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Cardiac disease discrimination from 
3D-convolutional kinematic patterns on cine-MRI 
sequences
Alejandra Moreno, Lola Xiomara Bautista, Fabio Martínez
Biomedical Imaging, Vision, and Learning Laboratory (BIVL2ab), Universidad Industrial de 
Santander, Bucaramanga, Colombia

Introduction. Cine-MRI (cine-magnetic resonance imaging) sequences are a key 
diagnostic tool to visualize anatomical information, allowing experts to localize and 
determine suspicious pathologies. Nonetheless, such analysis remains subjective and 
prone to diagnosis errors.
Objective. To develop a binary and multi-class classification considering various 
cardiac conditions using a spatiotemporal model that highlights kinematic movements to 
characterize each disease.
Materials and methods. This research focuses on a 3D convolutional representation to 
characterize cardiac kinematic patterns during the cardiac cycle, which may be associated 
with pathologies. The kinematic maps are obtained from the apparent velocity maps 
computed from a dense optical flow strategy. Then, a 3D convolutional scheme learns to 
differentiate pathologies from kinematic maps.
Results. The proposed strategy was validated with respect to the capability to discriminate 
among myocardial infarction, dilated cardiomyopathy, hypertrophic cardiomyopathy, 
abnormal right ventricle, and normal cardiac sequences. The proposed method achieves an 
average accuracy of 78.00% and a F1 score of 75.55%. Likewise, the approach achieved 
92.31% accuracy for binary classification between pathologies and control cases.
Conclusion. The proposed method can support the identification of kinematically abnormal 
patterns associated with a pathological condition. The resultant descriptor, learned from the 
3D convolutional net, preserves detailed spatiotemporal correlations and could emerge as 
possible digital biomarkers of cardiac diseases.
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Discriminación de enfermedades cardiacas utilizando patrones cinemáticos 
codificados con convoluciones 3D en secuencias de cine-RM

Introducción. Las secuencias del cine-resonancia magnética (cine-MRI, cine magnetic 
resonance imaging) son una herramienta diagnóstica clave para visualizar la información 
anatómica que les permite a los expertos localizar y determinar aquellas anomalías que 
resulten sospechosas. No obstante, este análisis sigue siendo subjetivo y propenso a 
errores de diagnóstico.
Objetivo. Desarrollar una clasificación binaria y multiclase, considerando diferentes 
condiciones cardiacas, mediante un modelo espaciotemporal que permita resaltar los 
movimientos cinéticos para caracterizar cada enfermedad.
Materiales y métodos. Este estudio se centra en el uso de una representación de 
convolución 3D para caracterizar los patrones cinéticos durante el ciclo cardiaco que 
puedan estar asociados con enfermedades. Para ello, se obtienen mapas cinéticos a partir 
de mapas de velocidad aparente, calculados mediante una estrategia de flujo óptico denso. 
A continuación, un esquema de convolución 3D "aprende" a diferenciar patologías a partir 
de mapas cinemáticos.
Resultados. La estrategia propuesta se validó según la capacidad de discriminar entre 
infarto de miocardio, miocardiopatía dilatada, miocardiopatía hipertrófica, ventrículo 
derecho anormal y un examen normal. El método propuesto alcanza una precisión media 
del 78,0 % y una puntuación F1 score del 75,55 %. Asimismo, el enfoque alcanzó el 
92,31 % de precisión para la clasificación binaria entre enfermedades y casos de control.
Conclusiones. El método propuesto es capaz de apoyar la identificación de patrones 
cinéticos anormales asociados con una condición patológica. El descriptor resultante, 
aprendido de la red de convolución 3D, conserva correlaciones espaciotemporales 
detalladas y podría surgir como posible biomarcador digital de enfermedades cardiacas.

