16). Knowing that the COVID-19 visual patterns on CT scans are very 
similar to other lung infections, experts should go through an arduous training 
process (15,16). Therefore, the development of computational strategies using 
radiological studies to diagnose COVID-19 may help to improve the diagnostic 
capacity of health systems and support early diagnosis. Additionally, these 
developments could reduce the high inter-observer variability and rate of false 
negatives in COVID-19 detection on CT scans.

Some artificial intelligence strategies have been developed to accurately 
diagnose lung diseases such as pneumonia, pulmonary nodules, chronic 
obstructive pulmonary disease (COPD), and diffuse pulmonary fibrosis 
using radiologic studies (17,18). Regarding COVID-19 detection on CT slices, 
Li, et al. (5) developed a 3D learning model based on convolutional neural 



172

Ruano J, Arcila J, Romo Bucheli D, et al. Biomédica 2022;42:170-83

networks (CNN) to perform a differential diagnosis of COVID-19 and other lung 
diseases on thoracic CT scans (5). Silva, et al. (19) modified the EfficientNetB0 
architecture by adding six layers in the feature extraction stage. In contrast, 
Ragab, et al. (20) proposed a method that combines four CNN and three hand-
crafted feature extractors to characterize radiological images exhaustively, 
features that were then used to train a support vector machine model (SVM) 
with a cubic kernel. Both methods applied a transfer learning technique using a 
deep learning model pre-trained on the ImageNet dataset (21). Additionally, the 
authors used standard data augmentation policies, as well as the evaluation 
scheme proposed by Soares, et al. (22). However, the authors did not provide 
enough information to determine if the evaluation stratified by patients the 
training and testing sets. Avoiding such partitioning might result in over-
optimistic results, as pointed out by Silva, et al. (19). Besides, the low number 
of cases in different populations and acquisition devices limit the ability of 
training generalizable supervised deep learning models.

We explored and analyzed here convolutional deep learning 
representations to support the automatic classification of COVID-19 and 
non-COVID-19 samples in clinically relevant CT slices previously selected 
by radiologists. From a supervised scheme, a set of architectures originally 
trained on the natural image domain were adjusted to implicitly identify 
radiological visual patterns associated with COVID-19. After, the learned 
deep representations were used to classify new samples using an end-to-
end scheme, as well as high-level embedding vectors with classical machine 
learning classifiers. Such representations were validated on two different 
datasets separately showing remarkable results to support radiological 
analyses. The best performance of the proposed strategies yielded scores of 
90% accuracy, 91% sensitivity, and 94% specificity on the mentioned datasets.

Materials and methods

Thoracic CT is useful to analyze the transverse area, the anatomical 
structure, and the density of the lungs. Over such images, it is possible to 
characterize pneumonia from a set of radiological findings as described by the 
Fleischner Society glossary (23,24). Regarding COVID-19 characterization, 
there are some predominant findings known to be associated with the 
disease. The following findings can be considered among the most frequent: 
bilaterally, lower lobe, peripheral, and basal predominant ground-glass 
opacities (GGOs) or consolidation with a vascular enlargement (25,26). 
Besides, GGO is superimposed by a mixed pattern composed of crazy 
paving, architectural distortion, and perilobular abnormalities (12).

The localization of the radiological findings on thoracic CT slices is specific 
for each patient and varies depending on the stage of the disease (11,25,26). 
Hence, a CT-slice selection process was done for better characterization 
of the COVID-19 patterns. Such selections were manually performed by 
radiologists exploring the whole CT scans set to determine clinically relevant 
slices. The datasets used in this work are described in the following section.

