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Abstract

Interfacial esterases present great functional versatility, making them very attractive molecules for industrial 
applications. The conditions for extracting interfacial esterases previously detected in the sea anemone Sti-
chodactyla helianthus and the shrimp Litopenaeus vannamei were optimised in this work. Animal homogenates 
were treated with Triton X-100, Tween 20 and Tween 80 detergents at two different concentrations: critical 
micellar concentration (CMC) and half  of  that concentration; 0.5 mol/L NaCl and n-butanol at 5%, 10% 
and 20% v/v ratios were also tested. Each procedure was compared to the control extraction method using 
distilled water. The best results were obtained with 20% n-butanol for recovering esterase and phospholipase 
activity whilst 10% n-butanol extraction was the most effective for lipase activity isolation. This solvent’s 
suitability for isolating interface-activated enzymes could be explained by its ability to dissociate biomolecule 
aggregates and cause enzyme desorption from the membranes and tissues remaining in the preparation. 

Key words: interfacial activation, interfacial esterase, lipase, Stichodactyla helianthus, Litopenaeus vannamei. 

Resumen 

En el presente trabajo se optimizaron las condiciones de extracción de esterasas con actividad en interfa-
ces, a partir de la anémona marina Stichodactyla helianthus y del camarón peneido Litopenaeus vannamei. Las 
esterasas interfaciales, cuya presencia en estas especies había sido informada previamente, presentan ca-
racterísticas funcionales que las hacen muy atractivas para su empleo industrial. Los homogenados de los 
animales se trataron con los detergentes Tritón X-100, Tween 20 y Tween 80 en dos concentraciones cada 
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Introduction

Esterases are enzymes which catalyse the 
hydrolytic breakdown of  ester bonds. Some 
of  them (such as lipases and phospholipases) 
require lipid/water interfaces to develop maxi-
mum catalytic activity (Holwerda et al., 1936; 
Schonheyder and Volquartz, 1945; Sarda and 
Desnuelle, 1958; Volwerk et al., 1986; Malcata, 
1996; Chahinian et al., 2002; Reis et al., 2009). 
These enzymes (here called interfacial estera-
ses) are widely spread in nature (Berner and 
Hammond, 1970; Six and Dennis, 2000) and 
their functional versatility has conditioned their 
use in the food, detergents and fine chemical 
industries (Benjamin and Pandey, 1998; Jaeger 
and Reetz, 1998; Bastida et al., 1999; Pandey et 
al., 1999; Segura et al., 2004). 

Considering that marine organisms have 
been less explored than mammals and micro-
organisms and also because there is a higher 
probability of  finding enzymes having different 
specificities towards non-natural substrates in 
marine organisms, the quest for interfacial es-
terase activity in marine invertebrates has been 
a major research goal in this field (Nevalainen 
et al., 2004; Knotz et al., 2006; Park et al., 2008; 
Perera et al., 2008). Extraction is a critical step 
in detecting desired enzymatic activity in any 
living organism. Designing efficient and selec-
tive extraction systems ensuring good recovery 
of  such desirable activity and preventing inter-
ferences with other enzymes in the assay is a 
major concern (Mala et al., 2007; Talukder et 

al., 2007). This is due to insufficient knowledge 
being available concerning the presence of  in-
terfacial esterases in marine invertebrates. 

This work describes the extraction of  
interfacial esterases from the sea anemone S. 
helianthus and the shrimp L. vannamei. Animal 
homogenates were thus treated with Triton 
X-100, Tween 20 and Tween 80 non-ionic de-
tergents at two different concentrations: CMC 
and half  this concentration (Mogensen et al., 
2005). Sodium chloride and n-butanol were 
also tested. Each procedure was compared to 
the control extraction method using distilled 
water. 

