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RESUMEN

En las dltimas décadas se ha trabajado activamente para reducir el impacto ambiental generado por las actividades antrépicas que
constantemente liberan componentes toxicos al ambiente generando inestabilidad y dafios en la salud de las comunidades biol6gi-
cas. Entre los diferentes contaminantes, los metales pesados revisten importancia en virtud de sus propiedades, que dificultan su
degradacion o transformacion en otros compuestos menos téxicos. El cromo es uno de los metales de mayor interés a nivel global
por su uso en mdltiples industrias. Los métodos convencionales que utilizan materiales cromados en sus procesos, no sélo arrojan
cantidades considerables de residuos al ambiente, sino que dan poca cuenta de la fraccién de Cr®* presente en determinados eco-
sistemas. La biorremediacion se ha propuesto como una alternativa econémicamente viable y ambientalmente sostenible. El prop6-
sito del presente trabajo fue evaluar la capacidad de reduccién de cromo por bacterias, aisladas de una matriz de biosdlidos de la
Planta de tratamiento de aguas residuales (PTAR) San Fernando en la ciudad de Medellin-Colombia. Muestras de biosélidos se culti-
varon en Agar Nutritivo enriquecido con diferentes concentraciones de Cr®*. Las cepas que presentaron mayor tolerancia al cromo
fueron aisladas para realizar ensayos de reduccién por triplicado, monitoreando la concentracion del metal en el tiempo. Se obtu-
vieron siete especies bacterianas diferentes dentro de las cuales se destacaron Staphylococcus saprophyticus, Ochrobactrum anthro-
pi'y Bacillus cereus por la capacidad de reducir Cr®* a 96 h con eficiencias de 29.0%, 61.1% y 100%, respectivamente.
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ABSTRACT

During the most recent decades, advances have been made to reduce the environmental impact by anthropogenic activities that
constantly release toxic components into the environment, generating instability and damage to the health of biological communi-
ties. Among the different pollutants, heavy metals are important by virtue of their properties, which hinder their degradation or
transformation into other less toxic compounds. Chromium is one of the metals of greatest global interest due to its use in multiple
industries. Conventional methods using chromed materials in their processes, not only throw considerable amounts of waste into
the environment, but also give little account of the fraction of hexavalent chromium (Cr*) present in certain ecosystems. Bioremedi-
ation has been proposed as an economically viable and environmentally sustainable alternative. This work aimed to evaluate the
chromium reduction capacity by bacteria isolated from a biosolids matrix obtained at the San Fernando Wastewater Treatment
Plant (WWTP), located in Medellin (Colombia). Biosolids samples were grown in a nutrient agar enriched with different concentra-
tions of Cr*. The strains presenting the greater tolerance to chromium were isolated to perform reduction tests by triplicate, moni-
toring the concentration of the metal over time. Seven different bacterial species were obtained, among which Staphylococcus sap-
rophyticus, Ochrobactrum anthropic, and Bacillus cereus showed the greatest ability to reduce Cr®* (29.0%, 61.1 and 100%, at 96 h)

respectively.
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INTRODUCTION

Chromium is a heavy metal that can be found in six oxi-
dation states in nature, being the Cr** and Cr*® species
the most stable ones, known as trivalent (Cr**) and hexa-
valent (Cr®*). The Cr** form is considered essential and is
involved in the metabolism of glucose and insulin, regu-
lating cholesterol and triglyceride levels (Higdon, Drake,
and Delage, 2003). However, some studies indicate that,
under certain conditions, Cr** can cause genomic insta-
bility and it has been suggested that it is not essential,
since it does not participate in the structural stabilization
of enzymes or in nutrient uptake (Eastmond, MacGreg-
or, and Slesinski, 2008; Wise and Wise, 2012). From the
chemical point of view, Cr**is poorly soluble and of low
mobility when it is complexed with the organic matter of
the soil (Gutiérrez Corona et al., 2010). The Cr® form is
mobile, soluble, and permeable through the cell mem-
brane, causing DNA and some protein damage, there-
fore considered as mutagenic, teratogenic, and carcino-
genic. In addition, it is reported to cause skin damage
when a direct contact is presented, to induce respiratory
tract cancer when inhaled, and if ingested, it can cause
stomach ulcers with complications that could lead to
death (Horel, 2017; Nayak, 2017).

