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Introduction. Vector-borne diseases pose a public health challenge in Colombia, 
influenced by climatic and environmental factors. El Niño and deforestation can alter 
vector habitats, affecting the incidence of dengue, Zika, chikungunya, malaria, cutaneous 
leishmaniasis, and yellow fever. This study analyzes the relationship between these 
variables and vector-borne diseases incidence in Colombia (2007-2024).
Materials and methods. An ecological study was conducted using incidence and outbreak 
data for six vector-borne diseases, linked to climate information, El Niño, and deforestation. 
Regression models and random forests were applied to assess associations.
Results. Between 2007 and 2024, 3,283,259 cases of vector-borne diseases were 
reported in Colombia. Of these, 49.9% (1,639,120) were dengue and 39.8% (1,307,351) 
malaria, accounting for 89.7% of total cases. El Niño was associated with increased 
incidence of dengue (β = 213.24; 95% CI: 86.05-338.43), chikungunya (β = 26.41; 95% CI: 
17.54-70.36), and Zika (β = 14.12; 95% CI: 10.06-89.30). Maximum temperature showed 
a positive relationship with dengue (β = 5.74; 95% CI: 2.15-13.63) and malaria (β = 17.28; 
95% CI: 3.81-30.75). Deforestation was associated with malaria (β = 12.35; 95% CI: 4.62-
20.08) and cutaneous leishmaniasis (β = 8.67; 95% CI: 2.21-15.13). Mean precipitation had 
negative associations with chikungunya and leishmaniasis.
Conclusions: Climate change and deforestation impact the epidemiology of vector-borne 
diseases in Colombia. Integrated public health and environmental conservation strategies 
are needed to mitigate their effects.

Key words: Vector borne diseases; climate change; conservation of natural resources; 
epidemiologic studies; Colombia

Brotes e incidencia de enfermedades transmitidas por vectores en Colombia (2007-
2024): impacto del cambio climático y la deforestación

Introducción. Las enfermedades transmitidas por vectores representan un desafío para 
la salud pública en Colombia, influenciadas por factores climáticos y ambientales. El Niño 
y la deforestación pueden alterar los hábitats de los vectores, afectando la incidencia de 
dengue, fiebre de chikunguña, enfermedad por el virus del Zika, malaria, leishmaniasis 
cutánea y fiebre amarilla. 
Objetivo. Analizar la relación entre estas variables y la incidencia de las enfermedades 
transmitidas por vectores en Colombia (2007-2024).
Materiales y métodos. Se realizó un estudio ecológico utilizando los datos de incidencia 
y brotes de seis enfermedades transmitidas por vectores, vinculados con información 
climática, El Niño y deforestación. Se aplicaron modelos de regresión y bosques aleatorios 
para evaluar asociaciones.
Resultados. Entre el 2007 y el 2024, se registraron en Colombia 3´283.259 casos de 
enfermedades transmitidas por vectores. De estos, el 49,9 % (1’639.120) correspondieron 
a dengue y el 39,8 % (1’307.351) a malaria, representando el 89,7 % del total. El Niño se 
asoció con un aumento en la incidencia de dengue (β = 213,24; IC 95%: 86.05-338.43), 
fiebre de chikunguña (β = 26,41; IC 95%: 17,54-70,36) y enfermedad por el virus del Zika 
(β = 14,12; IC 95%: 10,06-89,30). La temperatura máxima mostró una relación positiva con 
el dengue (β = 5,74; IC 95%: 2,15-13,63) y la malaria (β = 17,28; IC 95%: 3,81-30,75). La 
deforestación se asoció con malaria (β = 12,35; IC 95%: 4,62-20,08) y leishmaniasis (β = 
8,67; IC 95%: 2,21-15,13). La precipitación media tuvo asociaciones negativas con fiebre 
de chikunguña y leishmaniasis.
Conclusiones. El cambio climático y la deforestación impactan la epidemiología de las 
enfermedades transmitidas por vectores en Colombia. Se requieren estrategias integradas 
de salud pública y conservación ambiental para mitigar sus efectos.
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Vector-borne diseases pose a persistent challenge to public health in 
Colombia and other tropical regions (1). Diseases such as dengue, malaria, 
yellow fever, leishmaniasis, chikungunya, and Zika have shown variable 
incidence patterns in response to environmental and climatic factors (2,3). 
Among these factors, climate change and deforestation have been identified 
as key determinants influencing vector dynamics and, consequently, the 
spread of these diseases (2,3).