Interfacial esterases can adsorb on hydro-
phobic interfaces (Peters et al., 1997; Peters 
and Bywater, 2001; Berg et al., 2004; Reis et al., 
2008a), like those appearing on micellar surfa-
ces (Martinek et al., 1987; Petersen, 1996; Mitra 
et al.. 2005; Shome et al., 2007). Using non-io-
nic detergents as potential agents for extracting 
interfacial esterases (Pind and Kuksis, 1988; Iiji-
ma et al., 1990; Palomo et al., 2004; Sonesson et 
al., 2006) thus becomes promising. Increments 
in ionic strength, though not high enough to 
reach salting-out-related values, may contribu-
te towards the disaggregation of  protein mo-
lecules and their desorption from membrane 
remnants, thereby causing better recovery of  
these enzymes (Natori et al., 1983; Reers and 
Pfeiffer, 1987; Ono et al., 1988; Sagiroglu and  
Arabaci, 2005; Sah and Bahl, 2005). The pre-
sence of  n-butanol in the extraction medium 

uno: la Concentración Micelar Crítica (CMC) y la mitad de ésta. Además se empleó NaCl 0,5 mol/L y 
n-butanol a las proporciones 5, 10 y 20%. Cada variante fue comparada con el método tradicional de ex-
tracción con agua destilada, que fue tomado como control. Los mejores resultados se obtuvieron emplean-
do n-butanol al 20%, para recuperar las actividades esterasa y fosfolipasa, y al 10%, en el aislamiento de 
la actividad lipasa. La efectividad de este solvente en el aislamiento de estas enzimas con afinidad por las 
interfaces lípido/agua, pudiera estar dada por su capacidad para romper los agregados entre estas molé-
culas y causar la desorción de las mismas a los restos de membrana y tejidos presentes en la preparación. 

Palabras clave: activación interfacial, esterasas interfaciales, lipasas, Stichodactyla helianthus, Litopenaeus vannamei. 
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may cause the precipitation of  other contami-
nant proteins and may lead to membrane rem-
nant dissociation and esterase disaggregation 
(Pedersen et al., 2006; Akbar et al., 2007; Koo 
et al., 2008), enzymes which are very stable 
in organic solvents (Bornscheuer et al., 1994; 
Dandavate et al., 2009). Using 20% n-butanol 
was the best method for extracting interfacial 
esterases from S. helianthus extract. 

The latter extraction system’s effect (as 
well as that of  the n-butanol proportion) 
on the specific type of  recovered esterase 
activity was also studied. This was done by 
comparing esterase, lipase and phospholipa-
se activity. Extracting phospholipase and es-
terase activities (but not lipase activity) from 
the S. helianthus extract was favoured by 20% 
n-butanol. This concentration was the best 
for phospholipase and esterase extraction 
from L. vannamei midgut gland extracts. By 
contrast, lipase activity from midgut gland 
extracts was best recovered with 10% n-bu-
tanol. 

Materials and methods T1 

Marine organisms. S. helianthus was collected 
from the coast of  Havana by specialists from 
the National Aquarium of  Cuba and from Ha-
vana University’s Biology Faculty. L. vannamei 
was generously donated by Northwest Biologi-
cal Research Centre (CIBNOR), Baja California 
Sur, Mexico. Adult males from culture tanks 
from the latter species were used during inter-
molting.

Preparing homogenates. S. helianthus ho-
mogenates were prepared by mixing whole 
organisms in a blender, adding 2 ml distilled 
water per gram animal wet weight at 4 °C. The 
midgut glands from L. vannamei were dissec-
ted and homogenised in distilled water using 
a 1:8 wet weight/volume ratio at 4 oC for 5 
minutes. Both homogenates were kept at -20 
°C until use. 

Extracting interfacial esterases. The following 
procedures were assessed to study the effect of  

different compounds on extracting esterases 
present in S. helianthus homogenates: 

The control method used for compari-• 
son, based on adding distilled water to 
the homogenate;

Adding non-ionic Triton X-100, Tween • 
20 and Tween 80 detergents to the ho-
mogenates at CMC and half  this con-
centration. Triton X-100, Tween 20 and 
Tween 80 CMC were 0.2 x 10-3 mol/L, 
0.06 x 10-3 mol/L and 0.02 x 10-3 mol/L, 
respectively, according to the Boehrin-
ger Mannheim Biochemical catalogue 
(1996);

Adding 0.5 mol/L NaCl to the homoge-• 
nates (Scopes, 1988); and

Adding 20% n-butanol at 4 • °C to the 
homogenates (to use high proportions 
of  n-butanol see: Miki et al., 1985; Malik 
and Low, 1986).

