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Abstract

A case study testing the effectiveness of neural networks for permeability determination in 
heterogeneous media using basic rock properties is presented. The dataset used consists of 213 
core samples from the Morrow and Viola formations in Kansas, United States. The characterizing 
parameters of the cores are porosity (ϕ), water and oil saturations (Sw and S

o
), and grain density 

(GD), and the additional variables from well logs are induction resistivity (ILD), gamma ray (GR) 
and neutron-porosity (NPHI). The neural predictions are compared with permeability values obtained 
from three semi-empirical models (Timur, Coates, and Pape) widely used in reservoir characterization. 
It is concluded that the neural network provides the best overall prediction quantified by the highest 
correlation coefficients (R and R2) far above those achieved with conventional methods in formations 
with rock heterogeneity and complex diagenetic nature. Applying Timur’s method R was 0.58 and R2 
was 0.343, for Coates’ model R was 0.60 and R2 0.365 and for Pape’s model R was 0.60 and R2 was 
0.372, while for the neural model, 0.97 and 0.94 were obtained for R and R2, respectively.

Keywords: Permeability determination; Neural networks; Core samples; Rock properties; Reservoir 
characterization; Rock heterogeneity.

Modelo neuronal para estimar valores de permeabilidad a partir de registros 
de pozo y análisis de núcleos

Resumen

Se presenta un caso de estudio donde se pone a prueba la efectividad de las redes neuronales para 
determinar la permeabilidad en medios rocosos heterogéneos a partir de propiedades básicas de las 
rocas. El conjunto de datos usado se conforma de 213 muestras de núcleo de las formaciones Morrow 
y Viola encontradas en el estado de Kansas, Estados Unidos. Los parámetros caracterizadores de las 
muestras de núcleos son porosidad (ϕ), saturación de agua y aceite (Sw y S

o
) y densidad de grano 

(GD), y las variables adicionales de registros de pozo son registro resistivo (ILD), rayos gamma (GR) 
y neutrón-porosidad (NPHI). Las predicciones neuronales son comparadas con resultados obtenidos 
por tres modelos semiempíricos (Timur, Coates y Pape) ampliamente usados en la caracterización 
de yacimientos. Se concluye que la red neuronal provee la mejor predicción por sobre todos los 
modelos presentados cuantificándose mediante el coeficiente de correlación (R y R2) más alto, muy 
por encima de aquellos valores obtenidos mediante los métodos convencionales en formaciones 
con heterogeneidad en rocas y compleja naturaleza diagenética. Aplicando el método de Timur el R 
resultó de 0,58 y el R2 de 0,343, con el modelo de Coates se obtuvo un R de 0,60 y un R2 de 0,365; 
con el modelo de Pape el R fue de 0,60 y el R2 fue de 0,372, mientras que con el modelo neuronal se 
obtuvieron 0,97 y 0,94 para R y R2, respectivamente.
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Introduction

Reservoir parametrization is an activity in constant 
evolution that demands significant improvements. 
Geologists, petro-physicists, and engineers require 
vast sets of variables to activate models or to establish 
simulations regarding production rates, reserves, 
and recovery factors (either in completion or site 
stimulation). Among these variables, permeability 
(k), is one of the essential characteristics of the rock 
that considerably influences the decision-making 
about field development and impacts the management 
programs (Helle et al., 2001; Singh, 2005; Kohli and 
Arora, 2014; Eriavbe and Okene, 2019). Permeability 
is usually measured from core samples in laboratory 
tests, being this the most reliable method, however, this 
is not the solution to parameterize bulky environments 
since extracting too many cores may be prohibitive 
(due to financial or physical complications). Semi-
empirical formulas are normally used to estimate k 
values and among the several alternatives, most of them 
use parameters from well logs (Coates et al., 1991; 
Saner et al., 1997; Shang et al., 2003; Habibian and 
Nabi-bidhendi, 2005). A great disadvantage of these 
formulations is that they work well in a similar medium 
to the one used for their development (Al Khalifah 
et al., 2020). Furthermore, the hard mathematical 
procedures have disadvantages because they demand 
specific a priori knowledge about the environment and 
inter-parametric connections. This forces traditional 
models to limit their performance space within very 
close limits.