Datasets

Here the evaluation of deep learning representations was considered on 
two different sets aimed at determining the generalization capability of the 
classification, as well as the effectiveness in retrospective studies including 
demographic information on patients. In both cases, only axial CT volumes 
were considered. The datasets are described as follows:
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SARS-CoV-2 CT Scan dataset. This public collection contains a total of 210 
cases comprising 4,173 thoracic CT slices. A subset of 80 cases corresponds 
to patients infected by SARS-CoV-2 (2,168 CT slices) and 50 to non-infected 
patients (757 CT slices). The remaining 80 cases are patients with other 
pulmonary diseases that were not taken into account in this work. For each 
CT volume, the most relevant CT slice in terms of radiological findings was 
manually selected as input for deep learning. This dataset was collected in 
hospitals of Sao Paulo, Brazil, and all patients were confirmed as positive 
or negative for SARS-CoV-2 by RT-PCR test (22). Therefore, the automated 
categorization of patients by the deep learning models may be biased to 
detect those cases also detected by the RT-PCR test. In our study, this bias 
was mitigated by the fact that the radiological findings identified by the experts 
were previously selected on the most significant CT slice for diagnosis.

FOSCAL dataset. This dataset comes from a retrospective study of CT 
scans collected at Clínica FOSCAL in Santander, Colombia, from March 1 
to August 19, 2020. The dataset is composed of thoracic CT scans from 355 
patients. A subset of 175 patients were positive for COVID-19 infection by 
RT-PCR (1,171 CT slices) while the remaining 180 patients were negative for 
COVID-19 (1,364 CT slices) but could have had other pulmonary diseases. 
Each patient underwent CT and RT-PCR testing for SARS-COV-2. The dataset 
contains information on 1,846 slices from non-SARS patients and 416 slices 
from SARS patients. Clinically relevant slices were selected by two radiologists 
with 3 and 4 years of experience. The number of selected slices per CT scan 
varies between 4 to 15 from among the tomographies. Every single slice 
had a spatial size of 512 x 512 pixels. The demographic information and 
comorbidities distribution are shown in table 1.

Our study was retrospective using human subjects’ data and it was 
approved by the Ethics Committees at Universidad Industrial de Santander 
and of the FOSCAL clinical center in Bucaramanga, Colombia.

We used deep convolutional representations to automatically classify 
COVID-19 cases from thoracic CT slices. These representations aimed to 
recover and learn distinctive visual patterns associated with the disease 
and properly distinguish between COVID-19 and non-COVID-19 CT images. 
A transfer-learning scheme was implemented to train and adjust the deep 
representations in an end-to-end classification setup. As an alternative for 
evaluating deep representations, we took the last fully connected layers as 
embedding representations, which were then used on classical machine 
learning classifiers such as random forests or support vector machines. The 
pipeline of this strategy is shown in figure 1.

Table 1. Demographic data and comorbidities distribution of patients included in the 
FOSCAL dataset

Demographic characteristics
Classes

COVID-19 Non-COVID-19
Number of patients
Number of male/female/unknown
Age [range] (mean ± std)

175
109/66/0
[6−92] 60.59±18.68)

180
68/96/16
[6−93] (55.00±17.58)

Comorbidities distribution 46% hypertension
28% no comorbidities
15% cardiovascular disease
11% cancer

59% no comorbidities
28% cancer
7% hypertension
6% others
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Convolutional neural network architectures (CNNs)

The CT slice characterization by CNNs is based on a hierarchical 
representation of the visual patterns distinctive of COVID-19 disease 
and healthy regions. In general, the first layers of the CNN perform a 
decomposition of the input images into basic visual primitives, which 
is achieved through a set of kernels learned for the specific task of the 
convolutional network. Subsequently, more complex patterns are modeled in 
the upper layers such as relevant texture patterns or regional distributions. For 
doing so, the activations from the previous decomposition are then convolved 
with another set of learned filters which extract patterns of a higher degree 
of non-linear correlation. Finally, such complex patterns are transformed until 
reaching a semantic level used as a set of features that represent radiological 
studies with the presence or absence of COVID-19.

Thanks to the success of CNNs on different domains, today there is a 
wide range of CNN architectures with specific deep properties and learning 
specifications (21). Here we explored three different CNN architectures that 
are conventional yet representative of the state-of-the-art feature extractors 
with promising intermediate representations that capture complex visual 
representations. The architectures herein implemented are:

VGG16. The Visual Geometry Group (VGG) developed a relatively deep 
network composed of 13 convolutional and 3 fully connected layers that 
account for a total of 138 million parameters. This network is highly uniform 
around its layers using multiple stacked small-size filters (2 x 2 and 3 x 3) 
that allow for the learning of more complex features. It was accomplished on 
the ILSVRC 2014 challenge training and testing with the ImageNet dataset of 
natural images (27).