Palabras clave: cardiopatías; diagnóstico por imagen; espectroscopía de resonancia 
magnética.
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Associated cardiac pathologies represent the main cause of death 
worldwide, representing around 30% of the total deaths (1). The movement 
and kinematic components of cardiac structures represent a key biomarker 
of heart disorders. Magnetic resonance imaging (MRI) has become the 
primary clinical diagnostic technique for quantifying, inspecting, and analyzing 
the heart. The ejection fraction can be calculated from the MRI modality to 
discriminate among several cardiac conditions. However, the estimation of 
such measurements is based on manual delineation, which can be subject to 
errors. In addition, cardiac measurements may be insufficient to characterize 
and differentiate the diverse cardiac behaviors, often complex among different 
cardiac diseases.

Computational methods have allowed for modeling and quantifying 
the motion and shape of cardiac features, supporting tasks related to 
segmentation (2-5), motion analysis, and classification of cardiovascular 
diseases. Regarding segmentation, the approaches have used atlas 
templates (2,6), encoder-decoder architectures (7-9), and even deep 
representations dedicated to localizing regions (3). 

Likewise, Qin et al. used a motion-seg net to simultaneously obtain motion 
and shape estimations under an unsupervised scheme (10). Additionally, 
semi-supervised learning was introduced to propagate cardiac disease labels, 
using as a backbone a U-net that codifies the shape and motion features 
(11). Punithakumar et al. calculated diverse statistics related to velocities 
and ventricle distances to classify pathologies, such as infarcts, dilated heart 
disease, and other cardiovascular diseases (12). Also, Zheng et al. performed 
an unsupervised cardiac image representation learned from a multi-scale 
deep network that achieved a direct volume estimation (13).

The present work introduces a deep volumetric representation that fully 
characterizes cardiac motion patterns, allowing motion embedding descriptors 
that classify diverse cardiac diseases. From deep cardiac representation, 
the high-level net embedding vectors are obtained as hidden kinematic 
cardiac descriptors used to classify and discriminate among several cardiac 
pathologies. 

In the next sections, we will describe the methodological approximations 
and the validation over a public dataset.

Materials and methods

This work introduces a 3D convolutional representation to encode 
cardiac kinematic maps as embedding descriptors that can classify cardiac 
condition set. From velocity fields, cardiac kinematic maps are calculated 
to locally represent patterns such as normal and tangential acceleration, 
divergence, and vorticity. These enriched and dense motion primitives are 
convolved several times to obtain a hierarchical deep representation of 2D+t 
spatiotemporal patterns through the cardiac cycle along the short axis. 

The main hypothesis underlying this work is the capability of 
spatiotemporal motion patterns to represent cardiac conditions. In 
consequence, the architecture can receive (2D +) feature maps of the whole 
cardiac cycle, generating a hidden deep and latent representation that 
discriminates among different cardiac diseases. The general pipeline of the 
proposed approach is shown in figure 1. 



91

Heart disease classification through kinematic descriptorsBiomédica. 2024;44(Supl.1):89-100

Kinematic cardiovascular maps

To characterize the motion patterns in the cardiac cycle, it is necessary 
to build a set of kinematic maps that recover motion features from a dense 
optical flow strategy. The displacement vector field, computed among 
consecutive frames, is related to the apparent velocity of the cardiac cycle. 
Here, the displacement vector field was selected as an approximation of 
the optical flow that recovers large displacements, as well as a deformation 
representation that lies in a constraint across nearby regions. 

For each pair of consecutive frames , a dense motion field 
was computed . From this motion field, we computed , a 
respective displacement vector for each pixel. Hence, the dense motion 
field was obtained as a typical minimization of appearance  and 
gradient , with a function that matches non-local points (SIFT 
points) where the flow region is coherent (14).

The kinematic maps are then derived from this optical flow field and 

are represented as . In this case,  represents a motion 

feature map, while  is the index of each calculated kinematic (velocities, 
accelerations, divergences, or vorticities). It is important to note that these 
feature maps can be used as isolated observations or even integrated to 
enrich cardiac disease representation from motion patterns.

Initially, we considered two acceleration types: The first one is the normal 
acceleration, representing the direction change of the velocity considering 
as reference the local center of rotation of the analyzed point                      ; 
the second was tangential acceleration, introduced to approximate heart 
deformation during the cardiac cycle as:                           . 

