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ABSTRACT
Social complexity and models concerning central place foraging were tested with 
respect to learning predictions using the social honey bee (Apis mellifera ) and 
solitary blue orchard bee (Osmia lignaria) when given foraging problems. Both 
species were presented the same foraging problems, where 1) only reward molarity 
varied between flower morphs, and 2) only reward volume varied between flower 
morphs. Experiments utilized blue vs. white flower patches to standardize rewards 
in each experimental situation. Although honey bees learned faster than blue orchard 
bees when given a molarity difference reward problem, there was no significant 
difference in learning rate when presented a volume difference reward problem. 
Further, the rate at which blue orchard bees learned the volume difference problem 
was not significantly different from that with which honey bees learned about 
reward molarity differences. The results do not support the predictions of the social 
complexity theory, but do support those of the central place model.

Key words. Osmia lignaria, Apis mellifera, learning in solitary and social bees, 
foraging, social complexity model, central place foraging.

RESUMEN
Las predicciones sobre aprendizaje derivadas de los modelos de complejidad social 
y forrajeo central, fueron sometidas a prueba usando una especie de abeja social 
(Apis mellifera) y una especie de abeja solitaria (Osmia lignaria), a las cuales les 
fue ofrecida una tarea de aprendizaje en el contexto de forrajeo de néctar. Ambas 
especies fueron expuestas a las mismas condiciones de forrajeo, donde 1) se cambió 
únicamente la molaridad de la recompensa entre las formas florales, y 2) se cambió 
únicamente el volumen de la recompensa. Los experimentos se hicieron con parches 
de flores artificiales utilizando dos variedades de color floral (azul y blanco) para 
estandarizar las recompensas de néctar en cada situación experimental. Aunque las 
abejas sociales aprendieron más rápido que las solitarias cuando se les presentó 
un problema de diferencia de molaridad en la recompensa, no hubo una diferencia 
significativa con respecto al aprendizaje de diferencias en volumen de néctar. 
Adicionalmente, la tasa a la cual O. lignaria aprendió diferencias en el volumen de 
la recompensa, no difirió de la tasa a la cual A. melifera aprendió las diferencias de 
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concentración del néctar. Los resultados no apoyan las predicciones de la teoría de la 
complejidad social, pero soportan las del modelo de forrajeo central. 

Palabras clave. Osmia lignaria, Apis mellifera, aprendizaje en abejas solitarias y 
sociales, forrajeo, modelo complejidad social, forrajeo central.

INTRODUCTION

Animals exhibit a wide spectrum of social 
organizations ranging from solitary to highly 
eusocial species (Wilson 2000). Potential 
benefits afforded social organisms include 
foraging efficiency, defense against predators, 
thermoregulation and mate location (Alcock 
2001; Brown 1986, 1988; Wells et al. 1990; 
Wells & Wells 1992). As social structure 
increases, an individual’s role in the society 
becomes more specialized, even to the point 
where only a few individuals of the group 
reproduce (Wilson 1971). With socialization 
comes the ability to recognize individuals 
based on kin relationship and status within 
the group (von Frisch 1967). Also required 
of social species is that individuals within the 
society must work together for the common 
good, which requires odor, mechanical or 
visual communication of needs (Seeley 1985; 
Michener 1985; Wenner & Wells 1990). 
Thus, social complexity theory has posited 
that social individuals have more developed 
cognitive abilities than corresponding solitary 
species (Kamil 2004). That is, cognitive 
differences between social and solitary species 
derive from the contingencies of a social life, 
and are the basis for social complexity theory 
(Essock-Vitale & Seyfarth 1986; Cheney & 
Seyfarth 1990; Bond et al. 2003). 

Bees are an excellent model system to test the 
ideas about social complexity and cognitive 
ability. As a taxon, they are diverse in terms 
of social organization (Michener 1969). 
Further, bees in diverse genera are able to 
recognize conspecifics and heterospecifics, 
and exhibit differential behaviors toward 
each (Wcislo 1997; Breed 1998; Keller & 
Ross 1998). Finally, there are solitary and 

eusocial species that utilize the same food 
resource base. In particular, there are many 
species that rely on nectar and pollen. Both 
solitary and social pollinator bees face the 
same challenges in foraging and provisioning 
brood cells. However, solitary and eusocial 
bee species differ in how they interact 
with kin, and solitary species do not have 
overlapping generations (Michener 1985; 
O’Toole & Raw 1991). 