Figure 1. Pipeline of the proposed approach. (a) First, a set of radiological studies were collected 
from different databases with expert annotations. (b) Then, a deep learning based strategy was 
trained to detect COVID-19 cases in three steps: b.1. Different convolutional neural network 
architectures were tested to characterize the radiological studies; b.2. subsequently, the extracted 
features were flattened to be used as input for the two proposed classification stages; b.3. an 
end-to-end approach with fully-connected layer classifier, and (b.4) an embedding approach with 
machine learning classifiers. (c) At the testing stage, new radiological studies were labeled as 
with or without COVID-19 using the trained models.
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ResNet-152. The Residual Networks consists of a CNN architecture 
that incorporates identity shortcut connections which reduce the vanishing 
gradient problem by creating the so-called residual block. Such connections 
in the image domain improved the classification performance by training 
deeper networks than the conventional CNN architecture. This network, with 
60 million parameters, won the ImageNet Large Scale Visual Recognition 
Competition (ILSVRC) in 2015 (28).

InceptionV3. This net is nowadays one of the most representative 
architectures. Its main proposal centers on reducing the computational cost 
of deeper networks without affecting generalization through a dimensionality 
reduction with stacked asymmetric convolutions. First, a 1 x 1 convolution 
is applied to decrease drastically large filters input dimensions. Then, such 
large filters are factorized (an N x N filter is the combination of 1 x N and N x 
1 filters) and these multiple asymmetric filters are ordered to operate on the 
same level achieving a progressively wider network instead of a deeper one. 
With 23 million parameters, InceptionV3 shared first place with the VGG16 on 
the ILSVRC 2015 challenge (29).

End-to-end classification using transfer learning

The CNN architectures used in this work were selected for their 
effectiveness in the natural image domain. However, they may be unsuited to 
represent and differentiate patterns from the radiological domain. Therefore, 
we obtained an adjusted representation for the radiological domain by using 
transfer learning. Transfer learning (TL) is a widely known technique that deals 
with learned weights from large general image representations by adjusting 
several layers to a specific domain, in our case, CT radiological images. 
Formally, the learned image representation in the Mk model (k being the 
ResNet-152, the InceptionV3, or the VGG16) was defined as Mk= [F,P(F)], 
where F is the feature space and P(F) the marginal probability distribution. In 
this case, F= [Fi(Fi-1)] represented a hierarchical representation of the general 
image domain regarding a particular task, T= [D,M]. Thus, the task Tt covered 
the set of classes Dt= [d1,...,dn] defined in the original problem (ImageNet) 
(21). Then, the aim of TL was to adjust the general codified learning task Tt 
into a new radiological task Ts as Tt= [Dt,Mt]→ Ts [Ds,Ms](30).

Transfer learning (Tt→ Ts) is an adaptive iterative process learning through 
several epochs that uses a relatively low learning rate and batches from 
a new domain, in this case, trained CT slices. Finally, we obtained a deep 
representation for each CNN architecture with the capacity of capturing 
COVID-19 patterns on thoracic CT slices.

Classification from pre-trained deep features

A second option to exploit the pre-trained CNN architectures is to use the 
embedding vectors to represent input CT images. Then, the feature vectors 
are used to train classical machine learning models such as random forests 
and support vector machines. For doing so, the last layer of the CNN nets is 
flattened into a single vector containing the values associated with different 
features. The main advantage of this approach is the considerable capacity to 
characterize complex patterns showing remarkable robustness to distortions, 
occlusions, and lighting changes (31,32). Additionally, this process reduces 
the training time and the variability of the results with small datasets (33,34). 
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Here we applied two classical machine learning algorithms to the 
computed vectors for the classification task: a support vector machine (SVM) 
and a random forest (RF).

Random forest. An RF defines boundaries in the feature space between 
the COVID-19 and non-COVID- 19 classes. The RF is comprised of a set 
of independent decision tree (DT) algorithms. Each DT was trained over 
different parts of the embedding feature space to reduce prediction variability. 
A bootstrap aggregating strategy, which consists in randomly selecting a set 
of training embedding features, was used to build each DT. The final prediction 
was made by averaging the predictions of the individual trees (35). In this 
process, we obtained B different trees with the ability to predict the disease y.