The El Niño-Southern Oscillation (ENSO) is a recurring climate 
phenomenon that includes both El Niño and La Niña phases, which affect 
global temperature and precipitation patterns through complex ocean-
atmosphere interactions (4). In Colombia, the El Niño phase has been 
particularly associated with hotter and drier conditions that favor vector 
survival and increase the transmission potential of diseases such as dengue, 
Zika, and chikungunya (5). Although La Niña may influence disease dynamics 
in different ways, this study focused on El Niño given its stronger and more 
documented association with arboviral outbreaks in the region.

It is also important to note that while these diseases are endemic in 
Colombia and maintain an expected baseline incidence, certain environmental 
conditions –such as those induced by El Niño– can amplify transmission, 
leading to epidemic outbreaks. Similarly, deforestation and other land-use 
changes create new habitats for vectors, affecting human populations’ 
exposure to these pathogens and modifying transmission patterns (6).

Vector-borne diseases remain one of the leading causes of morbidity 
in Colombia. According to the latest epidemiological data, dengue is the 
most prevalent arboviruses, with recurrent epidemic cycles and a significant 
burden on the healthcare system (7,8). Malaria, though more geographically 
concentrated in endemic regions, continues to pose a challenge in rural and 
marginalized communities (9,10). Meanwhile, emerging diseases such as 
chikungunya and Zika have caused major outbreaks following their introduction 
into the country, whereas cutaneous leishmaniasis and yellow fever maintain a 
stable incidence but present a risk of re-emergence in jungle areas (11,12).

While previous studies have explored the relationship between these 
diseases and environmental factors, most have focused on specific outbreaks 
or individual diseases (13). However, a comprehensive approach is needed to 
assess both outbreaks and incidence rates over time across multiple vector-
borne diseases relevant to public health. Combining statistical models with 
spatial analysis might provide a deeper understanding of epidemiological 
patterns and their relationship with climate variability and environmental 
transformation (14).

The objective of this study was to evaluate the impact of ENSO and 
deforestation on the incidence and outbreaks of six vector-borne diseases 
(dengue, malaria, yellow fever, leishmaniasis, chikungunya, and Zika) in 
Colombia from 2007 to 2024. Using robust analytical methodologies, this 
research aimed to provide evidence on how these factors have shaped the 
burden of vector-borne diseases in the country, offering key insights for 
epidemiological surveillance and public health decision-making to design 
more effective prevention and control strategies.
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Materials and methods

Study design

An ecological study was conducted based on incidence and outbreak 
data of vector-borne diseases in Colombia from 2007 to 2024. The six 
previously mentioned vector-borne diseases (dengue, yellow fever, malaria, 
cutaneous leishmaniasis, chikungunya, and Zika) were analyzed assessing 
the relationship between disease events and environmental factors such as 
ENSO, temperature, precipitation, and deforestation were evaluated.

Data sources

Vector-borne diseases incidence and outbreak data were obtained from 
official records of the Sistema Nacional de Vigilancia en Salud Pública, 
SIVIGILA (https://www.ins.gov.co/Paginas/Inicio.aspx). Climatic variables 
related to temperature (mean, minimum, and maximum) and precipitation 
(minimum, mean, and maximum) were collected from national and international 
meteorological databases, including the Instituto de Hidrología, Meteorología 
y Estudios Ambientales, IDEAM (https://www.ideam.gov.co/) and the National 
Oceanic and Atmospheric Administration (NOAA) (https://www.noaa.gov/). 
These variables were processed with departmental spatial resolution and 
monthly temporal resolution to align them with epidemiological data.