In contrast to social complexity theory is 
the idea that both solitary and social bees, 
in fact, do not differ in cognitive abilities 
because foraging for pollen and nectar, 
whether or not an individual is a member of a 
social group, requires the same skills in order 
to successfully compete with other species. 
Further, bees are central place foragers: they 
forage from a home base to which they return. 
Thus, foragers of both social and solitary 
bees require spatial cognition abilities that 
enable them to find food in an unpredictable 
environment and return repeatedly to their 
own nest. In fact, both social and solitary 
bees have been shown not only to do this, but 
also to be able to respond to the movement 
of their hive/nest from the original location 
(Gathmann & Tscharntke 2002). 

Nest building by solitary bees as well as 
by eusocial bees, requires great energy 
expenditure. Solitary bees are burdened 
by the energy deficit accrued in building a 
nest using mud in cell construction (e.g. 
Chalicodoma spp., Osmia spp.), tunneling in 
wood (e.g. Xylocopa spp.), or digging soil in 
fossorial species (e.g. Dasypoda spp.); most 
bees prefer to use preemptied cavities, rather 
than to dig one (O’Toole & Raw 1991). In 
fact, suitable nest sites may well be more of 
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a limiting factor than are flowers for many 
solitary bees, and so it is not surprising that 
many solitary bees reuse nests for several 
years (Hurd & Moure 1961; Garófalo et 
al. 1992; Gathmann & Tscharntke 2002; 
Kukuk 2002). Of course, the structural and 
time investment in the hive by honey bees 
is well known, and need not be discussed 
further (Seeley 1985). Because foraging 
from a central place appears to entail similar 
costs in both solitary and social bees, both 
social and solitary bees should have equal 
cognitive abilities associated with foraging 
(Menzel 2001). Further, flower memory 
seems to be linked to spatial memory in bees 
(Menzel 2001), and so it is not surprising that 
solitary as well as eusocial bees have good 
spatial memories (Gathmann & Tscharntke 
2002). Thus, the central place forager model 
suggests that social and solitary bees should 
not differ in their cognitive abilities.

In this study honey bee (Apis mellifera) and 
blue orchard bee (Osmia lignaria) learning 
rates in a foraging context are compared 
when given the same problems. Honey bees 
are highly eusocial, and have a system of 
task specialization. On the other hand, blue 
orchard bees are solitary, and each female 
must reproduce, forage and build a nest. 
Both species are generalist foragers and visit 
a wide variety of flowering plant species. 
However, particular environments or seasons 
may restrict flower type diversity visited by 
either honey bees or blue orchard bees.

MATERIALS AND METHODS

Experiments were conducted using blue 
orchard bees (Osmia lignaria) and the 
honey bee (Apis mellifera). Blue orchard 
bees and honey bees were naïve for the 
experimental conditions. Each species was 
tested separately. 

Experiments with Blue orchard bees were 
carried out outdoors between April and June 

2005 in Tulsa, Oklahoma, inside a cubic 
net cage (2.5m x 2.5m x 2.5m). Bees were 
obtained commercially from Knox Cellar in 
their over-wintering stage, kept refrigerated (4 
oC) until used in an experiment and confined to 
the cage once removed from the refrigerator. 
A straw containing over-wintering bees was 
placed into a hole in a wood block in the 
outdoor cage 2 days prior to the initiation of 
an experiment. Bees emerged serially from the 
straw, on average two bees per day. A wood 
block 14 x 12 x 24 cm with 72, 8mm holes, 
in a 6 by 12 Cartesian coordinate system 
was located inside the cage for nesting. Red 
begonias were offered as pollen-flowers and 
an artificial flower patch (design of Sanderson 
et al. 2006) was used to provide bees with 
nectar-flowers. An experiment was initiated 
by placing an artificial flower patch into the 
cage. Bees were individually marked for 
identification using enamel paint dots on 
the thorax or abdomen. A visit was recorded 
whenever a bee entered the corolla tube. The 
flower color sequence that each bee visited 
was recorded. Revisits to the same flower 
were not explicitly excluded, but flowers were 
refilled with the same quality and quantity 
of reward only after a forager had moved to 
another flower. Each experiment used a new 
set of bees.