Support vector machine: The SVM selects a hyperplane that separates 
the embedding features of the two classes. The selection is performed by 
maximizing the distance between the decision limit and the feature vectors 
from both classes (36). In this work, a polynomial kernel was used to define the 
decision boundary because this complex classification problem is not linearly 
separable. The polynomial kernel was defined as: k(Fi,Fj)=(1+yFiTFj)

d where Fi 
and Fj are the i-th and j-th embedded in deep features, d is the degree of the 
polynomial kernel, and gamma is 1/N (37).

Experimental setup

CNNs were previously trained with images from the public ImageNet (21) 
dataset. The resulting weights were used to initialize a new training process 
with radiological images. The InceptionV3, Resnet-152, and VGG16 models 
were trained using a batch size of sixteen (18), and as an optimization 
algorithm, we used the Adam algorithm. The learning rate was set to 1e 
6 while the loss function was binary cross entropy. The strategies were 
evaluated in the two mentioned datasets using a cross-validation setup. 
Each dataset was split into five folds and the experiment was carried out 
independently. For each fold validation experiment, the respective dataset was 
partitioned with 80% cases for training and 20% for testing. We also ensured 
that CT slices of the same patient were in a single fold, i.e., a patient’s CT 
slices were contained either in the training or in the testing partition. Thus, we 
guaranteed that the model was dedicated to discriminating among pathologies 
more than to associating findings from the same patients. In the experiments, 
we also considered the same number of slices per patient.

The trained models yielded the probability per radiological study of the 
presence or absence of the disease. A 0.5 probability threshold was used 
to assign the predicted label 1 (COVID-19) or 0 (non-COVID-19). Here, true 
positives corresponded to patients effectively classified with COVID-19. It 
should be noted that the gold standard for COVID-19 diagnosis is the RT-
PCR, which has limited sensitivity for its detection. To mitigate the potential 
bias associated with the sensitivity of the RT-PCR test, for each considered 
CT volume, CT slice selection was done by an expert radiologist based on 
observed radiological findings. The evaluation of this classification task was 
measured by first computing the true positives (TP), true negatives (TN), false 
positives (FP), and false negatives (FN). The typical metrics for classification 
tasks such as accuracy (Acc), sensibility (Sens), precision (Pre), and F1 score 
were used (table 2). The area under the receiver operating characteristic 
curve (AUC) was also computed.
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Results

In this section, we present the performance of the proposed approach 
separately for each considered dataset and with respect to the two 
classification schemes.

Performance for SARS-COV-2 CT scans dataset

Table 3 summarizes the performance for the three methods using the 
SARS-COV-2 CT scans dataset: a) end-to-end classification from the transfer 
learning approach using VGG16 and ResNet-152 architectures; b) classification 
from deep features using SVM and RF methods, and c) a baseline strategy 
presented by Silva, et al. (19). The baseline strategy also applied a five-
fold cross-validation scheme using the SARS-COV-2 CT scan dataset and 
separating 80% of the cases (CT scans by patient) for training and 20% for 
testing in each fold (19). Other studies have also used the SARS-CoV-2 CT 
Scan dataset (20,22), but they are not comparable with ours because they have 
no precise information regarding the experimentation setup to verify that their 
training and testing partitions were stratified by cases (patients) as Silva, et al. 
suggest (19). The remarkable performance obtained by the VGG16 as regards 
the accuracy and the AUC metrics should be noted. This could be associated 
with the small and dense representation kernels on the first layers of this net. 
The results also suggest that for this data amount, the 16 layers were sufficient 
to fix a boundary and separate between control and COVID-19 cases.

As for the proposed classification method using the deep features 
(embedding), we conducted a fine-tuning for the RF and SVM classifiers as 
shown in figure 2. First, the RF was tuned by varying the number of trees in 
each iteration taking into account that the maximum depth of the trees was 
60. A similar procedure was performed for the support vector machine model 
using a polynomial kernel that varied the degrees. The best configuration 
using the RF classifier was for 80 trees with an F1 score of 93.42% while 
using the SVM classifier it was for 7 degrees of the polynomial kernel 

Table 2. Metrics used to evaluate the proposed approach. The metrics 
are based on the quantification of instances: True positives (TP), false 
positives (FP), true negatives (TN), and false negatives (FN).