Figure 1. Pipeline of the proposed representation to classify heart conditions from cine-MRI temporal sequences (bottom-up scheme) or using 
kinematic maps as input on deep representation.	

A. Original cine-MRI sequence as input of the network.

B. Normal acceleration cine-MRI sequence as input of the network.
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We also included divergence and vorticity. Divergence measures the 
motion density of the input compared to the output and mathematically is 
formulated as:                                ; vorticity measures the cardiac rotational 
motion during contraction (ED) and relaxation phases (ES) and is defined 
as:                              .

A deep 3D convolution architecture

A key issue in cardiac conditions analysis is the modeling and quantification 
of spatial and temporal patterns, allowing the identification of correlations 
between sequence observations and specific pathologies. In this study, 
we implemented a robust 3D convolutional representation, which captures 
spatiotemporal patterns at different processing levels through a hierarchical 
convolutional configuration (15). Hypothetically, we assumed that a cine-MRI 
observation can be fully expressed by spatiotemporal patterns. These patterns 
are incorporated into a deep representation adjusted through a conditional 
discrimination rule. Interestingly, the proposed architecture can receive kinematic 
maps to code more complex relationships related to cardiac conditions.

A sequence of images ɸ of dimension (L x H x W) stands for either a cine-
MRI sequence, the corresponding kinematics representation (velocities, 
accelerations, vorticity, or divergence), or even a concatenation of multiple 
kinematics. In this case, L denotes the temporal frame number of the cardiac 
cycle, and (H x W) denotes the spatial frame dimensions. This sequence is then 
used as input in the convolutional representation and operated at different 
3D-convolutional layers. In such case, K exemplifies the (z,v,w) -dimensional 
convolution kernel, where the z dimension convolves over the temporal axis 
and the (v,w) dimensions over the spatial axes. At each processing step, we 
calculated a representation volume D1 indicating a bank of spatiotemporal 
feature maps, capturing a more accurate characterization of motion 
throughout the cycle (figure 2).

The total feature volume represents the union of each map  for the 
specified number D1 of kernels. The respective generalization at different 
layers provides a multi-scale motion representation providing a signature for 
each cardiovascular disease.

A cardiac embedding representation

The proposed convolutional representation can predict cardiac conditions 
under an end-to-end scheme, embedding a probability prediction output within 
the final layer according to training cardiac classes. Furthermore, the final 
layers of the architecture model are a set of hidden and complex relationships 
of kinematic inputs, representing a descriptor of a particular disease. 

In this work, we explored the embedding space resulting from these 
descriptors and measured the capability to discriminate among pathologies. 
Specifically, we extracted the embedded vectors from the last dense 
connected layer. For a particular dataset, the inputs are then mapped 
to a trained net, and the compact vectors Xi are recovered with the label 
corresponding to the disease yi. 
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The training sample set was used to create a random forest, defined as 
, where  represents each decision tree of independent and identically 

distributed random variables formed by a uniform random selection of 
characteristics. A particular threshold  is learned for each kinematic  , 
which creates a node in the tree  and builds a new partition in the 
feature space. 

The group of trees gives an independent vote for predicting pathology 
draw a discrete partition over topological space to define the boundaries of 
cardiac classes and obtain an automatic classification.

Experimental setup

This section details the data and procedures of the proposed approach to 
validate the method and its performance according to the classification task. The 
next subsection describes each of the components in the experimental setup.