All concentrations and proportions were 
calculated according to treatment final volume. 
Each extraction method’s product was spun 
for 1 hour at 15,000 g at 4 °C in a refrigerated 
centrifuge (Beckman J2-21, USA). Supernatants 
were dialysed at 1:1,000 extract volume/dialy-
sis solution ratio, first against distilled water 
and then using a 10 mmol/L sodium phospha-
te buffer, pH 7.0. Both dialysates were carried 
out for 6 hours at 4 °C. Extracts were stored at 
-20 °C until use. 

Each treatment was repeated five times. 
Kolmogorov-Smirnov and Bartlett tests were 
used for analysing data normality and variance 
homogeneity, respectively. One-way ANOVA 
was used for fixed effects model. Means were 
compared by Duncan multiple ranks test for 
the extraction study. Student t-test was used 
for comparing the means between treatments 
for the study about the effect of  the n-butanol-
based extraction method on the type of  reco-
vered esterase activity (Sigarroa, 1985). 
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L. vannamei midgut gland homogenates 
were mixed with n-butanol at 5%, 10% and 
20% (Miki et al., 1985; Malik and Low, 1986). 
Distilled water was used as experiment control 
. The samples were homogenised for 5 min 
with constant shaking, centrifuged for 10 min 
at 10,000 g and the middle layer was collected. 
This layer was diafiltrated using an ultrafilter 
with an YM3 membrane (cut-off: 10,000 Da, 
Diaflo, USA) by spinning for 10 min at 10,000 
g and 4 °C. Six washes with distilled water were 
done to ensure organic solvent removal. 

Five replications for each treatment were 
performed. Kolmogorov-Smirnov and Bartlett 
tests were used for analysing data normality 
and variance homogeneity, respectively. Tukey 
HSD test was used for comparing treatment 
means (Sigarroa, 1985).

Protein concentration assays. Enzymatic ex-
tract protein concentration was determined 
according to Bradford (1976). 

Enzyme activity assays 

Esterase activity assay. Esterase activity 
was assayed from extracts by measuring the 
amount of  p-nitrophenol released from p-ni-
trophenylacetate (p-NPA) used as substrate. A 
spectrophotometric continuous method (Spe-
kol 11, Germany) with magnetic stirring was 
applied. The assay was conducted at a constant 
temperature (30 °C) in a 1 cm vessel. The reac-
tion mixture consisted of  enzymatic extract 
(0.01 mg/ml final protein concentration) in 
0.025 mol/L Tris-HCl buffer (pH 8.0). The 
reaction system was initiated by adding p-NPA 
(3.85 mmol/L final concentration). Absorban-
ce at 348 nm caused by p-nitrophenol release 
(ε348 nm = 5150 M-1 cm-1) was monitored. One 
unit of  esterase activity was defined as being 
the amount of  enzyme producing 1 µmol p-
nitrophenol per minute in assay conditions.

Lipase and phospholipase activity assays. Lipa-
se and phospholipase enzymatic activity were 
assayed in enzymatic extracts using an auto-
matic titration method (Mettler-Toledo DL-21, 

Switzerland) in pH-stat mode. The reactions 
were carried out with constant stirring and 
temperature (30 °C). Tributyrin and soybean 
phosphatidylcholine (PC) were used as substra-
tes for lipase and phospholipase activities, res-
pectively (both Sigma Chemical Co., St. Louis, 
MO, USA). Substrates were emulsified with ara-
bic gum (Sigma Chemicals Co., USA) in the ac-
tivity buffer with magnetic sitirring for 10 min 
followed by sonication (Branson 1200, UK) 
for 15 min. The reaction mixture consisted of  
enzymatic extract (0.01 mg/ml final protein 
concentration), 0.14 mol/L emulsified substra-
te, 3% arabic gum, 0.04 mol/L CaCl2 in 0.01 
mol/L Tris-HCl buffer (pH 8.0). pH was kept 
constant at 7.0 and 0.01 mmol/L NaOH was 
used as titrating solution. One unit of  lipase/
phospholipase activity was defined as being the 
amount of  enzyme which liberated 1 µmol free 
fatty acids per minute in assay conditions. 