Table 3. SARS-CoV-2 CT Scan dataset average results for the baseline by Silva, et al. (19), end-to-end, 
and embedding classification approaches. The highest values for each metric across all experiments are 
highlighted in bold.

Metric Formula

Accuracy

Precision

Sensitivity

F1 score

Method Configuration Acc (%) Pre (%) Sens (%) F1 (%) AUC (%)

Silva, et al. (19) EfficientNetB0 86.6 ± 10.1 79.7 ± 20.9 94.8 ± 4.50 - -
End-to-end VGG16

ResNet-152
92.33 ± 4.81
86.05 ± 1.43

89.70 ± 6.74
85.52 ± 1.33

88.96 ± 6.57
76.02 ± 4.01

89.89 ± 6.38
79.01 ± 3.37

98.20
88.51

Embedding ResNet-152 + RF
ResNet-152 + SVM

90.70 ± 2.80
91.40 ± 2.48

91.38 ± 2.83
95.77 ± 2.83

95.62 ± 2.85
 91.58 ± 2.41

93.42 ± 2.38
93.63 ± 2.80

88.82
91.28

Acc=100

Pre=100

Sens=100

F1=

TP + TN

2   TP

TP

TP

TP + TN + FP + FN

2   TP + FP + FN

TP + FP

TP + FP

*

* *
*

*

*
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achieving an F1 score of 93.63%. These results show that the embedding 
classification strategy using an SVM classifier obtained better partitions of the 
deep feature space and the best results in detecting CT slices with COVID-19. 
All the evaluation metrics for the best configurations of both classifiers are 
shown in table 3.

Previous results (table 3) showed that the embedding method using an 
SVM classifier achieved the best performance with an F1 score of 93.63% 
and precision of 95.77% outperforming the results obtained by Silva, et al. 
(19) who only obtained high sensibility. Additionally, the embedding method 
was quite stable across all the folds: the standard deviation of all performance 
metrics was less than 2.83% in each metric when comparing it with the 
transfer learning method and the baseline.

Performance for the FOSCAL dataset

Using the FOSCAL dataset, we evaluated two methods and computed 
the performance metrics as follows: a) end-to-end classification from transfer 
learning approach using VGG16, ResNet-152, and InceptionV3 architectures 
and the classification from deep features using SVM and RF methods. A similar 
fine-tuning procedure was performed for the embedding method over the 
FOSCAL dataset shown in Figure 3 by using the same parameters for SVM and 
RF classifiers. In this case, the best F1 score obtained for the SVM classifier 
with 6 degrees was 96.46% and for the RF classifier with 7 trees, it was 94.67%.

Figure 2. SARS-CoV-2 dataset average results of the embedding with random forest and support vector machine

Figure 3. FOSCAL dataset average results of the embedding with random forest and support vector machine
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Table 4 shows the results obtained by the proposed approach using the 
FOSCAL dataset. With a 95.57% accuracy, a 95.74% precision, a 95.79% 
sensitivity, and a 95.57% F1 score, the embedding method with the SVM 
classifier provided a better representation of the embedded space and was 
able to detect accurately COVID-19 cases on CT slices in the local population. 
In this case, the VGG16 was also the best net for representing CT slices, 
which was associated with the amount of data used in the transfer learning 
scheme. The other deep nets also showed remarkable results on the end-to-
end representation achieving general scores up to 90%.

The evaluation in both datasets showed a remarkable performance of deep 
representations, which could be key to reducing radiologists’ subjectivity in the 
analysis and diagnosis of CT scans. Also, the evaluation over both datasets 
suggested that the best boundaries separation was obtained from embedding 
vectors with an additional optimization over an SVM hyperparametric space. 
These embedding vectors recovered a high semantic level of knowledge in 
deep representations and the additional non-linear kernel separation could 
induce a better boundary separation among defined diseases.