ACDC database: This method was tuned and validated with a public 
dataset named Automated Cardiac Diagnosis Challenge (ACDC) (16). The 
dataset consisted of a cine-MRI image set from patients diagnosed with 
cardiovascular diseases and a control population. Four pathologies are 
characterized by ejection fraction and other morphological features. The 
myocardial infarction is defined by multiple myocardial segments with an 
abnormal contraction and a left ventricular ejection fraction of less than 40%. 
The dilated cardiomyopathy is depicted as having a left ventricular ejection 
fraction of less than 40% and a diastolic left ventricular volume greater than 
100 ml/m2. Several myocardial segments with a thickness greater than 15 
mm in diastole, a left ventricular cardiac mass greater than 110 g/m2, and a 
normal ejection fraction constitute indicators of hypertrophic cardiomyopathy. 
On the other hand, when a patient has a right ventricular cavity volume 
greater than 110 ml/m2 and a right ventricle ejection fraction lower than 40%, 
it indicates an abnormal right ventricle cardiac condition. This dataset also 
included patients labeled with a normal cardiac condition.

For whole image sequences recorded in the dataset, the heart position 
is mainly on the basal and the mid-cavity. Each patient has a mean of 9 
slices (from apical to basal), varying from 13 to 56 temporal frames across 
the cardiac cycle. The study includes 100 patients diagnosed with one of 
the described pathologies (20 patients for each cardiac condition) and an 
estimated number of slices of 1,300. From a data analysis study, the cardiac 
cycle for each volume was set to 13 temporal frames. Volumes with larger 
cardiac cycles were sub-sampled, ensuring the coverage of the end-diastole 
and end-systole.

Figure 2. 3D convolution representation. An input image of size L x H x 
W performing a convolution with a kernel t * y * x.
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Implementation details: The configuration of the proposed 3D convolutional 
architecture is summarized in table 1. All the convolutions have the same 
size (2X2X2) except for the initial (1X2X2). For the introduced method, we 
configured two different strategies of classification, described as follows:

•	 End-to-end training: The 3D convolutional approach was constructed with 
a softmax layer to classify the cardiac pathologies. The net was trained 
with a batch of one, a 0.001 learning rate, and an Adam optimization. 
The proposed net was also adjusted with a dropout of 0.4 and batch 
normalization to prevent over-fitting and regularize the loss. We used 20 
epochs and followed a binary classification rule during each run.

•	 Random forest classifier: We used the activations from the embedding 
layer of the learned net. It was expected that such embedding encoded 
learning kinematic features and allowed discrimination among cardiac 
conditions. The embedding descriptor was taken from the layer Dense1, 
serving as input to a random forest. In such cases, all the kinematics 
were trained independently for each discrimination rule between 
two cardiac conditions. Hence, each image was mapped to each 
architecture, obtaining the respective embedding vector corresponding 
to the last layer. The corresponding embeddings are concatenated, 
representing the new cardiac descriptor of each input sample. A fine-
tuning was performed with the following parameters: 
1.	 A maximum tree of 100 and a maximum depth of 60; 
2.	 Each tree was encoded in a binary classification for experiments to 

discriminate between pairs of classes; and 
3.	 Each tree encoded a multi-class classification between normal 

cardiac sequences versus any cardiac pathology.

Statistical validation

The proposed strategy was validated according to the “leave-one-patient-
out” scheme, adapted from the classical leave-one-out cross-validation. In 
this case, one patient (with 13 slices) was left out for testing purposes while 
the rest of the patients (39 subjects accounting for 507 slices for each binary 
classification) were used for tuning the model until all patients were validated. 
For end-to-end experiments, a convolutional net was trained at each fold 
and later validated with samples of a particular patient. The averaged results 
corresponded to the reported performance on classification.

When the validation scheme was finished, the model retrieved a prediction 
for each patient, helping to account for each metric classification, such 
as accuracy, precision, sensitivity, or F1 score. Worth noticing is that each 
iteration had no overlap between patients since only one cardiac cycle was 
used per patient. The input samples have a dimension of 12, 128, 128, 1. For 

Table 1. Parameters of the 3D deep convolutional 
architecture

Layers Output shape Parameters Activation
Input
Conv3D
Conv3D1
Conv3D2
Conv3D3
Conv3D4
Dense
Dense1
Dense2

(12, 128, 128, 1)
(12, 128, 128, 64)
(6, 64, 64, 128)
(3, 32, 32, 256)
(2, 16, 16, 256)
(1, 4, 4, 256)

1,024
1,024

2

-
       5,842
   221,312
   884,992
1,769,728
1,769,728
1,049,600
1,049,600
       2,050

ReLU
ReLU
ReLU
ReLU
ReLU
ReLU
ReLU
ReLU
ReLU
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experiments with multiple kinematics, the multidimensional input was set as 
12, 128, 128, 3. Each dimension corresponds to the cardiac cycle, height, 
width, and the concatenation between kinematics. The best multi-kinematic 
representation was considered to obtain descriptor vectors to perform 
experiments from embedding representation.