In recent years and following the increase in applications 
of artificial intelligence (AI) within petroleum 
engineering, successful approaches have been 
published using the advantages of AI for the indirect 
estimation of rock properties. One of the first works 
that used neural networks to estimate permeability 
was that of Mohaghegh et al. (1997). Using as inputs 
gamma ray, bulk density, and induction resistivity, 
the authors predict k with sufficiency against selected 
semi-empirical equations. Other researchers have 
worked in the same direction (Mohaghegh et al. 1997; 
Helle et al., 2001; Habibian and Nabi-bidhendi, 2005; 
Singh, 2005; Maslennikova, 2013; Kohli and Arora, 
2014; Al Khalifah et al., 2020) using practically the 
same inputs than Mohaghegh et al. (1997) with slightly 

larger training sets. However, due to the nature of the 
training sets used in these works, the resulting models 
cannot be applied directly to heterogeneous conditions 
and their inputs/output ranges are still small-scale.

In this research, the capabilities of Neural Networks 
NN for estimating k from porosity (ϕ), water and oil 
saturations (Sw and S

o
) and grain density (GD), obtained 

from cores, and induction resistivity (ILD), gamma 
ray (GR) and neutron-porosity (NPHI) from well-
logs, are shown. The NN (a multilayer feedforward 
with supervised backpropagation learning) was trained 
and tested using 213 core samples from the Morrow 
and Viola formations in Kansas, United States (KGS, 
2020). Due to the size of the database, the ranges of 
the inputs, and outputs and the heterogeneity of the 
medium, the neural model presented here is more 
advantageous and widely applicable than those 
published so far. Neural evaluations are compared with 
permeabilities that were estimated using conventional 
semi-empirical equations (Timur, 1968; Coates and 
Dumanoir, 1973; Pape et al., 1999), the neural model 
was also tested in a blind well (well number 8) with 
outstanding results. It is concluded that the more 
efficient parametric characterization of the medium, 
based on k, was achieved with the proposed NN (with 
the highest correlation values between measured and 
estimated values).

Neural Networks

Neural Networks are parallel computing processing 
systems that can estimate any continuous function 
with arbitrary precision (Goodfellow et al, 2016). The 
arrangement and operation of the components of a NN 
attempt to mimic biological learning processes through 
the association and transformation of input and output 
data (Singh, 2005). NN are ideal tools for handling 
substantial amounts of data where the relationship 
between them is not evident or is too complicated. The 
structure of a neural network also called architecture, 
consists of the input layer, one or more hidden layers, 
and one output layer; each layer is composed of units 
or neurons. The architecture used in this investigation 
is a multilayer (various computational layers) and the 
computations are in a feed-forward manner: successive 
layers feed into one another in the forward direction 
from input to output (Aggarwal, 2018) (Figura 1).



143

 Silvia Raquel García-Benítez; Omar Alejandro Arana-Hernández

Boletín de Geología - vol. 45, n.° 1

Figure 1. The general structure of a neural network (modified from Matich, 2001).

Nodes in the input layer receive external information 
(inputs) that are processed in the hidden layers to 
obtain an answer and transmit it to the output layer. 
This processing might be extremely simple or quite 
complex, depending on the difficulty of the task. The 
connections (weights) determine the information flow 
between hidden nodes (unidirectional or bidirectional) 
(García-Benítez et al., 2016; Bhattacharya, 2021).  

When a NN is trained by a supervised algorithm, 
learning occurs by changing the weights connecting 
the neurons, based on the training data containing 
the examples of input-output pairs. The training data 
provides feedback on the correctness of the weights in 
the neural network depending on how well the predicted 
output for a particular input matches the real output in 
the training data. Therefore, the training process can 
be defined as the way a neural network modifies its 
weights in response to input information. This process 
is reflected in the modification, destruction, or creation 
of connections between neurons (Kohli and Arora, 
2014; Al Khalifah et al., 2020). The ability to accurately 
compute functions of unseen inputs by training over a 
finite set of input-output pairs is referred to as model 
generalization.

For this research, the backpropagation (BP) algorithm 
(Rumelhart et al., 1986) was selected to train the NN. 

In BP first, a loss function is used to estimate the error 
between the desired solution and the neural solution. 
Here, the Mean Squared Error was chosen as the loss 
function, and it is defined as equation 1:

MSEi =
1

n

∑

✂

n

i=1 (yi − ŷi)2, (1)

where, MSE
i
  is the Mean Squared Error of the i output, 

ŷ i
  is the actual value, ŷ i

  the predicted value obtained 
by the neural model and n the number of observations. 
Then, the best bias, and weights for the NN are 
determined. This is done through the implementation 
of gradients (change of the loss function about the bias 
and weights). Using partial derivation and the chain 
rule, the gradient of the loss function and the weight w

i
  

is calculated (equation 2):

∂C

∂wi

=
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The next three gradients need to be found (equation 3):

∂C

∂ŷ
=?,

∂ŷ

∂z
=?,

∂z

∂wi

=?, (3)

where, C  is the loss function,  ŷ  is the predicted value, 
w

i
 is the weight and z is calculated using equation 4:
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z = (X ·W ) + b, (4)

where, X is the row vector of the inputs, W is the row 
vector of the weights and b is the bias. 