Different studies have been carried out on bacteria isolated
from chromium-contaminated matrices in order to stabilize
or capture the metal. Bacillus cereus is a cosmopolitan bac-
terium of environmental interest and has been investigated
in the health and food industries (Banerjee and Ghoshal,
2016; Iranzo, et al., 2018; Sanchez, et al., 2016). This bacte-
rial species has been reported to present the ability to re-
duce Cr®. In 2009, in Medellin (Colombia) B. cereus was
obtained (among other bacteria of the Pseudomonas ge-

nus) from runoff biofilms in a tannery industry. It was found
that it reduced Cr®* by 99.8% to an initial concentration of
28 ppm in 100 h (Martinez Yepes, 2009). In 2016, B. cere-
us was isolated from electroplating wastewater in Cali
(Colombia), in a concentration of 10 ppm of Cr®*, accom-
plishing a reduction of 100% in 10 h (Mora Collazos,
2016). This same bacterium has been also reported to be
tolerant to variations in pH, temperature, salinity, and other
conditions, which could support its use in the bioremedia-
tion field, due to its capacity for resilience and adaptation
to adverse conditions (Singh, et al., 2013).

The Ochrobactrum anthropi has been identified as a nos-
ocomial pathogen, causing infections that are difficult to
treat, due to its resistance to most antibiotic principles
(Chudasama and Thaker, 2017; Haviari, et al., 2016;
Henderson, et al., 2016). However, its potential in biore-
mediation has exceeded expectations, attesting its ability
to metabolize different aromatic compounds and hydro-
carbons, as a source of carbon and energy (Chudasama
and Thaker, 2017). It has also been reported as an alter-
native in fuel-related research, due to its ability to pro-
duce biosurfactants (lbrahim, 2011). Some authors re-
port reductions of Cr®" in concentrations of 200 ppm,
from 95 to 100% in 24 h on a dead biomass (Cheng, et
al., 2010; Francisco, et al., 2002).

The Staphylococcus saprophyticus has been reported in
clinical cases in humans mainly associated to urinary
tract infections, with few studies in the environmental
area. However, it has the capacity to tolerate Cr®" in
concentrations up to 3,000 ppm (Alekhya and Subbaiah,
2016), without reducing it.

This work aimed to evaluate the chromium reduction
capacity by bacteria isolated from a biosolids matrix ob-
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tained at the San Fernando Wastewater Treatment Plant
(WWTP), located in Medellin (Colombia).

Materials and methods

Isolation of bacteria from biosolids

Biosolids samples were randomly collected from the
dehydrators of the San Fernando WWTP, located on the
South of the city of Medellin, Province of Antioquia
(Colombia). A physicochemical characterization of the
samples was performed. The concentration of heavy
metals was determined by the atomic emission method
—using Inductively Coupled Plasma (ICP), and the cold
vapor method was used to determine chromium. The
critical values —regulated by the Decree #1287 of 2014
of the Ministry of Housing, City, and Territory of Colom-
bia (in Spanish, Ministerio de Vivienda Ciudad y Territo-
rio), were considered as a reference (1,200 mg K'). Eight
aliquots were randomly collected (for a total of 10 g of
wet base) and suspended in 100 ml of 0.1% w/v sterile
peptone water for 15 min at 15 psi and pH of 5.5. This
suspension was stirred for 1 h, and then, 100 uL were
used for culture on a nutritive agar enriched with Cr®*
(K,Cr,O;) at 400, 500, 600, 800, and 1000 ppm, and
three replications each, using the surface exhaustion
method. Culture media were incubated at 35°C for 7
days (US-EPA, 1992). Bacterial colonies were obtained
from a nutrient agar under the same incubation condi-
tions. The morphological of the isolates was based on
their shape, size, consistency, brilliance, translucency,
among others features. Isolates were then cryopreserved
at -20°C on a nutrient broth with 20% v/v glycerol.