Deforestation data were sourced from the Global Forest Watch platform and 
IDEAM, with spatial resolution at the departmental level and annual temporal 
resolution. All data were georeferenced and integrated into a unified analytical 
framework, allowing spatial and temporal analyses to assess the relationship 
between environmental factors and vector-borne diseases incidence.

Data analysis

Data was organized and tabulated in a structured database using 
Microsoft Excel (Microsoft, Redmond, WA, USA), and statistical analyses 
were performed using R software. Map visualizations were created using 
QGIS. Continuous variables included the annual incidence of each vector-
borne disease, temperature (mean, minimum, and maximum), precipitation 
(minimum, mean, and maximum), and deforested area. Categorical variables, 
such as the presence or absence of the El Niño phenomenon and the 
occurrence of epidemic outbreaks, were presented as frequencies and 
proportions. Data distribution was assessed, and annualized incidence rates 
were calculated by department and disease.

Annualized incidence rates were obtained by dividing the number of new 
cases of each vector-borne disease each year by the at-risk population during 
the same period, multiplying the result by 100,000 inhabitants. For spatial 
analysis, incidence rates were estimated at the departmental level using 
official population projections.

ENSO was operationalized as a binary variable (presence/absence) 
for each year based on publicly available climatological classifications. Its 
influence was examined both descriptively and analytically by comparing 
incidence rates in years with and without ENSO events.

Poisson regression models with a population offset were used to assess 
the association between vector-borne diseases incidence and environmental 
variables. Predictors included ENSO, temperature (mean, minimum, and 
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maximum), precipitation (minimum, mean, and maximum), and deforestation. 
While ENSO is known to be influenced by broader socioeconomic and 
ecological dynamics, this study focused on its localized climatic expression 
and statistical association with disease incidence in Colombia.

To evaluate the influence of climate change and deforestation on outbreak 
incidence, machine learning models using random forests were implemented 
to determine the relative importance of each predictor variable. Additionally, 
incidence rates in years with and without ENSO events were compared using 
parametric and non-parametric statistical tests, complemented by graphical 
analyses to identify trends and potential associations.

Mucosal and visceral forms of leishmaniasis were excluded, focusing on 
those with the greatest epidemiological impact in the region. The significance 
level of p < 0.05 was considered statistically significant for all analyses.

Results

Burden of vector-borne diseases in Colombia 

Between 2007 and 2024, a total of 3,283,259 vector-borne disease cases 
were reported in the country. Of these, 49.9% (1,639,120) corresponded 
to dengue and 39.8% (1,307,351) to malaria, collectively accounting for 
89.7% of all reported cases. Cutaneous leishmaniasis represented 4.6% 
of cases, with a total of 151,038 reports during the study period. Since the 
introduction of chikungunya in 2014, a total of 78,966 cases were recorded by 
the end of 2024. Similarly, following the emergence of the Zika virus in 2015, 
106,738 cases were reported (table 1). While the overall incidence of Zika 
and chikungunya has declined after initial epidemic waves, their peak years 
overlapped with El Niño events, which allowed for statistically significant 
associations in our models.

Trends in the incidence of vector-borne diseases in Colombia and their 
relationship with environmental factors

The analysis of the influence of climatic and environmental factors on 
incidence rates, conducted using regression models and random forests, 
revealed significant variations in vector-borne diseases incidence. An increase 
in dengue incidence (β = 213.24; 95% CI: 86.05-338.43), chikungunya (β = 
26.41; 95% CI: 17.54-70.36), and Zika (β = 14.12; 95% CI: 10.06-89.30) was 
observed in years associated with ENSO events. In contrast, malaria (β = 
17.28; 95% CI: 3.81-30.75), yellow fever, and cutaneous leishmaniasis (β = 
8.67; 95% CI: 2.21-15.13) exhibited more heterogeneous patterns, influenced 
by variations in temperature, precipitation, and deforestation (figure 1).

