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Abstract
Deconvolution attempts compensating for the distortions affecting a recorded seismogram, increasing its 
bandwidth and extracting subsurface reflectivity from such seismic trace. The estimated reflectivity needs the 
highest reliability and resolution because of its subsequent use in the pre-stack seismic processing sequence and 
seismic inversion. We implemented the predictive deconvolution algorithms, the homomorphic Phase Inversion, 
and the Extended Kalman Filtering. Their application to synthetic traces extracted reflectivity whose comparison 
with well-bore allowed comparing the reliability between methods. The algorithms applied to an offshore record 
provided results whose comparison permitted to analyze the impact of the deconvolution assumptions on each 
method performance.
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Deconvolución mediante filtro extendido de Kalman para la rigurosa extracción de la 
reflectividad sísmica

Resumen
La deconvolución intenta compensar las distorsiones que afectan los sismogramas, aumentando el ancho 
de banda y extrayendo de dicha traza la reflectividad del subsuelo. La reflectividad estimada requiere de 
confiabilidad y mejor resolución, debido a su posterior uso en la secuencia de procesamiento sísmico preapilada 
y en la inversión sísmica. Aquí, se implementan los algoritmos de deconvolución predictiva, de inversión de fase 
homomórfica y de filtro extendido de Kalman. Al aplicarse a trazas sintéticas, los algoritmos extraen perfiles de 
reflectividad que, contrastados con información de pozo, permiten comparar la confiabilidad de los métodos. 
Estos algoritmos también se aplican a un registro marino. La comparación de los resultados de los algoritmos 
permite analizar cómo cada supuesto de la deconvolución afecta el rendimiento de cada método. 
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Introduction

The distortion, signal weakening, and the loss of 
resolution affect the wavelet during propagation, 
masking the recorded seismograms’ information. 
Mathematically, the seismic trace results from the 
convolution of Earth’s reflectivity profile with the 
signature of energy released by the source (Yilmaz, 
2008). Nevertheless, deconvolution is a linear operator 
that compensates for the distortion of a recorded signal, 
increases the seismic data bandwidth, and extracts the 
Earth’s reflectivity. The reflectivity profile requires 
the highest reliability and resolution possible because 
it is the capital input of subsequent pre-stack steps 
of a data processing sequence and seismic inversion 
procedures. The most used deconvolution in the oil 
industry is the double inverse of Wiener-Levinson 
in time WLDI (Robinson and Treitel, 2000) and 
frequency FDD (Claerbout, 1985). In the case of a free 
noise seismogram and known stationary minimum-
phase wavelet, the deterministic deconvolution 
supplies a highly trustworthy reflectivity. The wavelet 
is estimable in offshore data but not on onshore 
one, and in both cases, it is still non-stationary and 
noise-contained. The free noise assumption is tough 
to honor due to the impossibility of getting signals 
utterly free of noise. On the other side, the predictive 
deconvolution seeks the prediction error representing 
the reflectivity function. When the prediction distance 
is one sample, the prediction error filter becomes the 
optimal zero-lag inverse filter, appropriate in the often 
fair minimum phase approximation. Even though 
predictive deconvolution has been a handy tool for 
several years, it is ineffective under any infringement 
of the three underlying assumptions. Besides, 
there is the white spectrum reflectivity assumption. 
Nevertheless, when the rock layering is periodic, its 
reflectivity sequence is not random, and the processing 
flow must resort to alternative methods. Even though 
the extensive use of statistical procedures, there is 
no comprehensive response to the three anterior 
suppositions (Ziolkowski, 1991). 

The Homomorphic deconvolution - HOMD (Ulrych, 
1971) and the Phase Inversion deconvolution - 
PID (Lichman and Northwood, 1995) estimate the 
amplitude spectra of wavelet and reflectivity in the 
Cepstrum domain where these spectra must not overlap. 
Both deconvolutions have to fulfill the stationary 
and the noise-free wavelet assumptions but not the 
random reflectivity and the minimum phase ones 
(Arya and Holden, 1978). Crump (1974) designed the 
Kalman Filter matrixes for deconvolution, and later, 