Results

Classification from an end-to-end scheme

Figure 3 illustrates corresponding heart-kinematic activations from two 
layers of the proposed architecture. As expected, these maps enhance spatial 
relationships that eventually may correspond to patterns associated with a 
specific disease. The illustrated sample corresponds to cine-MRI labeled as 
a myocardial infarction condition. As inputs, the optical flow channels and the 
divergence were included independently. 

Also, we mapped the normal acceleration, divergence, and vorticity 
combinations onto the trained architecture to obtain deep hierarchical 
activations. For each illustrated input, these activations achieved consistent 
localization that stands out in particular kinematic behaviors at ventricles 
during a cardiac cycle. These activations hierarchically code cardiac 
descriptors for an automatic classification to be supported and can be 
implemented as observational maps to develop further analysis during 
diagnosis and clinical routine. For three input configurations, the activations 
of the first layer highlighted local cardiac patterns, while the (L – 1) layer 
focused on the coarse characterization of heart regions. These maps involved 
temporal correlations allowing an enriched heart description during the 
cardiac cycle.

Figure 3. Feature map representation in the convolutional layers obtained from the first and 
penultimate layers. These primitives are the optical flow, divergence, and a concatenation 
between normal acceleration, divergence, and vorticity. The illustrated sample corresponds to 
cine-MRI labeled as a myocardial infarction.

a) First convolutional layer activation

a) Penultimate convolution layer activation

a) First convolutional layer activation

a) Penultimate convolution layer activation

a) First convolutional layer activation

a) Penultimate convolution layer activation
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Table 2 summarizes the classification performance of the proposed 
approach using independent kinematic cine-MRI features. The accuracy and 
the F1 score were the metrics selected to analyze globally the performance 
of the proposed descriptor. As observed, each independent kinematic can 
discriminate between two cardiac conditions, being potential descriptors to 
support disease diagnosis. On average, the velocity field patterns (accuracy 
of 75.83% and F1 score of 71.50%) and the divergence (accuracy of 75.23% 
and F1 score of 72.34%) achieved better discrimination for all the experiments. 

These findings may be associated with principal components of heart 
dynamics, such as the rotation movements to describe the left ventricle and 
particular spatial velocity patterns along the cardiac cycle. Interestingly, each 
kinematic excelled in discrimination between several conditions. For instance, 
the vorticity achieved remarkable results in classifying between myocardial 
infarction versus dilated cardiomyopathy, while the tangential and normal 
acceleration kinematics had a notable performance in separating dilated 
cardiomyopathy from control samples.

In a subsequent experiment, we combined the most promising kinematic 
features as an input block. Table 3 summarizes the results of different 
kinematic configurations. Considering the correlated nature of such 
kinematics (there are differential relationships from the optical flow field), no 
significant enhancement was observed in global accuracy. Nonetheless, there 
are some remarkable configurations, such as the dilated cardiomyopathy 
versus normal cardiac condition, that achieve an average accuracy of 92.50% 
and an F1 score of 92.68%, using the coupled configuration of the kinematics: 
tangential acceleration, divergence, vorticity.

Classification of embeddings from random forest 

We considered an additional multi-modal kinematic configuration to 
enhance the deep representation of each motion feature map. The new 
cardiac descriptor was evaluated with a random forest classifier. Table 4 
shows an experiment using the late fusion of embedding vectors taken from 
deep representations of the kinematics: normal acceleration, divergence, and 
vorticity. Following this configuration, the best accuracy result achieved an 
average of 78.00% and an F1 score of 77.55%. Also, it should be highlighted 
that some experiments achieved a perfect classification score, showing the 
discrimination capabilities of the three deep kinematic representations.