Discussion

The main public health problem today in the world is the COVID-19 disease, 
therefore, it is fundamental to join forces and establish synergies for innovation 
and propose alternative and complementary methods to characterize, 
diagnose, and follow up the disease. Such efforts would contribute to early 
diagnosis, mitigate the collapse of health services, and help with proper 
analysis and treatment of more patients. Here we presented a deep learning 
representation for COVID-19 detection in thoracic CT slices. From each CT 
scan, an expert selected a set of relevant slides exhibiting the most distinctive 
radiological patterns of COVID-19 patients and healthy lungs. Deep feature 
extraction was performed to represent the complex visual patterns of the 
disease exploring different convolution neural networks and then, an end-to-end 
learning approach and an embedding classification strategy were evaluated 
to differentiate COVID-19 and non-COVID-19 cases from such deep features. 
The three networks used (ResNet-152, VGG16, and InceptionV3) achieved 
an outstanding performance characterizing radiological patterns to detect 
COVID-19 cases in CT scans. Such deep features were also used to feed two 
binary classification frameworks: a) end-to-end learning using different CNN 
architectures, and b) a machine learning approach using SVM and RF models. 
Finally, these models evaluated new thoracic CT slices to determine whether 
such image visually corresponded to a lung infected by COVID-19.

The best performance in the open SARS-CoV-2 CT Scan dataset was 
achieved by the embedding strategy outperforming even state-of-the-art 
methods evaluated in that dataset. On the other hand, the methods also 
showed to be capable of identifying positive COVID-19 cases in the FOSCAL 
dataset. The results also point to their potential implementation in the clinical 

Table 4. FOSCAL dataset average results for the end-to-end and embedding classification 
approache. The highest values for each metric across all experiments are highlighted in bold.

Method Configuration Acc (%) Pre (%) Sens (%) F1 (%) AUC (%)

End-to-end VGG16
ResNet-152
InceptionV3

96.99 ± 1.10 
95.57 ± 5.83 
94.11 ± 4.45

96.62 ± 1.21 
95.74 ± 5.53 
94.10 ± 4.46 

96.61 ± 1.03 
95.79 ± 5.52 
94.08 ± 4.46 

96.58 ± 1.11 
95.57 ± 5.82 
94.07 ± 4.50

99.50
98.87
98.07

Embedding ResNet-152 + RF
ResNet-152 + SVM

95.11 ± 2.06 
96.00 ± 2.56 

94.81 ± 3.56 
94.74 ± 2.51 

95.42 ± 2.96 
96.00 ± 2.12 

94.67 ± 2.05 
96.46 ± 1.84 

96.06
94.15
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routine to support the diagnosis. It should be noted that in both datasets, 
the positive reference was based on the RT-PCR test, which may introduce 
a bias related to its false positives rate. In both datasets, the CT slice with 
the most information related to radiological findings was selected to mitigate 
the potential bias induced by false negatives. Besides, the computational 
approach was based on a statistical representation that captures visual 
patterns from a significant amount of data. Hence, it is expected that trained 
representations would deal with some of the outliers resulting from false 
negatives annotations.

Currently, several computational strategies have been proposed to 
detect COVID-19 cases on thoracic CT slices (19,20,22). Most of these 
methods have used deep learning based strategies without comparing 
different network architectures or using public datasets without any additional 
information about particular conditions of patients, comorbidities, and 
information on the collection of samples. In contrast, here we used three of 
the most representative networks to extract deep features. We also evaluated 
architectures in two different datasets aimed at evidencing the capability 
of the models to represent COVID-19 patterns from different sources. The 
performance of these deep features in the binary classification task was 
evaluated using a typical end-to-end approach and classical machine 
learning models. Besides, we compared our results and discussed other CNN 
configurations with the methods used by Silva, et al. (19) and Ragab, et al. 
(20) for training and evaluating from the SARS-CoV-2 CT Scan dataset (22).