Mahalanabis et al. (1983) improved the storage and 
updating of the matrix by estimating both the smoothed 
forward and backward prediction residuals of the 
trace, turning the algorithm computationally more 
efficient. Despite the above, the high computational 
cost remains. Recently, Deng et al. (2016) presented 
a Kalman Filter approach where the reverse wavelet 
slides over the reflectivity function instead of slides 
the reverse-reflectivity over the wavelet, as the 
conventional Kalman approach does. As a result, the 
number of parameters can diminish until one, and its 
selection should balance resolution and noise. The 
Kalman Filter for deconvolution substantially extends 
the Wiener filtering to accommodate time-varying 
processes, without supposing assumptions, except 
noise with a normal distribution of mean zero. In this 
research, we designed and implemented in Matlab an 
Extended Kalman Filter to Adaptative deconvolution 
- EKFD of seismic data based on the approximation 
of the linear system through the extension of the 
discrete Kalman Filter (Julier and Uhlmann, 1997). 
Besides, we implemented in Matlab the deconvolution 
methods of the double inverse of Wiener-Levinson, 
Phase Inversion, and Extended Kalman Filter. Finally, 
the comparison of its outputs allows us to know the 
impact of the suppositions of deconvolution on the 
performances of considered methods.

Theory

If a wavelet w(t) remains constant during its 
propagation, the reflected signal will be the 
superposition of delayed wavelets, with their 
amplitudes scaled according to the faced reflectivity 
r(t) along its path and the degree of geometrical 
divergence. According to the convolution model, a 
seismic trace x(t) contaminated with noise n(t) is: 

The * symbol represents the convolution operator. The 
suppositions of the isotropic, horizontal and parallel 
layered medium, and the plane wavelet that incises 
normally on the interfaces are necessary to construct 
the convolutional model. The absence of noise, the 
known stationary wavelet of minimum phase, and 
random reflectivity are assumptions required to solve 
equation 1. The deconvolution attempts to remove 
the wavelet from the seismic trace to retrieve the 
earth reflectivity. Under the above restrictions, the 
Deterministic deconvolution solves equation 1.
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w-1 (t) is an inverse such that w-1(t) * w(t) = δ(t) and δ(t) 
is the Dirac Delta function. 

Of course, it is impossible in onshore projects to 
determine without any uncertainty the wavelet from 
explosive sources, and vibrators and in offshore 
from air guns, making unfeasible the deterministic 
convolution.

The WLDI is a widely used stochastic approach to solve 
equation 1 that build an optimal filter by minimizing 
the square mean error ϵ between the recorded trace y(t) 
and the signal d(t) desired and supplied by the filter 
f(t), according to the expression:

The minimizing condition expressed as ∂ϵ ⁄ (∂ft = 
0;∀t = 1⋯N, provides the following set of N coupled 
equations (Robinson and Treitel, 2000):

Where the vector Ck represents the cross-correlation 
between the vectors  and , and Ak-t is the Toeplitz 
matrix that represents the autocorrelation of  . 
A recursive approach provides the solution of the 
equations system 4, i.e., the filter f that extracts the 
reflectivity. WLDI supposes a random reflectivity 
that implies that the trace autocorrelation scales the 
wavelet autocorrelation. In addition to the above, 
WLDI assumes no-noise, a minimum and stationary 
phase wavelet, the filter length plus another factor that 
guarantees the algorithm stability. However, some 
researchers (Arya and Holden, 1978; Jurkevics and 
Wiggins, 1984) demonstrated that WLDI is not reliable 
because of the assumptions’ non-compliance.

In case of no noise, the Neper logarithm of the Fourier 
transform of equation 1 becomes:

X(ω), R(ω) and W(ω) are the amplitude spectra of x(t), 
r(t) and w(t) respectively.

Using equation 5, Ulrych (1971) attempted to separate 
the R(ω) and W(ω) by converting equation 5 into the 
time through the inverse Fourier transform: 

Since W(ω) is a function smoother than R(ω), they are 
separable in this denominated Cepstrum domain, but 
not their phase spectra (Lichman, 1999). A low pass 
filter retrieves the wavelet contribution, whereas a high 
pass filter recovers the part of the reflectivity, maximum 
the separation in case of minimum-phase wavelet. The 
named HOMD approach requiring neither a random 
reflectivity nor a minimum phase wavelet assumes 
that R(ω) and W(ω) do not overlap in the Cepstrum 
domain (Arya and Holden, 1978). On the other hand, 
the recovery of the wavelet phase spectrum is not a 
well-established procedure that depends mainly on the 
processor (Lichman and Northwood, 1995).