Table 2. Accuracy and F1 score obtained using the Automated Cardiac Diagnosis Challenge dataset 
in the deep learning strategy. 

ACC: Accuracy; MINF: myocardial infarction; DCM: dilated cardiomyopathy; HCM: hypertrophic cardiomyopathy; 
RV: abnormal right ventricle; N: normal conditions

Cardiac 
diseases

aT (t) aN(t) Divergency Vorticity Optical flow Cine-MRI
ACC F1 ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

MINF vs. DCM
MINF vs. HCM
MINF vs. RV
MINF vs. N
DCM vs. HCM
DCM vs. RV
DCM vs. N
HCM vs. RV
HCM vs. N
RV vs. N

82.50
65.20
80.00
72.50
55.00
67.50
85.00
62.50
75.00
75.00

83.72
61.53
77.77
70.27
52.63
64.86
84.21
63.41
73.68
73.68

80.00
70.00
80.00
72.50
62.50
60.00
85.00
70.00
72.50
72.50

80.00
70.00
78.94
71.72
59.45
61.90
85.00
68.42
73.17
70.27

70.83
70.20
80.30
87.59
59.40
72.56
80.30
84.67
81.25
65.15

77.57
77.57
80.00
87.59
73.81
67.54
60.99
74.00
64.25
55.05

85.00
62.50
85.00
77.50
55.00
65.00
85.00
62.50
65.00
67.50

84.21
61.53
78.94
74.28
50.00
65.00
85.00
61.53
61.11
66.66

89.20
73.09
81.33
72.05
80.71
72.78
73.38
78.38
70.00
67.40

85.00
65.00
77.50
70.00
72.50
62.50
72.50
75.00
67.50
67.50

81.20
59.09
70.53
76.71
60.38
51.43
83.38
31.95
75.76
57.65

72.50
57.50
70.00
70.00
65.00
55.00
80.00
50.00
67.50
55.00

Mean 71.75 70.58 72.50 71.89 75.23 72.34 70.50 68.83 75.83 71.50 64.81 57.95
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The proposed representations can be implemented as a triage alternative to 
classify between cine-MRI with any condition or control sequence. We validated 
the proposed approach in an experiment that merged all labels corresponding 
to the abnormal cardiac conditions in the same class (myocardial infarction, 
dilated cardiomyopathy, hypertrophic cardiomyopathy, and abnormal right 
ventricle). A binary classification was obtained from abnormal conditions versus 
control sequences, as seen in table 5. The group of embedding vectors –
tangential acceleration, divergence, and vorticity kinematics– were employed 
to perform a late fusion classification. In this last experiment, the proposed 
approach achieved a remarkable 92.31% accuracy and 91.19% F1 score.

Table 3. Obtained accuracy and F1 score by using the Automated 
Cardiac Diagnosis Challenge dataset in the deep learning strategy 
considering diverse concatenations over time. The kinematic maps 
herein considered are: aN: normal acceleration; aT: tangential 
acceleration; div: divergency, and vor: vorticity. 

ACC: Accuracy; MINF: myocardial infarction; DCM: dilated cardiomyopathy; HCM: 
hypertrophic cardiomyopathy; RV: abnormal right ventricle; N: normal conditions

Cardiac 
disease

(aN (t),aT (t),
div(t))

(aN (t),aT (t),
vor(t))

(aN (t),div(t),
vor(t))

(aN (t),div(t),
vor(t))

ACC F1 ACC F1 ACC F1 ACC F1
MINF vs. DCM
MINF vs. HCM
MINF vs. RV
MINF vs. N
DCM vs. HCM
DCM vs. RV
DCM vs. N
HCM vs. RV
HCM vs. N
RV vs. N