Silva, et al. (19) proposed a modified EfficientNetB0 architecture. The 
model was initialized using pre-trained weights from the ImageNet dataset 
and the newly added layers with normal random values. It was trained 
with the original images and the resulting transformations of three data 
augmentation processes, namely rotation, horizontal flip, and scaling. The 
quantitative evaluation reported by these authors using the SARS-CoV-2 CT 
Scan dataset showed a 98.99% accuracy, a 99.20% precision, and a 98.80% 
sensitivity. The validation scheme proposed by other authors (22) does not 
provide enough information to ensure that the training and validation partitions 
were stratified by patient. Instead, the experimental setup proposed by 
Silva, et al. (19) ensured that the training and validation partitions contained 
different cases (patients). Such setup avoids presenting the CT slices of a 
particular patient in both partitions and yields a more realistic, yet slightly 
lower, estimation of the performance (19). The authors reported an 86.6% 
accuracy, a 79.7% precision, and a 94.8% sensitivity. In our approach, an 
expert selected a set of clinically relevant CT scan slices per patient, and 
then the partitions set were conformed obtaining a 91.40% accuracy, 95.77% 
precision, and a 91.58% sensitivity for the embedding classification approach 
with an SVM classifier. Our results outperform those by Silva, et al. (19) in 
two of the performance metrics. In comparison, the deep feature extraction 
architectures chosen in Silva, et al.’s work corresponded to a smaller network 
(EfficientNetB0 with 5 million parameters) while we used deeper networks 
(VGG16 and ResNet-152 both have over 60 million parameters). Besides, 
although the end-to-end learning approach achieved competitive results, the 
embedding approach exhibited a better boundary to separate the classes thus 
obtaining the highest performance.

On the other hand, Ragab, et al. (20) used a method combining three 
handcrafted and four CNN features. These handcrafted features include the 
discrete wavelet transform (DWT), a gray level co-occurrence matrix (GLCM), 
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and statistical features. As for the CNN architectures, their work fused AlexNet, 
GoogleNet, ShuffleNet, and ResNet-18 features extractors. The resulting 
feature vector, with a size of 6948, fed an embedding approach using an 
SVM classifier to perform the binary classification. Contrarily to Silva, et al.’s 
study and ours, Ragab, et al. used the validation scheme they proposed for 
the SARS-CoV-2 CT Scan dataset (22), which seems to allow CT slices of 
the same patient be both in the validation and training partitions. The results 
obtained showed very high accuracy, precision, and sensitivity levels, all 
above 99 %. It is also worth noting that this method used a similar embedding 
strategy to perform the classification task, but the fused feature vector was 
more complex and computationally more expensive compared with the single 
CNN model used in our study. Additionally, we evaluated the RF classifier in 
the embedding workflow with a correct validation scheme achieving the highest 
precision, 95.62%, outperforming all the configurations evaluated in this work.

To demonstrate that the method was generalizable to different populations 
and acquisition devices, we performed an additional evaluation process 
with data collected locally. The FOSCAL dataset is collected in Santander 
(Colombia) from different hospitals with diverse CT acquisition devices. The 
best results were obtained with the end-to-end classification strategy. The 
strategy yielded a 95.57% accuracy, a 95.74% precision, and a 95.79% 
sensibility in the FOSCAL testing set. This strategy seems to benefit from the 
increased number of patients and CT slices available in the FOSCAL dataset. 
The results show that the method herein proposed was able to accurately 
detect COVID-19 cases using thoracic CT slices from two different populations 
and competed well with those from other studies on the state of the art. The 
proposed strategy is nonetheless dependent on the selection of a significant 
CT slice, which may limit the automatic detection framework. Moreover, some 
additional slices with complementary information about radiological findings 
were discarded and this may be a limitation for including additional information 
to better discriminate COVID-19 patterns as compared to other classes.

In future studies, we are including the training and evaluation of this 
method in a cross-dataset setup to ensure the proper COVID-19 disease 
detection in a larger set of images acquired via CT imaging. In addition, an 
automatic selection procedure for the clinically relevant CT slices might be a 
useful tool to facilitate the integration of the proposed strategy in the clinical 
routine practice. In this sense, the use of an additional stratification related 
to the stage of the disease could be useful to build and re-train models with 
more discriminative information. Moreover, the exploration of new deep 
alternatives may be useful to process the complete CT volumes. In fact, the 
literature today includes 3D convolutional nets that could be considered in 
future perspectives to try the problem of automatic COVID-19 diagnosis.
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