The PID (Lichman and Northwood, 1995) is a 
homomorphic deconvolution that retrieves the wavelet 
phase spectrum by using the next Hilbert transform 
relationship:

In equation 7, P denotes the Cauchy principal value. 
However, both HOMD and PID cannot separate 
the spectra wholly in the presence of low-frequency 
noise or when reflectivity contains low-frequency 
components.

Kalman Filter
The Kalman Filter (Kalman, 1960) optimally controls 
and estimates white-noisy linear system models. It 
achieves the best estimation of a hidden variable 
immersed in a measurement, based on the information 
supplied by sensors, control action, and the system’s 
state at a previous instant. Analytically, the Kalman 
Filter assumptions are: 

A) The noise measurement Vk has a zero mean 〈vk 〉=0 
normal distribution and diagonal covariance matrix:

B) The processing noise ωk has a zero mean 〈ωk 〉=0 
normal distribution and diagonal covariance matrix:

 

C) The measurement and processing noises are 
independent, i.e. Cov (vk¸ωk ) = 0.



152

Extended Kalman Filter deconvolution for extracting accurate seismic reflectivity

Boletín de Geología - Vol. 44  Num. 1

A variable set characterizes the system in time k and 
defines the xk state. Equation 10 relates states xk , xk-1 of 
k , k ̶ 1 instants, where  is the transition state matrix, 

 is the controlling action matrix and uk is the control 
action on the system. 

Equation 11 relates the xk system state with the 
measurements zk in the sensors at instant k through the 
matrix  and the random noise vk.

In the first phase, the Kalman Filter obtains a first 
estimate of the current system state  as from the 
predecessor corrected state  using equation 10,

Equation 13 relates  the covariance matrix for 
estimated state  with  the covariance matrix for 
corrected state ,  the processing noise covariance 
matrix given by equation 8,  the transition state 
matrix and its transposed one . 

The second step calculates the Kalman gain matrix 
 = Cov(xk¸zk) / Cov(zk ¸zk)  to diminish uncertainty, 

expressed in terms of the system matrixes as

The corrected state  becomes:

and the corrected state covariance matrix is:

Extended Kalman Filter
To overcome the fact that non-linear systems do not meet 
the Kalman assumptions, Julier and Uhlmann (1997) 
proposed the Extended Kalman Filter approximation. 
In this approach, equation 13 transforms into:

Where  and  are Jacobian matrices of the state 
transition system constructed as first-order partial 
derivatives of the state transition equation 10 when 
ωk = 0:

The Kalman Extended Filter gain is now:

 and  are Jacobian matrices of the state-
measurements system constructed as first-order partial 
derivatives of the state transition equation 11 when 
vk = 0:

The state of the system  and its covariance matrixes   
 are:

The anterior Extended Kalman Filter expressions 
correspond to the first-order approximation. Their 
reliability depends strongly on the non-linearity of 
functions and the assumption of slight variations in 
each time interval. EKFD approach to deconvolution 
is essentially a predictive deconvolution that handles 
time-varying processes (Arya and Holden, 1978).

Methodology

Three different Matlab codes implemented the 
deconvolutions WLDI, PID, and EKFD. They extracted 
reflectivity from a synthetic seismogram constructed 
by convolving a 62 Hz causal Sinc wavelet with a well-
log reflectivity. The first tests focused on the impact 
of the assumptions of the noise in the signal and the 
reflectivity randomness, and another one on the effect 
of using non-stationarity wavelet. To evaluate the misfit 
caused by the noise in the seismic trace WLDI, PID, 
and EKFD deconvolved synthetic traces with different 
S/N ratios, equating the standard deviation of white-
noise with the standard deviation of the seismogram. 
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Measure the effect of randomness in WLDI, PID, and 
EKFD, they extracted the reflectivity of a seismogram 
provided by the convolution between wavelet and a 
non-random reflectivity profile and estimated the misfit 
between both reflectivities. A final test contemplated 
synthetic traces built by the convolution with a non-
stationary wavelet, counting errors of WLDI, PID, 
and EKFD during deconvolution. Formerly, Ricker, 
Sinc, and Damped-Sine wavelets as an inputs model to 
EKFD allow the estimation of their associated errors. 
The guiding function chosen is the complete synthetic 
seismogram, q(n) = σ3-n and v(m)=σ3-m, with the 
standard deviation σ and 0 ≤ n,m ≤ 20. In a final step, 
thirteen transition state functions in EKFD provided 
output errors that determined their impacts. 