Determination of the bacterial capacity to reduce Cr®*

The cryopreserved isolates were directly activated on a
nutrient agar and incubated at 37°C for 40 h. Subse-
quently, three colonies were transferred to a Luria Ber-
tani (LB) broth, enriched with 100 ppm of Cr®*, and then
incubated at 37°C for 48 h. Aliquots of 1.5 mL were
taken at 0, 24, and 48 h of culture. The samples were
centrifuged at 10,000 centrifugal force (g) for 20 min,
and the supernatant was separated and refrigerated at
4°C to perform the chromium measurements at the end
of the assay. Simultaneously, one the samples was incu-
bated for 96 h following the same protocol detailed
above. The final Cr® concentration was determined by
the diphenylcarbazide colorimetric method, following
EPA protocol 7196A. From a stock of 100 ppm of Cr®,
serial dilutions were made until a concentration of 1
ppm was reached. The volume of the EPA 7196A meth-
od reaction mixture was changed to 9.5 mL of diluted
sample, 0.1 mL of 1N sulfuric acid, with 0.2 mL of a
diphenylcarbazide solution (250 mg of 1.5 diphenyl-

carbazide in 50 mL of acetone) and completed with
distilled water to a final volume of 10 mL. Ten minutes
later, the absorbance was determined at a wavelength
of 540 nm. For the estimation of the Cr® concentrations
of the samples, a calibration curve was prepared using
0.25, 0.5, 1, and 2-ppm concentration solutions (US
EPA, OSWER, ORCR, 1992).

Total chromium measurement

Samples collected at 0, 24, 48, and 96 h, with Cr®" con-
centrations of 100 ppm diluted until T ppm, and a pH
reduced to a value of 1.0 (with nitric acid 0.1 mL at
65%, v/v), were subjected to total chromium measure-
ment, using an Agilent Technologies 4100 MP-AES atom-
ic emission equipment. Data processing was carried out
with the MP Expert program (vers.1.5.1.6821).

Determination of the microbial growth curve in the pres-
ence of Cr*

A growth curve was performed by spectrophotometry.
The LB-bacteria were inoculated on a 96-well ELISA dish
containing 100 ppm of Cr®* for 48 h at 37°C. For the
identification of the bacterial isolates, the absorbance at
600 nm was determined every hour (after shaking for 30
seconds), using a Multiskan go TM spectrophotometer,
Thermo SCIENTIFIC.

Identification of bacterial isolates

The isolates obtained were biochemically identified us-
ing the Biolog Microstation ID System OmniLog®, this
system provides 96 microplates which have different
means for the biochemical characterization of each
strain, the appendix 1- 4 show the biochemical rection
made in each well in the microplate; the equipment pro-
vides a specific kit for the bacteria cultivation and distri-
bution among the wells. The bacteria were cultivated in
the BUG agar, after 24 h and distributed in the 96 wells
equally and finally taken to the equipment to do the
measures, the results for the bacteria grow and the bio-
chemical reactions it takes 24 h.

Statistical analysis

Differences on the ability of the bacterial strains to reduce
Cr®* at different concentrations were estimated. Normality
and homogeneity estimations were performed using the
Shapiro Wilk (Chacon Montalvan, 2014), and Bartlett
tests (Mellado, 2013), respectively. Then, a one-way analy-
sis of variance (ANOVA) was used to determine whether
there were any statistically significant differences between
the means (Sokal and Rohlf, 1995). Finally, treatment aver-
ages were analyzed by the Tukey's honestly significant
difference (HDS) and multiple comparisons tests, using
the R-student software (R-core team 2017).

Bacteria present in biosolids with the ability to reduce Chromium
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Figure 1. Total chromium reduction kinetics at 48 h, pH 5.5 by Ochrobactrum anthropi, Staphylococcus saprophyticus,
Bacillus cereus species and Negative Control. Three replications each, obtained from biosolids of the San Fernando

Wastewater Treatment Plant (WWTP), in Medellin (Colombia)

RESULTS

Bacterial isolates and Bacterial identification

Thirty-two bacterial biotypes, from seven different spe-
cies, were obtained from media with concentrations of
400 to 600 ppm of Cr®). The three strains of greatest
interest were O. anthropic, B. cereus and S. saprophyti-
cus. In addition, four other strains of bacilli were found
with some interest to remove chromium, Bacillus mega-
terium, Bacillus subtilis, Bacillus firmus, Bacillus lentus.