Table 1. Total cases and outbreak frequency of vector-borne diseases in Colombia 
(2007-2024)

Disease Total 
cases

Percentage 
of total cases

Years with 
outbreaks

Percentage of years 
with outbreaks

Dengue
Malaria
Cutaneous leishmaniasis
Zika
Chikungunya
Yellow fever
Total

1,639,120
1,307,351

151,038
106,738
78,966

46
3,283,259

49.9
39.8
4.6
3.3
2.4

         <0.01
        100

8
5
4
2
3
4

26

  30.8
  19.2
  15.4
    7.7
  11.5
  15.4
100
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Association between El Niño and the incidence of diseases

The presence of ENSO was significantly associated with an increase in 
the incidence of dengue, chikungunya, and Zika (p < 0.05). However, in the 
case of malaria, yellow fever, and leishmaniasis, the relationship was less 
evident (table 2 and figure 2).

Figure 1. Spatial and temporal patterns of vector-borne disease incidence in Colombia (2007-2023). A. Geographic distribution of incidence rates 
by department. B. National incidence trends over time.
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Impact of environmental factors on the incidence of vector-borne diseases

Deforestation was a significant predictive factor for the incidence of 
leishmaniasis (β = 8.67; 95% CI: 2.21-15.13) and malaria (β = 12.35; 95% 
CI: 4.62-20.08), while its association with other diseases was inconclusive. 
Similarly, maximum temperature was positively associated with the incidence 
of dengue (β = 5.74; 95% CI: 2.15-13.63) and malaria (β = 17.28; 95% CI: 
3.81-30.75). In contrast, mean precipitation had a more variable effect, 
showing negative associations with chikungunya (β = -3.25; 95% CI: -5.90 to 
-0.60) and leishmaniasis (β = -1.02; 95% CI: -2.91 to -0.87) (table 3).

Frequency of epidemic outbreaks and their relationship with El Niño

During the study period, 26 epidemic outbreaks were recorded, of which 
30.8% were associated with dengue, 19.2% with malaria, and 11.5% with 
chikungunya. These outbreaks were more frequent in years affected by El 
Niño, indicating a potential link between anomalous climatic conditions and 
epidemic intensity (figure 3).

Key factors in outbreak prediction

The random forest model indicated that ENSO was the most influential 
variable in predicting outbreaks, followed by mean precipitation and 
deforestation (table 4 and figure 4).

NS: Not significant
Note: Coefficients derived from Poisson regression models adjusted for 
population size. 
Statistically significant associations (p < 0.05) are highlighted in bold. 

Table 2. Association between ENSO events and the incidence 
of vector-borne diseases in Colombia (2007-2024)

Figure 2. Comparison of the average incidence of each vector-borne disease 
in years with and without El Niño
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Figure 4. Variable importance in outbreak prediction (random forest)

Figure 3. Incidence rates in years with and without El Niño

* Coefficients derived from Poisson regression models. 
Statistically significant values (p < 0.05) are marked with an asterisk. 

Note: All predictors shown were statistically significant in the final model. Values 
were rounded to four decimals for interpretability.

Table 4. Multivariable regression model of environmental predictors 
associated with vector-borne diseases outbreak occurrence (2007-2024)
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Discussion

This study analyzed the incidence and outbreaks of vector-borne diseases 
in Colombia between 2007 and 2024, exploring their relationship with 
climatic and environmental factors, with a particular focus on the impact of 
the ENSO phenomenon and deforestation (15). The findings indicate that 
increased temperature and reduced precipitation during ENSO years were 
strongly associated with a rise in the incidence of diseases such as dengue, 
chikungunya, and Zika. Additionally, deforestation emerged as a key factor, 
primarily affecting malaria and cutaneous leishmaniasis (15-17).