In the final step, applying the three algorithms to a real 
shot gather provided images whose quality measures 
their performances. The common shot gather has 
564 traces with 5 seconds record length with a 1 ms 
sampling rate. The pre-processing of the shot-gather 

includes amplitude recovery, refraction statics, and 
attenuation of the direct wave. The evaluation of the 
results took into account frequency content, reflector 
continuity, and time-resolution. Notably, the errors 
associated with the parameters input to the EKFD 
comprise the wavelet model, guide function, states 
transition function, processing noise factor q, and noise 
measurement factor v, and indicated their selection.

Results and Discussion 

Figure 1A shows the causal 60 Hz Sinc wavelet, and 
Figure 1B shows the well-log reflectivity profile that 
is 60% random. In contrast, Figure 1C contains the 
synthetic seismogram supplied by the convolution 
between the two anterior. Figure 1D depicts the quasi-
normal distribution of the reflectivity coefficients with 
0.0015 mean nearby to zero. The sampling interval is 
1 ms for all charts.

Figure 1. A. Causal Sinc wavelet. B. Well-log reflectivity. C. Synthetic seismogram. D. Distribution of reflectivity amplitudes.

Figure 2A shows the searched reflectivity profile; 
meanwhile, Figures 2B, 2C, 2D, and 2E contain the 
reflectivities estimated by KEFD using Spike, Ricker, 
Sine-damped, and Sinc wavelet, respectively. On the 
other hand, Figures 2F, 2G, 2H, and 2I depict the errors 
caused by each anterior wavelet in KEFD. A red box 
encloses part of the reflectivity profiles to improve the 
visualization of the result comparison. When using 
a spike as an input model, the EKFD works like an 
identity operator because the input (Figure 1C) equals 
the output (Figure 2B), achieving the highest error 

shown in Figure 2F. In this extreme case, the use of 
a spike wavelet makes EKFD out-off-use. On the 
other extreme, when using a 60 Hz Sinc as an input 
model, the reflectivity furnished by EKFD in Figure 
2E is almost equal to the one observed in the well. In 
such circumstances, EKFD becomes a deterministic 
deconvolution with the lowest error contained in 
Figure 2I. The seismogram in Figure 2C (Ricker), 
Figure 2D (damped Sine) and Figure 2E (Sinc) look 
nearly identical to Figure 2A. In these cases, the 
input models are near similar to the source. Figures 
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2F, 2G, 2H, and 2I show that the error decreases from 
100% to 0.42%. Albeit the input model and the source 
wavelet seem similar, they do not equal exactly. The 
evaluation of the parameters of the process noise (q) 
and the measurement noise (v) indicated a percentage 
of error below 1% when the ratio q/v < 27 achieved the 
lowest one errors when q(0)=σ the standard deviation 
of the trace. When v > q, the results are poor because 
the measurement noise is higher than the process 
noise. On the other hand, the minor impact of the 13 

transition functions in the EKFD allows us to discard 
it as a determinant factor. Finally, using the trace as 
a guide function causes an error comparable to that 
obtained when not using a guide function, implying 
the guide function’s unimportant role. 

Henceforth, the parameters of the EKFD are a 40 Hz 
Sine damped function as the input model, length of 
150 ms, q equals the standard deviation of the trace 
and v = q/27.

Figure 2. Analysis of input model effect in EKFD performance. A. Well-log reflectivity and estimation using input models, 
B. Spike, C. Causal Ricker, D. Causal Sine Damped, and E. Causal Sinc. Estimation errors using F. Spike, G. Ricker, H. Sine 
damped, and I. Sinc wavelet. 