80.00
62.50
85.00
75.00
55.00
70.00
85.00
67.50
75.00
80.00

80.00
61.54
85.00
76.19
52.63
68.42
85.00
66.67
75.00
80.00

77.50
62.50
85.00
85.00
50.00
67.50
90.00
62.50
87.50
85.00

79.06
63.41
85.00
83.34
47.36
66.67
89.47
65.11
87.80
84.21

82.50
60.00
85.00
77.50
55.00
77.50
90.00
67.50
80.00
82.50

82.05
57.89
85.00
75.67
52.63
79.06
89.47
69.76
78.94
82.92

80.00
65.00
80.00
80.00
52.50
67.50
92.50
55.00
75.00
85.00

80.02
66.67
77.76
78.94
53.65
68.29
92.68
59.09
73.68
84.21

Mean 73.50 73.05 75.25 75.14 75.75 75.34 73.25 73.50

Cardiac 
disease

(aN(t),div(t),vor(t))

Accuracy F1 score Precision Recall
MINF vs. DCM
MINF vs. HCM
MINF vs. RV
MINF vs. N
DCM vs. HCM
DCM vs. RV
DCM vs. N
HCM vs. RV
HCM vs. N
RV vs. N

100.00
80.00

100.00
80.00
80.00
60.00
60.00
60.00
80.00
80.00

100.00
78.10

100.00
81.90
80.00
66.30
60.00
60.00
71.11
78.10

100.00
85.00

100.00
90.00
86.67
86.67
60.00
60.00
64.00
85.00

100.00
80.00

100.00
80.00
80.00
60.00
60.00
60.00
80.00
80.00

Mean 78.00 77.55 81.73 78.00

Table 4. Obtained accuracy using the Automated Cardiac 
Diagnosis Challenge dataset in the binary embedding 
classification with random forest. 

ACC: Accuracy; aN: Normal acceleration; div: divergency; vor: 
vorticity; MINF: myocardial infarction; DCM: dilated cardiomyopathy; 
HCM: hypertrophic cardiomyopathy; RV:abnormal right ventricle; N: 
normal conditions

Cardiac diseases Accuracy F1 score Precision Recall

Cetin et al., 2017 (2) 
Insensee et al., 2017 (9)
Khened et al., 2017 (5)
Wolterink et al., 2017 (10)

94.00
92.00
90.00
86.00

-
-
-
-

94.00
92.00
83.40
84.00

93.00
92.00

100.00
91.00

Ours 92.31 91.19 92.95 92.31

Table 5. Obtained accuracy using the automated cardiac diagnosis 
challenge dataset in the multi-class embedding classification with 
random forest between normal cardiac sequences and any cardiac 
disease.
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Discussion

The proposed approach introduced a novel 3D convolutional net to 
quantify and characterize diverse spatiotemporal motion patterns on the 
complete cardiac functional cycle. This strategy can recover kinematic maps 
and obtain a hierarchical deep multi-level representation constructed from 
a discrimination rule between cardiac conditions. Furthermore, we validated 
the classification and characterization capabilities of the 3D network operated 
on the selected cardiac kinematics. The compact embedding outputs were 
tested and used to train and validate a random forest classifier, achieving 
remarkable results. The estimation of the deep kinematic representation 
improved accuracy by over 6% and F1 score by 10.88% for each kinematic 
concerning the original cine MRI sequences. With this proposed kinematic 
setup, it is possible to combine and enrich a motion representation by 
convolving simultaneously multiple kinematics for a particular 3D net. This 
enriched representation (from normal acceleration, divergence, and vorticity) 
achieved improved performance in discriminating multiple cardiac conditions.

An important feature in this approach is the capability to build compact 
embedding descriptors that code cardiac conditions and form a topological 
space to access to an automatic classification. These resultant embedding 
correspondences may emerge as potential digital biomarkers of cardiac 
conditions, storing complex correlations achieved from a learning 
optimization. This approach is promising for implementation in a clinical 
routine to support triage protocols because of the exhibited performances of 
around 92.31% accuracy in discriminating between control and any cardiac 
condition included in this study. Although Cine-MRI is not currently the primary 
diagnostic study for most cardiac conditions, its growing advantages are 
becoming increasingly evident, leading to its adoption as a triage scheme for 
detecting specific cardiac conditions (17). Current reports also evidence an 
effort to introduce such artificial intelligence tools in clinical protocols (18). 
Additionally, the kinematic maps and resultant activations at different layers of 
hierarchical representation may be relevant during observational analysis. 