Starting with the gradient of the loss function 
concerning the predicted value ( ŷ ).
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∂ŷ
=

∂

∂ŷ
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] and ŷ=[ ŷ
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n
] are the row 

vectors of the actual and the predicted values, the 
above equation is simplified as:

∂C

∂ŷ
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2

n
∗

∑
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Finding the gradient of the predicted value for z, using 
the sigmoid activation function as follows:
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The gradient of z concerning the weight w
i
 is shown in 

equation 8:
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Therefore:
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Regarding the bias, it is considered to have an input of 
constant value 1. Hence:
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The bias and weights are then updated as shown 
in equation 11 and equation 12, where the 
Backpropagation and gradient descent algorithms are 
repeated until convergence.

b = b−

(
α ∗

∂C

∂b

)
· (11)

wi = wi −

(
α ∗

∂C

∂wi

)
· (12)

Here, the learning rate (α) is a hyperparameter used to 
control the change in the bias and weights modifying 
the speed and quality of the learning process. For 
the interested reader, some selected references are 
recommended (Coolen, 1998; Cranganu, 2015; 
Bhattacharya, 2021).

Dataset

The data set was obtained from the online repository of 
the Kansas Geological Survey, and it is composed of 
213 core samples from 8 wells. The core samples used 
in this work have been sourced from the Morrow and 
Viola formations (Hugoton Gas Field) and the Forest 
City Basin (Figure 2).

The lithology from the Morrow formation is composed 
of shale, limestone, and sandstone, where sandstones 
are especially abundant (Rascoe and Adler, 1983). 
The Morrow formation is divided into two units, the 
lower and the upper unit. The lower Morrow unit is 
traditionally inferred as offshore shales and shoreline 
sandstones (Adams, 1964) while the upper unit is 
constituted by marine shales enclosed by transgressive 
sequences (Figure 3). A section known as Middle 
Morrow (Puckette et al., 1996) can also be found, 
this is a limestone unit with the presence of shales 
that separates the lower Morrow sandy section from 
the upper one. Rocks with reservoir functionality are 
lenticular, ranging from poorly to well classified, with 
a grain size fluctuating from very fine to coarse, where 
partially filled cores with calcite, dolomite, quartz, and 
kaolinite are commonly found.
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Figure 2. Sampled wells localization, distribution of the sampled formations delimited by a dotted line for the Morrow formation 
within the Hugoton Embayment and continuous line for the Viola formation within the Forest City Basin.

Figure 3. Depositional model and stratigraphic column of the Morrow formation (modified from DeVries, 2006).

Limestone, from the Viola geological group, is found 
throughout the entire state excluding the northwest, it 
is composed of fine-grained to coarse limestone and 
dolomite with a variable amount of shale (Bornemann, 
1982). Dolomitized limestone characterizes south-
central Kansas, however, toward Forest City and east 
of the Salina Basin is mostly dolomite. The types of 
porosity vary, but intergranular, vugular, moldic, and 
fractures can occur (Caldwel and Boeken, 1985). In 
southwestern Kansas where it is difficult to discern 
from Arbucle rocks, the Viola formation ranges from 0 
to 20 meters thick on the flanks of the Central Kansas 
uplift to more than 60 meters in the deepest areas of the 
Hugoton embayment near the Colorado state line. Based 

on this lithological description, it is inferred that the 
sampled arrangements, which constitute the database 
of this investigation, will present permeabilities in a 
wide range.

The input properties from core analysis, with the most 
representative data of in situ conditions, are porosity 
(ϕ), grain density (GD), water saturation (Sw), and 
oil saturations (S

o
) while from well logs, induction 

resistivity (ILD), gamma ray (GR) and neutron-
porosity (NPHI). The output is the permeability (k). 
Table 1 shows a statistical summary of the database 
used to train and test the neural models.
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Table 1. Statistical summary of the properties used in training and testing for the neural models.