One of deconvolution’s main assumptions is the 
absence of noise in the trace. To assess it, the 
application of WLDI, PID, and EKFD to noisy-traces 
with the signal to noise ratio varying from 1 to 20 
provided their respective errors. Figure 3 shows that 
the estimation errors for all methods decrease when the 
signal-to-noise ratio increases. As expected, the misfit 

or is high if the noise is comparable with the signal. 
PIF and EKF get the most negligible errors achieving 
values lower than 10% when S/N is over 3.0, while 
WLDI gets the worst over 10%. But in all situations, 
EKFD always gets the best performance when the 
trace contains noise.

Figure 3. Analysis of the S/N ratio’s impact on the errors associated with WLDI, PDI, and EKFD.
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The next test evaluated the response of WLDI, PID, 
and EKFD when they did not meet the randomness 
assumption. The reflectivity test in Figure 4B indicated 
that it does not have a normal distribution, verifying its 
lack of randomness; hence, the trace autocorrelation is 
not at the same scale that the wavelet autocorrelation. 
Figure 4A shows the non-random reflectivity used, 
while Figures 4B, 4C, and 4D exhibit the reflectivities 
estimated by WLDI, PID, and EKFD, respectively. 

Simultaneously, Figures 4F, 4G, 4H, and 4I contain 
the errors associated with each method. Comparing the 
WLD I deconvolution and the red box’s trace used, the 
unfortunate result has an average error of 39.9%, and 
an evident low-frequency content. On the other hand, 
PID and EKFD achieve results with minor average 
errors of 2.18%, and 0.21%, indicating no random 
trace character. 

Figure 4. Analysis of the impact of A. no random reflectivity in the output error associated with B. WLDI, C. PID, and D. KFD 
with different wavelets as input models. Difference between the well-log reflectivity and the estimated ones: E. with WLDI, F. 
with PID, and G. with EKFD.

Finally, to evaluate the impact of a stationary 
wave assumption, we build a trace decreasing the 
frequencies of the Sinc wavelet in-depth, starting from 
100 Hz up to 20 HZ. Figure 5 shows the predicted 
reflectivity when the non-stationary wavelet interacts 
with the well-log reflectivity. Figures 5B, 5C, and 5D 
show the results of applying WLDI, PID, and EKFD to 
this trace. In the same picture, Figures 5E, 5F, and 5G 
contain the errors associated with each method. Figure 
5B shows how WLDI cannot extract the rightful 
reflectivity according to wavelet deepens and pointed 
out by Figure 5E, where the error increases in depth up 
to 24.8%. On the contrary, The PID and EKFD recover 
the reflectivity achieving similar results, Figure 5C 
and 5D. The corresponding low errors of 4.83% and 
3.22% point out the reliability of these two methods. In 
conclusion, the tests found that WLDI is very sensitive 
to the stationarity wavelet and to the reflectivity 
randomness; while, PID and EKFD are insensible to 
those assumptions. EKFD gets the best results, and 
although it requires seven input parameters, only the 

input model and the q/v relation are relevant in the 
deconvolution and related to the trace.

In a subsequent analysis (Figure 6), through WLDI, 
PID, and EKFD estimated the reflectivity profile 
resulting from the convolution between the non-
random well-log reflectivity noise-contaminated, and 
a slightly non-stationary wavelet. Figure 6A shows the 
reflectivity obtained by WLDI, and focusing on the red 
box indicates that it does not recover the amplitudes 
correctly. The misfit occurs throughout the profile 
(Figure 6D), achieving values in parts of the pattern 
close to the real ones, with an average error of 10.2%. 
WLDI is the most used deconvolution in the petroleum 
industry, with an unreliable result considering that 
such an outcome is the input to the seismic inversion. 
Figure 6B contains the reflectivity estimated by 
the PID. Although it is hard to note considerable 
differences, Figure 6E shows noticeable discrepancies 
with the real one at first sight. The average error of 
4.08 indicates the PID as a reliable deconvolution. 
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It is worth noting that the absence of low-frequency 
components in the trace, which favors the PID’s 
performance. As known, low-frequency components 
hinder the separation of the signals in the Cepstrum. 

Figure 6C shows the reflectivity estimated by EKFD 
with the best performance achieved. It is supported by 
the correlation of 0.96 between the real and estimated 
reflectivity, with a mean error of 0.39% (Figure 6F).