These results align with previous studies that have identified ENSO as a 
driver of dengue epidemics in Latin America, due to temperature and humidity 
conditions favorable for the proliferation of the Aedes aegypti mosquito 
(18-20). In the case of chikungunya and Zika, although with relatively 
fewer longitudinal studies, recent research has suggested a pattern similar 
to dengue in tropical regions (21,22). In this aspect, rising temperatures 
accelerate viral development within the mosquito and shorten the vector’s 
reproductive cycle, while reduced precipitation can lead to water accumulation 
in artificial containers, creating breeding sites for urban mosquitoes (23,24). 
This would explain why outbreaks and incidence of these arboviral diseases 
are more frequent during these periods.

It is important to highlight that chikungunya and Zika are relatively 
new diseases in Colombia, with the first autochthonous cases reported in 
2014 and 2015, respectively (25); their introduction was accompanied by 
significant epidemic outbreaks due to the lack of population immunity and 
the widespread presence of A. aegypti (25,26). While our analyses indicate 
that these viruses follow a pattern similar to dengue in relation to ENSO, the 
recent emergence of these diseases suggests that long-term trends should 
still be interpreted with caution. As population immunity accumulates and 
climatic conditions continue to change, the transmission dynamics may differ 
from those observed in this first decade after their introduction.

In contrast, malaria showed a less evident relationship with the ENSO 
phenomenon. While previous studies have suggested that changes in 
temperature and precipitation can influence Plasmodium spp. transmission 
(27), our results indicate that its incidence and outbreaks are more closely 
related to deforestation and alterations in the hydrography of endemic regions 
(28,29). This suggests that the expansion of the agricultural frontier and 
urbanization may be intensifying transmission.

The link between deforestation and malaria has been widely documented 
in the Amazon and other tropical regions, where the loss of vegetation cover 
creates more suitable habitats for Anopheles spp. vectors, altering their 
behavior and facilitating human contact (30-32). Additionally, in deforested 
areas, the presence of exposed water bodies with higher temperatures may 
favor vector larval development, suggesting that environmental transformation 
plays a more determining role than large-scale climate fluctuations (30-32).

Similarly, cutaneous leishmaniasis showed a stronger association with 
deforestation than with the ENSO phenomenon, supporting the hypothesis 
that ecosystem disruption increases human exposure to Leishmania spp. 
vectors (Phlebotomus spp. sandflies) (6,33). In Colombia, cutaneous 
leishmaniasis is endemic in various rural regions, and its transmission 
depends on the ecological balance between vectors, reservoirs, and humans.
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The link with deforestation can be explained through several mechanisms. 
First, habitat fragmentation forces sandflies to adapt to more open and 
human-modified environments, increasing the likelihood of human contact (6). 
Second, human activities associated with deforestation, such as agricultural 
expansion, livestock farming, illegal mining, and infrastructure development, 
can increase local populations’ exposure to these vectors (34). Additionally, 
biodiversity loss may reduce the availability of natural reservoirs for the 
parasite, facilitating transmission to humans (35).

These findings suggest that, unlike arboviruses, where interannual 
climate variability plays a key role, cutaneous leishmaniasis is more closely 
linked to long-term environmental changes (36). This reinforces the need 
for public health strategies that not only respond to climatic factors but also 
integrate environmental conservation policies and vector control measures in 
deforested areas.

Another key finding is the importance of temperature as a predictor of 
incidence, particularly for dengue and malaria. Studies have shown that 
rising temperatures accelerate mosquito development and shorten the 
extrinsic incubation period of viruses and parasites within their vectors (37). 
For dengue, chikungunya, and Zika, this effect is amplified during ENSO 
years due to reduced precipitation and the proliferation of breeding sites in 
urban environments (1,38). For malaria, although no clear relationship with 
ENSO was observed, temperature remains a crucial factor, as it influences 
the development rate of the Plasmodium spp. parasite within Anopheles spp. 
mosquitoes and transmission dynamics (39). However, other elements may 
modulate its impact, such as ecosystem alterations due to deforestation, 
insecticide resistance, and human migration patterns (40). These results 
suggest the need for a more detailed approach to malaria studies, 
incorporating data on land-use changes, urbanization, and vector resistance 
to control interventions.