Property Maximum Minimum Mean
Standard 
deviation

Skewness Kurtosis

Depth (m) 1663 1080 5012.2 484.0 -2.4 5.7

ILD (ohm-m) 495 3.1 117.5 122.3 1.3 1.1

GR (API) 148.8 14.0 44.4 28.7 2.1 4.1

NPHI (frac.) 0.32 0.02 0.15 0.06 0.002 -0.9
Porosity (%) 24.1 3.0 16.6 4.4 -0.82 0.4

S
o
 (%) 39.0 0.0 16.0 11.1 -0.06 -1.2

Sw (%) 92.7 21.7 48.0 14.0 0.78 0.22

GD (g/cc) 2.85 2.65 2.68 0.05 2.0 3.2

k (mD) 2423 0.01 302.1 447.7 2.5 7.2

Results and Discussions

Data pre-processing 

Figure 4 shows boxplots of the properties considered 
inputs in the NN as well as the output (k). This analysis 
is useful for studying patterns in the data and gaining 
knowledge about the ranges of the population for each 
property with which the neural network is intended to 
be built. The treatment for managing the outliers was 
conducted by analyzing the k graph. The permeability 
values around 2300 mD were reviewed to detect errors 
or to define if it was convenient to keep them in the 
database. Contradictions between core parameters and 

these extreme k values were found, so it was decided 
to separate from the base (5 points, the complete 
examples). In this new space, a scaling technique was 
applied to all the input and output variables for each of 
the ranges shown.

Even with the mentioned preprocessing, the neural 
task faces a huge challenge, almost impossible for 
classical modeling methods, since the complexity in 
the behavior of the property increases when changing 
to extreme values. Figure 5 shows the matrix plot 
used to graphically analyze the bivariate relationships 
between the input properties and permeability. 

Figure 4. Boxplots for the rock properties included in the database, from left to right: 7 inputs and 1 output (k) (k-permeability, 
GD-grain density, Sw-water saturation, S

o
-oil saturation, ϕ-porosity, NPHI-neutron-porosity, GR-gamma ray, ILD-induction 

resistivity).



147

 Silvia Raquel García-Benítez; Omar Alejandro Arana-Hernández

Boletín de Geología - vol. 45, n.° 1

Figure 5. Inputs-output matrix plot (k-permeability, GD-grain density, Sw-water saturation, S
o
-oil saturation, ϕ-porosity, NPHI-

neutron-porosity, GR-gamma ray, ILD-induction resistivity).

The neural model construction and its predictions

The whole dataset of 213 core samples was randomly 
divided into three subsets. The first subset of 60% was 
used to train the neural network, 18% were separated 
for testing and the rest, 22%, was used for validation 
of the NN. To optimize the neural network training 
process, the K-fold cross validation algorithm was 
used as a data partitioning strategy to generate a neural 
model as general as possible, since this algorithm 
ensures that each instance has served as training and 
test exactly once. For this neural model 12-folds were 
used.

The neural architecture was a feedforward multilayer 
network with backpropagation as a learning algorithm 
and mean squared error as the loss function. The 
NN consists of eight inputs (depth, ILD, GR, 

NPHI, porosity, water saturation, oil saturation, 
and grain density), one hidden layer and one output 
(permeability) (Figure 6). One of the critical issues 
while training a neural network is overfitting, in this 
research to prevent the model from being incapable to 
perform well on a new dataset, the convergence curves 
were monitored to stop the process if the test curve 
was above the training one, i.e., higher errors while 
training compared with those obtained for testing. The 
stopping criterion was the error between measured 
versus predicted permeabilities. The optimal topology 
required ~10 thousand epochs to achieve its maximum 
generalization capacity.

The optimum network topology was defined through 
trial and error, varying the number of hidden neurons, 
the activation function, and the learning rate (Table 2). 
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Figure 6. Topology of the neural network for permeability determination, consisting of 8 inputs, one hidden layer, and one output 
(k-permeability, GD-grain density, Sw-water saturation, S

o
-oil saturation, ϕ-porosity, NPHI-neutron-porosity, GR-gamma ray, 

ILD-induction resistivity).

Table 2. Qualification of the different neural models and topologies.

Neural 
model

Hidden 
layers

Hidden 
neurons

Activation function 
(hidden layer)

Activation 
function (output)

Learning 
rate

R2 

training
R2

test

1 1 270 Hyperbolic tangent
Hyperbolic 

tangent
0.57 0.89 0.88

2 1 50 Hyperbolic tangent Sigmoid 0.50 0.90 0.86
3 1 100 Sigmoid Sigmoid 0.57 0.94 0.96
4 2 175 Hyperbolic tangent Sigmoid 0.45 0.91 0.90

According to the values of R2 in training and test stages, 
the best topology consisted of 100 hidden nodes with 
sigmoid as an activation function. 