The morphological identification of the colonies allowed
the separation of microorganisms such as Gram positive
and Gram-negative, bacilli and cocci. S. saprophyticus is
a creamy, rounded, yellow and smooth-edged spore,
Gram positive cocci. B. cereus is a Gram-positive bacil-
lus with round, white rough, dry consistency spores. O.
anthropic is a Gram-negative bacillus, round and
smooth, with a juicy texture and a translucent white col-
or. The characterization was carried out with Biolog Mi-
crostation ID System OmniLog®. The values show each

biochemical reaction and the isolated name with its re-
spective probability.

Hexavalent chromium-reduction assays

The O. antrhopi was the most tolerant to the metal,
showing growth in concentrations of 300 to 600 ppm of
Cr®, and presenting the highest reduction (63% at 48 h),
followed by B. cereus and S. saprophyticus with 62% and
49%, respectively. Figure 1 shows the bacterial behavior
on the reduction of total chromium during the test car-
ried out during 48 h (without significant changes for the
three bacterial species of the study). During the first 24
h, the curve reached its lowest point, obtaining a signifi-
cant decrease of 58.2% on the total chromium. Figures
2 and 3 show the Cr® reduction kinetics of the three
mentioned bacterial strains and a negative control, dur-
ing 48 and 96 h, respectively.

Growth in the presence of Cré*
Figure 4 shows the bacterial growth in cultures enriched
with Cr®*. A higher absorbance reflects a greater growth
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Figure 2. The Cré* reduction kinetics at 48 h, pH 5.5 by Ochrobactrum anthropi, Staphylococcus
saprophyticus, Bacillus cereus species and Negative Control. Three replications each, obtained
from biosolids of the San Fernando Wastewater Treatment Plant (WWTP), in Medellin

(Colombia).

Table 1 Cré*reduction (%) from 0 to 96 h of culture caused by the three bacterial species in the test.

Times
0h 24 h 48 h 72h 96 h
2 Reduction Reduction Reduction Reduction Reduction
S %* %* %* %* %*
Staphylococcus i e 5 b b
: 0 39.97 49.0° 47.9" 29.0°
saprophyticus
Ochrobactrum anthropi 0° 22.6% 57.9° 59.2° 61.1°
Bacillus cereus 0° 31.9° 62.3° 100° 1007
Negative control 0 7.4° 3.5° 8.9° 12:7°

*The same letter in the same column indicates no significant difference between levels. Different letters indicate
significant differences between groups (according to the Tukey "s HDS test).

of the colonies as a function of time. At 48 h, B. cereus
and O. anthropi did not completed their exponential
growth phase, while S. saprophyticus reached it around
24 h later.

Statistical analysis

Normal and homogeneous results were obtained [W
0.82641 (p = 0.01901); Chi square = [15.318 (p
0.001564)]. Table 1 presents a summary of the behavior

and the percentage reduction of Cr®* from 0 to 96 h. For
the initial time (0), all the treatments were equal; there-
fore, there were no differences between them. At 24 h,
differences were observed, although there was a tenden-
cy to present common results among microorganisms.
At 48 h, the only strain that showed a significant differ-
ence was B. cereus; however, at 72 and 96 h, all strains
showed different reduction levels of Cr®*.

Bacteria present in biosolids with the ability to reduce Chromium
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Figure 3. The Cr%* reduction kinetics at 96 h, pH 5.5 by Ochrobactrum anthropi,
Staphylococcus saprophyticus, Bacillus cereus species and Negative Control. Three
replications each, obtained from biosolids of the San Fernando Wastewater Treatment
Plant (WWTP), in Medellin (Colombia).
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Figure 4. Bacterial growth of Ochrobactrum anthropi, Staphylococcus saprophyti-
cus, Bacillus cereus species, and Negative Control, cultured in a Cré*enriched media.
Three replications each, obtained from biosolids of the San Fernando Wastewater
Treatment Plant (WWTP), in Medellin.
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DISCUSSION

In the present study, different Cr®tolerant bacteria (in
concentrations of 100 to 600 ppm) were isolated under
standard aerobic culture conditions, in a nutrient medi-
um enriched with this metal. Among the isolates ob-
tained, O. anthropic, B. cereus, and S. saprophyticus
showed the greatest ability to reduce and tolerate Cr®*.