Unlike other arboviruses, yellow fever showed a less evident relationship 
with the analyzed climatic variables. This may be due to the complexity 
of its transmission, which involves both sylvatic cycles (with non-human 
primates as reservoirs and Haemagogus spp. and Sabethes spp. mosquitoes 
as vectors) and urban cycles (A. aegypti as the primary vector). Some 
studies have found that yellow fever outbreaks in South America may be 
influenced by changes in precipitation and temperature patterns (41,42), but 
in this analysis, no strong association with ENSO was identified. However, 
deforestation and habitat fragmentation have been documented to increase 
human exposure to sylvatic vectors (43), suggesting that additional ecological 
factors may be modulating the incidence of the disease in Colombia.

Another aspect to consider is the influence of yellow fever vaccination 
on epidemiological dynamics. Unlike diseases such as dengue and malaria, 
which lack widely implemented vaccines, yellow fever has an effective vaccine 
that may be reducing incidence in certain areas (44). However, in regions 
with insufficient vaccine coverage, outbreaks may be more frequent and more 
closely related to agricultural frontier expansion and human mobility.

This study presents some limitations that should be considered when 
interpreting the results. First, incidence data may be subject to underreporting 
or variability in epidemiological surveillance over time, which could affect 
the accuracy of the estimates. Second, although key climatic factors 
were included, other determinants such as human mobility, public health 
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interventions, and socioeconomic dynamics were not analyzed in depth, 
which could influence the distribution and persistence of these diseases. 
Finally, the spatial scale of the analysis, focusing on departmental levels, 
might obscure relevant local patterns that require more detailed studies at the 
municipal or village level.

Nonetheless, this study has significant strengths. The distinction 
between outbreaks and incidence rates allowed for a better understanding 
of the transmission dynamics of vector-borne diseases. While outbreaks 
reflect a sudden increase in the number of cases over a short period, 
annual incidence captures the overall disease burden in the population, 
providing a comprehensive view of epidemiological behavior. This approach 
enhances the interpretation of associated factors and facilitates the design 
of differentiated strategies for the prevention and control of these diseases in 
various epidemiological and environmental contexts.

In conclusion, these findings underscore the need to integrate public 
health strategies with environmental conservation and climate change 
mitigation policies. Strengthening epidemiological surveillance during ENSO 
years is essential to anticipate vector-borne diseases outbreaks, while 
targeted vector control actions are especially needed in deforested areas 
where malaria and cutaneous leishmaniasis remain highly prevalent. 

Given the context of climate change and accelerated environmental 
degradation, it is critical to develop localized predictive models that 
incorporate environmental, social, and health system variables. Moreover, 
deforestation should not be viewed solely as an ecological phenomenon 
but as a complex socio-environmental process driven by land use practices, 
economic activities, population dynamics, and governance factors, which 
interact with climate variability to amplify disease transmission risks. 

From a policy perspective, the study results highlight the need to 
incorporate climatic and ecological indicators, such as ENSO alerts, 
temperature anomalies, and forest-cover loss, into national epidemiological 
surveillance system coordinated by the Instituto Nacional de Salud. Vector 
control actions should be aligned with the Decennial Public Health Plan 
(2022-2031), and vector-borne diseases risk mapping should inform the 
national zero deforestation strategy and territorial climate change plans. 
Furthermore, land-use planning instruments (e.g., Plan de ordenamiento 
territorial, and Plan de ordenación y manejo de cuencas hidrográficas) must 
embed epidemiological risk assessments to curb disease emergence in 
rapidly transforming territories. 

Sustained, coordinated action among the health, environment, and 
planning sectors is essential to leverage shared data systems, maintain 
updated risk maps, and jointly monitor vector-borne diseases trends amid 
ongoing climatic and ecological pressures.
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