Each enzymatic activity was assessed 
three times. Enzymatic activity was expressed 
as specific activity (U/mg) by referring to the 
amount of  protein present in the preparations. 

Results and Discussion

Effect of different compounds on 
extracting interfacial esterases

Different extraction methods based on 
dissimilar principles were compared in this 
work to identify a procedure enabling the re-
covery of  as much enzymatic activity as possi-
ble. The S. helianthus sea anemone was taken as 
a model and the procedures undertaken were 
assessed by specific esterase activity measure-
ment using p-NPA as substrate. This enzymatic 
activity was chosen as it is the most generally 
found for the group of  enzymes being investi-
gated (Colowick and Kaplan, 1955). 

These enzymes are able to adsorb on 
hydrophobic interfaces (Peters et al., 1997; Pe-
ters and Bywater, 2001; Berg et al., 2004; Reis 
et al., 2008a), like those appearing on biologi-
cal membrane surfaces and detergent micelles 
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(Martinek et al., 1987; Egmond 1996; Mitra et 
al., 2005; Shome et al., 2007). Considering this 
property, three non-ionic detergents were used 
as candidate extraction systems (Triton X-100, 
Tween 20 and Tween 80); they were used at two 
concentrations: CMC and half  this concentra-
tion (Mogensen et al., 2005), totalling six extrac-
tion methods tested. Only Triton X-100 at CMC 
was significantly better than the control method 
(based on distilled water) (Figure 1). 

Figure 1. Comparing different methods for 
extracting interfacial esterases from S. helianthus 

through specific esterase activity assessment 
with p-NPA. Each treatment was performed 
five times. Means were compared by Duncan 

multiple ranks test. Different letters show 
significant differences (p < 0.01).

The fact that it was necessary to reach 
CMC (Mogensen et al., 2005) to obtain good 
enzyme recovery with Triton X-100 could be 
explained by the high affinity for lipid/water 
interfaces exhibited by these molecules (Son-
esson et al., 2006; Reis et al., 2008b). The Tri-
ton X-100 detergent’s chemical structure also 
seems to have had a positive influence on ex-
traction (Isobe and Sugiura, 1977; Natori et al., 
1983; Palomo et al., 2004; Ras et al., 2008) when 
comparing Tween 20 and Tween 80 (Figure 1). 

Adding 0.5 mol/L NaCl to the homoge-
nates was no better than control method as an 
attempt to overcome enzyme aggregation and 
increase solubility (Natori et al., 1983; Reers and 
Pfeiffer, 1987; Ono et al., 1988; Pind and Kuksis, 
1988; Sah and Bahl, 2005). However, working 
at low temperatures (4 ºC) and in the presen-

ce of  20% n-butanol in the extraction medium 
was the best strategy when esterase activity was 
monitored with p-NPA assay (Figure 1). This 
probably resulted from this solvent’s disaggre-
gation effect (Montero et al., 1993; Snellman et 
al., 2002; Palomo et al., 2003) on interactions 
amongst interfacial esterases and between them 
and the membrane remnants present in the 
sample (Pedersen et al., 2006; Koo et al., 2008). 
n-butanol can also produce accompanying pro-
teins’ precipitation, thereby increasing specific 
activity (Akbar et al., 2007) compared to other 
non-precipitating methods. On the other hand, 
Bornscheuer et al. (1994) and Dandavate et al., 
(2009) have reported interfacial esterases’ great 
stability in organic solvents. 