Treatments on O. anthropi and B. cereus did not achieve
the maximum reduction of Cr® at 48 h, as recorded by
the growth curve of these two strains (Figure 4), since
both strains were in their exponential phase at that time.
Actually, as O. anthropi continued its exponential phase
at 48 h, B. cereus was just starting this phase. This is the
reason why it was considered to extend the chromium
reduction curve up to 96 h (Figure 3). The S. saprophyti-
cus strain showed a different behavior, since it complet-
ed its exponential growth phase in the first 24 h, reach-
ing its stationary phase at 48 h and finally yielding cell
death. Nevertheless, significant changes in the decrease
of total chromium were not observed, remaining stable
over time for all the strains. In all three cases, the growth
behavior at 48 h was directly related to the reduction of
the metal. Como podria explicarse esta observacion,
qué indicaria, que implicaciones tiene?

Ochrobactrum anthropi presents high resistance to most
families of antibiotics (Haviari, et al., 2014; Henderson,
et al., 2017). However, studies on its potential in biore-
mediation exceed expectations, as its ability to reduce
different aromatic compounds and hydrocarbons in or-
der to use them as a source of carbon and energy has
been proven (Chudasama and Thaker, 2017). Its utility in
the alternative fuels field has been also reported, due to
its ability to produce biosurfactants (Ibrahim, 2011). Pre-
vious studies have found that this bacterium can reduce
Cr® in concentrations of up to 200 ppm of chromium in
a 24 h period from 95 to 100%, using their dead bio-
mass (Cheng, et al., 2011; Francisco, et al., 2002). To the
date, no reports on the use of the live biomass of this
bacterium to reduce the metal are available, and, alt-
hough in the present study the Cr®" reduction was of
61% at 96 h, the reduced chromium concentration re-
mained stable over time.

Bacillus cereus was the only strain that presented a total
reduction of Cr®* at 72 h (Figure 3). During this time, the
hexavalent chromium became trivalent, remaining so until
the end of the test; however, there was no decrease of the
total chromium since the reduction percentage at 96 h was
only 7%. This result reflects a clearly reducing behavior of
the bacillus. Other authors have reported B. cereus as a cos-
mopolitan bacterium, used in bioremediation in the environ-

mental research field, as well as in the health and food in-
dustry (Iranzo, 2018; Sanchez, et al., 2016; Banerjee and
Ghoshal, 2017). Among the isolated bacteria, B. cereus
showed the highest Cr®* reducing capacity. In 2009, B. cere-
us was isolated from the runoff biofilm in a tannery industry
in Medellin (Colombia). The strain reduced Cr®* by 99.8%
from an initial concentration of 28 ppm, over 100 h
(Martinez Yepes, 2009). A study made by Mora Collazos, et
al. (2016), reported the isolation of a B. cereus strain from
wastewater in an electroplating company, with an initial
concentration of 10 ppm of Cr®*, achieving a reduction of
chromium of 100% in 10 h. Recent studies found an in-
crease in the ability of B. cereus in the presence of Mn (1l)
and Mg (1l) to reduce and remove hexavalent chromium to
levels of 64% in 120 h. (Xu, et al., 2011)

Comparing the results obtained in this study, B. cereus
showed a greater tolerance to the metal, growing at con-
centrations of up to 300 ppm of Cr® and achieving a
reduction of the same in concentrations higher than
those reported in the aforementioned studies. Other
authors have reported that this species requires approxi-
mately 20 h to start growing in a culture medium en-
riched with more than 100 ppm of Cr®* (Singh, et al.,
2013). Figure 4 confirms that growth starts after 20 h in
a culture with 100 ppm of Cr®. Likewise, once growth
begins, the chromium reduction rate accelerates, achiev-
ing reductions of Cr®* to Cr** of 100% at 72 h in a shake
culture. Bacillus cereus has been also reported as toler-
ant to variations in pH, temperature, salinity, and other
conditions, which supports its use in the field as biore-
mediation due to its adaptability (Singh, et al., 2013).