Figure 5. Analysis of the impact of a non-stationary wavelet A. in the output error associated with B. WLDI, C. PID and D. 
EKFD with different wavelets as input models. Difference between the well-log reflectivity and the estimated ones: E. with 
WLDI, F. with PID, and G. with EKFD.

Figure 6. Reflectivity estimated from a trace contaminated with noise and quasi-stationary wave through A. WLDI, B. PID, and 
C. EKFD. Difference between the well-log reflectivity and the estimated ones by D. WLDI, E. PID, and F. EKFD.
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Figure 7A shows part of a common-shot with 
564 hydrophones before the deconvolution, with 
reflectors 1, 2 and 3 to analyze. In Figure 7B, the 
WLDI deconvolution with a 100 ms time window 
does not throw optimal results, destroying the lateral 
continuity of reflectors 1, 2 and 3. Figure 7C contains 
the common-shot gather after PID, as a result of its 
application the obtained image looks more focused, 
maintaining the lateral continuity of the reflectors. 
Compared with the image achieved by WLDI, the 
PID image contains higher frequencies in the data. 
Finally, the result of applying EKFD to the record, in 
Figure 7D, shows an image with similar coherence and 
quality provided by PID. The input model for EKFD 
was a 10 Hz Sinc, corresponding to the dominant 
frequency of the common-shot gather. The similarity 
in the quality of the images provided by PID and 

EKFD is because the marine registry contains a large 
bandwidth, avoiding the strong restriction of the PID. 
The zoom to an area of the record marked by the red 
box reinforces the previous conclusions concerning 
the three deconvolution methods considered in Figures 
8A, 8B, 8C, and 8D. On the other hand, the images 
provided by PID and EKFD have high-frequency 
seismic events not generated by spectral whitening, 
representing registered seismic reflectors. Figure 9 
shows the frequency spectra of the shot gathers before 
and after applying the deconvolutions. Figure 9A 
shows the amplitude spectrum of the gather without 
deconvolution. Figures 9B, 9C and 9D show the spectra 
after applying WLDI, PID and EKFD, with increased 
high frequency content. Spectra in Figures 9A and 9B 
have remnants of the shotgun wavelet, characterized 
by low frequency components of strong energy.

Figure 7. A. Onshore common shot gathers before deconvolution, B. after WLDI, C. after PID and E. EKFD. 
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Figure 8. Zoom of the red box area of Figure 7 in A. Onshore common shot gather before deconvolution, B. after WLDI, C. 
after PID and D. EKFD. 

Although WLDI achieves the widest frequency 
bandwidth, it also increases the power of unreliable 
components with frequency above 100 Hz. The PID 
and EKFD spectra look similar with a reliable increase 

of bandwidth between 20 to 120 Hz. The dominant 
frequencies in the Amplitude spectra of Figure 9 are 
consistent with those observed in Figure 8.

Figure 9. A. Amplitude spectra of shot gather without deconvolution, B with WLDI, C with PID and D with EKFD.
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Conclusions

The results indicate the lack of reliability of the WLDI 
to extract the accurate reflectivity from a seismic trace. 
Such reflectivity is the input to the seismic inversion 
and puts into doubt its use in deconvolution. Otherwise, 
EKFD showed a high performance extracting the most 
accurate reflectivity from seismic traces than the WLDI 
and the PID. Here, it achieved an error percentage as 
low as 0.39% and a correlation as high as 0.96 with the 
pursued well-log reflectivity. The tests with synthetic 
seismograms demonstrated the EKFD’s robustness 
to recover the well-log reflectivity. Concerning 
the deconvolution of offshore seismograms, KFD 
retrieved the records frequencies and guaranteed the 
lateral continuity reflectors. Although PID achieved 
results very close to the EKFD’s, the low-frequency 
content in the offshore data after processing improved 
the PID’s output. Into the bargain, EKFD does not 
require to fulfill the critical assumptions on which 
deconvolution bases. This paper demonstrates 
EKFD’s efficacy over WLDI’s and PID’s algorithms. 
Aversely, EKFD’s performance depends on a suitable 
input model obtainable from the seismogram through 
available statistical procedures.
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