Even though Triton X-100 at CMC and n-
butanol at 20% and 4 °C procedures were the 
most promising, it was decided to continue the 
study using the organic solvent extraction me-
thod. This criterion was influenced not only by 
the fact that the latter method was able to reco-
ver the highest specific enzymatic activity values 
(Figure 1) but also because it seemed more at-
tractive considering the purposes of  this work. 
Indeed, from a practical point of  view, organic 
solvent extraction is a wise option. It is well 
known that post-extraction detergent removal is 
not always effective (Zhong et al., 2006) and on 
many occasions requires chromatographic steps 
which do not ensure complete elimination and 
place a negative burden on process cost (Furth, 
1980; Robinson et al., 1984). However, it is per-
fectly possible to achieve organic solvent remo-
val through exhaustive dialysis or ultrafiltration 
(Luisi and Laane, 1986). 

The effect of the n-butanol-based 
extraction method for interfacial 
esterases on the type of esterase 
enzymatic activity recovered 

The most particular type of  enzymatic 
activity potentially recoverable using n-butanol 
was explored once the treatment for extracting 
the highest specific esterase activity from S. he-
lianthus homogenates had been established. The 
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n-butanol treatment was accordingly assessed via 
the following specific activities: esterase, lipase 
and phospholipase, using p-NPA, tributyrin and 
soybean PC as substrates, respectively. 

Figure 2 shows that n-butanol treatment 
was able to isolate enzyme quantities having es-
terase and phospholipase activity per milligram 
of  whole proteins which was significantly high-
er than that obtained using the control method. 
Nevertheless, lipase activity was not favoured 
by the afore-mentioned treatment. 

The treatment resulted in higher than 
100% yield for both phospholipase and este-
rase activity, compared to the control method. 
Purification factors in both cases showed the 
process’ semi-purification nature since this 
method was able to support these enzymes’ 
selective extraction. Both criteria manifest this 
method’s better application for phospholipase 
activity recovery (Table 1). 

Effect of n-butanol proportion in the 
extraction medium on the type of 
esterase enzymatic activity recovered 
The effect of  organic solvent proportion 

on the type of  esterase enzymatic activity reco-
vered from L. vannamei midgut glands was also 
studied. Three distinct conditions were tested 
in the experiment: n-butanol at 5%, 10% and 
20%. Extracts were assessed for esterase, lipa-
se and phospholipase specific enzyme activity, 
with p-NPA, tributyrin and soybean PC as subs-
trates, respectively. 

A previous study (data not shown) has 
shown that extract clarification by spinning or-
gan homogenates and subsequently collecting 
the middle phase (before n-butanol treatment) 
has promoted the loss of  phospholipase activi-
ty. On the contrary, this activity remained when 
assayed in non-clarified extracts. Non-clarified 
L. vannamei midgut glands homogenates were 
thus submitted to n-butanol treatment (an al-
ready established procedure for S. helianthus).

Figure 2. Comparing different enzymatic 
activities recovered by the extraction method 

for interfacial esterases from S. helianthus based 
on n-butanol at 20% and 4 °C, by assessing the 
following specific activities: esterase, lipase and 

phospholipase, with p-NPA, tributyrin and soybean 
PC as substrates, respectively. Student’s t-test was 
used for comparing the means for each control-

treatment pair. Three asterisks indicate significant 
differences (p < 0.001). Error bars indicate mean 

standard deviation for five replications.

Table 1. Purification of esterase, lipase and phospholipase enzymatic activities, assayed with p-NPA, 
tributyrin and soybean PC, respectively, through the extraction method for interfacial esterases from S. 

helianthus based in n-butanol at 20% and 4 °C.

Non-treated extract 
(distilled water)

Treated extract 
(20% n-butanol and 4 °C )

Substrates - p-NPA tributyrin Soybean PC

Yield (%) 100 443 93 595

Purification factor (fold) 1 5 1.05 6.8
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Some authors have recommend using 20% 
n-butanol at 4 °C as the extraction variant attai-
ning the greatest values for membrane-associated 
enzyme recovery (Ayala et al.,1985; Luisi and La-
ane, 1986). Increments in esterase activity were 
observed with increasing n-butanol proportions 
when extracts were submitted to enzymatic as-
says with p-NPA. Extracting this enzymatic acti-
vity was not favoured by n-butanol at the smallest 
of  the proportions used here (Figure 3). 