In the state of the art, much of the methodologies are dedicated to 
performing ventricle segmentation tasks. Classical indexes such as the 
ejection fraction and the ventricle volume, among others, can be computed 
using the resultant volumes (4,5,8,9). Indexes are computed from relative 
differences between end-diastole and end-systole. For instance, Puyol et al. 
proposed a multi-modal atlas that integrates MRI and ultrasound to extract 
Laplacian motion descriptors, allowing the classification of patients with 
dilated cardiomyopathy from control subjects (6). Additionally, Yang et al. 
proposed a registration strategy to quantify displacement of the left ventricle 
among temporal consecutive images. However, bypassing abnormal right 
ventricle analysis, like in that study, might lead to lose information relevant 
to certain diseases (7). Furthermore, Clough et al. recovered variational 
embeddings to discriminate among cardiac diseases (19). 

Despite the remarkable contributions of these approaches, they remain 
dependent on proper ventricle segmentation to characterize cardiac 
pathologies. A main issue of these schemes is the dependency on guided 
segmentation and the loss of temporal patterns that may be crucial to enrich 
diagnosis. Likewise, these descriptors are based on known physical features, 
poorly exploiting potential hidden relationships that may be computed from 
the (2D + t)  information provided by complete cine-MRI sequences. 
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In contrast, the proposed approach exploits motion relationships that can 
be calculated from kinematic representation maps but also learned through 
a 3D representation. This strategy recovers complex motion patterns and 
may be advantageous to complement typical indices to support expert 
characterizations of particular cardiac conditions. In this line, some strategies 
have also captured motion patterns from left ventricles, so their success 
depends on a proper geometry recovery (7,10).

These experiments evidence a potential use of this strategy as triage 
support of patients in clinical schemes. Regarding the state-of-the-art, the 
proposed approach evidenced competitive results regarding accuracy and 
precision by using several kinematic characteristics and following a leave-
one-patient-out cross-validation scheme. This fact showed the robustness 
of the embedding representation, allowing a reliable classification of cardiac 
conditions. Furthermore, this approach operates without segmentation 
requirements, resulting in a more generalized heart representation from cine 
MRI sequences. The proposed strategy was validated over an open database 
with real cine MRI sequences over five cardiac conditions. Nonetheless, the 
capability of the proposed approach should be validated over larger cohorts 
of data, ideally from different clinical centers. In such a sense, it is expected 
to report the generalization capacity and the impact of each kinematic map 
regarding the discrimination capability among cardiac conditions. Also, more 
middle and end embeddings exploration should be carried out, searching for 
alternative descriptors of heart observations. 

For instance, a topological analysis or a geometrical search over 
embedding space may be an alternative to validate the discrimination 
capability. The proposed approach also requires additional processing 
schemes to include multi-classification from an end-to-end scheme. Future 
works include studying other types of kinematics that can help to extract 
relevant patterns, such as attention feature maps. Finally, validation with 
a larger dataset that includes expert cardiologist annotations and clinical 
information will be considered to define a possible correlation with medical 
findings and the advantages and limitations of the approach.

This work proposed a deep volumetric convolutional net to classify cardiac 
pathologies from MRI sequences. The proposed strategy computes kinematic 
maps, which allow deep representations to encode complex and hidden 
kinematics related to the observed pathologies. Two classification schemes 
were used to validate the proposed approach: 1) An end-to-end scheme and 2) 
A scheme using embedding descriptors, further mapped into a random forest 
classifier. The proposed approaches evidence coherent competitive results 
over an open-access dataset. Future works include the study of geometrical 
embedding space and  validation with larger data cohorts to establish the 
statistical scope and discriminate among close cardiac pathologies.
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