Staphylococcus saprophyticus is an environmental bacte-
rium, but has been also reported in clinical cases, mainly
associated with urinary tract infections. It has the ability
to tolerate Cr® in concentrations up to 3,000 ppm but
without the ability to reduce it (lyengar and Subbaiah
Usha, 2016). The isolated strain reached its maximum
reduction of Cr® from 39.9% at 24 h to 49. % at 48 h
(Figure 2). The total chromium concentration over time
showed an interesting behavior, since at 24 h the con-
centration decreased to 58.2%, but at the end of the test
(48 h) the metal capture dropped to 13.5%, suggesting
release of the initially captured metal.

Tahri, et al. (2011), reported that a microbiological cell
presents different mechanisms to reduce Cr®" to Cr*,
including the extracellular ability to reduce Cr® to Cr3*
using functional groups present on the cell surface; re-
duction in the cell membrane, usually preceded by the
adsorption of Cr®* to functional groups located on the
bacterial cell surface; intracellular reduction of Cr®, that
when reduced to Cr*, is released from the cell, then

Bacteria present in biosolids with the ability to reduce Chromium
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conserving a low cytoplasmic concentration of Cr¢, also
facilitating the accumulation of chromate from the extra-
cellular medium into the cell. (Appendix 5).

In the present study, the strain of S. saprophyticus cap-
tured, reduced, and then released the metal to the exter-
nal medium.

Other species isolated during the research belong to the
group of sporulated bacilli such as B. megaterium, B.
subtilis, B. firmus, and B. lentus, but they did not present
significant reductions of Cr® in comparison to the three
strains already mentioned. However, literature report
these bacteria as tolerant and Cr® reducers, as in the
case of B. subtilis and B. megaterium isolated from
wastewater associated with tanneries (Pan, et al., 2014;
Martinez Yepes, 2009). In this specific report, these bac-
teria presented values between 22 and 35% of Cr® re-
duction, although, in the aforementioned reports the
reductions exceeded these values.

CONCLUSION

From biosolids of a WWTP, different species of bacteria of
interest in chromium bioremediation were isolated, among
other microorganisms such as fungi and yeasts. Isolated
bacteria showed high adaptability and ability to reduce
Cr®. The O. anthropic strain showed the greatest tolerance
and Cr® reduction capacity. S. saprophyticus is a bacte-
rium with the capacity to capture chromium and retain it
for a considerable time, allowing its possible use in the
design of biofilters for the purpose of co-remediation of
waters contaminated with this heavy metal.

Bacillus cereus was the only strain capable of reducing
the metal by 100% from its hexavalent form to the triva-
lent one, indicating its biotechnological potential and the
possibility of being considered for environmental biore-
mediation programs. New concentrations of Cr®* should
be evaluated to observe their behavior and tolerance
thresholds.
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Appendix 1. Biochemical distribution of wells microplate BioLog microorganism identification.
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Appendix 5. Mechanisms of microbial chromate transport, toxicity, resistance and reduction of Cré* .
Schematic depicting the mechanisms of microbial chromate transport, toxicity, resistance and reduction.
(a) Sulfate uptake pathway, which is also used by chromate to enter cells. (b) Extracellular reduction of
Cr (VI) to Cr (1), in which the metal forms do not cross the membrane. (c) Membrane-bound chromate
reductase. (d) Intracellular Cr (VI) to Cr (Ill) reduction may generate reactive oxygen species (ROS) and
thereby oxidative stress that causes protein and DNA damage. (e) Active efflux of chromate from the cy-
toplasm by means of the ChrA protein. (f) Detoxifying enzymes can be exuded to protect against oxidative
stress. (g) DNA repair systems protect against damage generated by chromium derivatives (taked from
Tahri, et al., 2011).
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