A bell-curve like behaviour was detected 
for the lipase activity against n-butanol percent-
age in the extraction medium when this activity 
was assayed with a more lipase-specific sub-
strate such as tributyrin. The highest specific 
activity was thus extracted with 10% n-butanol; 
however, positive effects were not observed at 
the other studied proportions (Figure 4). 

This result suggests a loss of  stability for 
the lipolytic enzymes (being components of  this 
fraction) at n-butanol proportions higher than 
10%. Thereafter, 10% was the most effective 
n-butanol proportion for isolating lipases from 
L. vannamei midgut gland, a rule which did not 
apply to other esterases extracted with higher 
efficiency at 20% of  organic solvent (Figure 4).

Recovering enzymatic molecules having 
phospholipase activity was solely possible 

when 20% n-butanol was used (Figure 5). This 
result indicated that these enzymes removal 
from membrane and tissue remnants, as well 
as from the lipid/water interface generated 
during manipulation, could only be facilitated 
at 20% n-butanol concentration (from all tes-
ted values). It is worth noting the absence of  
enzymatic activity in the control method (Fi-
gure 5). This result suggested the presence of  
phospholipases in the L. vannamei midgut gland 
which showed higher affinity for hydrophobic 
interfaces than the phospholipases present in 

Figure 5. Comparing distinct n-butanol 
proportions in the extraction medium regarding 

their capacity for phospholipase enzymatic 
activity recovery from L. vannamei midgut gland 
via specific phospholipase activity assessment 
with soybean PC. Error bar indicates mean 

standard deviation for five replications.  

Figure 3. Comparing different n-butanol 
proportions in the extraction medium regarding 

their capacity for esterase enzymatic activity 
recovery from L. vannamei midgut gland through 
specific esterase activity assessment with p-NPA. 
Different letters indicate significant differences 

(p <0.05), according to Tukey HSD test. 
Error bars indicate mean standard 

deviation five replications. 

Figure 4. Comparing different n-butanol 
proportions in the extraction medium regarding 

their capacity for lipase enzymatic activity 
recovery from L. vannamei midgut gland through 
specific lipase activity assessment with tributyrin. 
Different letters indicate significant differences (p 

<0.05), according to Tukey HSD test. 
Error bars indicate mean standard deviation 

for five replications. 
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S. helianthus. The latter enzymes’ activity was 
detected in the extracts obtained using the con-
trol method (Figure 2). 

Conclusions

The results point to the method for ex-
tracting interfacial esterases from S. helianthus ba-
sed on 20% n-butanol at 4ºC as being the best 
procedure out of  the nine tested here when the 
process was evaluated by assessing specific enzy-
matic activity with p-NPA. Using Triton X-100 
non-ionic detergent at CMC was also promising, 
although the recovered specific activity was lower 
for the detergent when compared to the organic 
solvent procedure. 20% n-butanol treatment en-
hanced the extraction and semi-purification of  
phospholipase and esterase activities, especially 
favouring the former’s recovery and not exerting 
any influence on lipase activity. Higher esterase 
specific activity values were recovered from L. 
vannamei midgut gland with increased n-butanol 
percentage (5%-20%), assayed with p-NPA . On 
the contrary, optimal organic solvent percentage 
for extracting esterases having lypolytic activity in 
this specie was 10%, suggesting functional dama-
ge for these enzymes at higher n-butanol propor-
tions. Extracting molecules having phospholipase 
activity was only successful with 20% n-butanol 
and measurable activity was not detected, even 
when the control method was used. This finding 
suggests the presence of  phospholipases having 
greater affinity for lipid / water interfaces in L. 
vannamei midgut gland than in S. helianthus. 
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