Finally, the NN capabilities were tested using the 
validation set, which consisted of 48 samples. Since 
this set is new for the trained neural network it gives an 
unbiased estimate of the NN skills when comparing or 

selecting between final models. The topology 8 × 100 
× 1 (inputs × hidden nodes × output) is considered the 
best option (Figure 7).

Prediction results from this topology are shown in 
Figure 8. According to the fit measurement, it is evident 
that the prediction behavior is remarkably good.
 

Figure 7. Comparison of measured permeability values against those estimated by the neural network during the validation process.
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The neural predictions against the permeability 
measurements for the eight wells in the database, 
making the distinction between training, test, and 
validation, are remarkably good (Figure 9), it is 

important to note that the separated cases for testing 
and validation were not used to build the model, 
which means that they are valid and extremely good 
behavioral tests. 

Figure 8. Log–log plot, measured permeability vs estimated permeability by the neural network for training, testing, and validation.

Figure 9. Core and neural network permeability for the eight wells.
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A sensitivity analysis was performed on the NN, and 
the results of this examination are shown in Figure 10. 
The uncertainty in the k come from the vagueness in 
porosity, principally, followed by the water saturation. 
The hypothesis about the impact of grain density on 
the model behavior was corroborated. The ambiguity 
reduction in some tests (NPHI and ILD) has no 
significant impact on the output, however, after some 
tests on reduced topologies (eliminating NPHI and 
ILD), it was concluded that the model cannot be 
simplified without sacrificing R2.

In Figure 11 cross plots of the relationship between 
output and every input are shown. As can be seen, the 
NN estimations are very close to the patterns defined 
using the lab results. The remarkable neural capabilities 
are important because these visual representations can 

be identified (or detected) anomalies that usually are 
interpreted as the presence of hydrocarbon (or other 
fluids) and lithologies.

Figure 10. Sensitivity analysis of each input parameter on 
the neural model (k-permeability, GD-grain density, Sw-
water saturation, S

o
-oil saturation, ϕ-porosity, NPHI-neutron-

porosity, GR-gamma ray, ILD-induction resistivity).

Figure 11. Cross-plots: A. Porosity (%) vs permeability (mD). B. Water saturation (%) vs permeability (mD). C. Depth (m) vs 
permeability (mD) D. Grain density (g/cc) vs permeability (mD). E. GR (GAPI) vs permeability (mD). F. Oil saturation (%) vs 
permeability (mD). G. NPHI (1) vs permeability (mD) and H. ILD (ohm-m) vs permeability (mD).



151

 Silvia Raquel García-Benítez; Omar Alejandro Arana-Hernández

Boletín de Geología - vol. 45, n.° 1

Three conventional equations (Timur, Coates and Pape) 
were used to estimate permeability and to compare 
their predictions with the NN estimations. Figure 12 
shows that Timur’s model performed the worst, while 
Coates’ equation was slightly better. Pape’s model 
remains virtually constant in the requested permeability 
range; this equation is not sensitive to slight changes 
in the predictive properties. For the three models 
and unlike the neural network, the complete range of 

permeability cannot be estimated correctly, all of them 
show major dispersion and deviations for permeability 
values of 300 mD and higher but also for the lowest 
permeabilities.

Table 3 shows the correlation coefficients obtained 
by the three conventional models and the NN for the 
validation set when comparing estimated and measured 
permeability values.

Figure 12. Comparison between the results of the four permeability prediction models (Timur, Coates, Pape, and NN) vs 
measured permeability for six wells.

Table 3. Correlation coefficients (R2) for the predictive models 
in the validation set.

Model R2  validation

Pape (1999) 0.76
Timur (1968) 0.60
Coates (1974) 0.46

Proposed neural network 0.91

Conclusions

The NN’s advantageous capabilities for permeability 
prediction have been shown. Using the neural model 
here presented, permeabilities can be predicted through 
easy-to-obtain and economic input parameters. The NN 
proposed is simple, inexpensive, and meaningful with 
a remarkable capacity to predict k with high accuracy, 

despite the complex dependences recognized between 
properties. The neural model is a powerful alternative 
to traditional and restrictive statistical tools.

Models like the one presented are very necessary for 
tunneling (horizontal and vertical), slope stability, 
foundations, and energy infrastructure design where 
the intact rock properties are essential. Accurate 
prediction of k has been an area of interest for rock 
mechanics for several years, the main advantage of the 
neural network shown is its dynamic range, that one 
of the inputs and outputs, it is among the widest of the 
approximations of its type, maintaining its efficiency in 
both very low and high values of the output property. 
This allows it to be used with sufficient confidence 
in heterogeneous environments or where natural 
anomalies cannot be ruled out.
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