Experiments with honey bees were conducted 
outdoors in Tulsa, Oklahoma between June 
and July 2005. The bees were baited to visit 
a Petri dish containing a sucrose solution 
1.5 M clove scented 1µl/L. At the time of 
the experiment the feeder was replaced for 
an artificial flower patch. Bees were marked 
as indicated above for blue orchard bees. 
The flower color sequence of visits made 
by individual bees was recorded. Each 
experiment used a new set of bees.

Flowers 

Artificial flower patches consisted of 36 
flowers spaced 75mm apart in 6 rows and 
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6 columns of a Cartesian coordinate system 
on a brown pegboard. A flower consisted 
of a 28mm x 28mm Plexiglas square, 6mm 
thick, with a 8mm internal diameter (ID) 
15mm deep Plexiglas tube that held the 
reward recessed in one corner. Each flower 
was mounted on a 90mm pedicel of 5mm 
doweling. Flowers were either blue or 
white. Blue and white flowers occurred in 
equal number and were randomly arranged 
as to color in a flower patch. Flower colors 
were created by painting the lower surface 
of each Plexiglas square with blue or white 
enamel paint, and wrapping the tube with 
translucent film so as to match the underside 
of the Plexiglas square (Testors™ paint Nos. 
1208 blue, 1245 white; Roscolux film Nos. 
63 blue, 100 white-frost). 

Experiments

Experiments 1 and 2 varied reward sucrose 
molarity. Experiment 1 used blue orchard 
bees and experiment 2 used honey bees. 
These experiments had two treatments 
performed sequentially without breaks. 
Treatment I had all flowers offering 2ul of 
1ul/L clove scented 1 M sucrose. Treatment 
II (training) had one flower color offering 2ul 
of 1ul/L clove scented 2M sucrose and the 
other flower color 2ul of 1ul/L clove scented 
1M sucrose. 

Experiments 3 and 4 varied reward volume. 
Experiment 3 used blue orchard bees and 
experiment 4 used honey bees. Treatment I 
was unchanged from that used in experiments 
1 and 2, but Treatment II had one flower 
color offering 6ul of 1ul/L clove scented 1M 
sucrose, and the other flower color offering 
2ul of 1ul/L clove scented 1M sucrose. 

When honey bees were the experimental 
organism, approximately half of the bees 
tested had white flowers (and the other half 
blue flowers) with the greater caloric reward 
in Treatment II.

However, blue orchard bees previously have 
shown a distinct innate preference for blue 
flowers, and so were trained only with white 
flowers offering the greater caloric reward 
in Treatment II. As an experimental control 
when using bees (blue orchard and honey 
bee), experiments were repeated but with 
Treatment II rewards the same as Treatments 
I (i.e. there was no difference in rewards 
between flower colors).

Data Analysis

The ability to associate reward with color was 
examined by fitting data from each experiment 
separately to the learning rate model of Dukas 
& Real (1991): P = 1 – ce-dv following Dukas 
& Real (1991) where P = cumulative relative 
frequency of white flowers visited divided 
by the number of flowers visited, c = initial 
preference for blue flowers, d = learning 
factor, and v = number of flower visits. Model 
parameters were estimated using least-squares 
linear regression on log-transformed data (i.e. 
ln(1–P) = ln(c) –dv). An ANOVA was used to 
test for significance of each regression (JMP 
IN: Sall & Lehman 1996). An ANOVA was 
used to test for significant differences among 
the regression slopes, which is the learning 
factor d (following Sokal & Rolhf 1995). 

RESULTS

Regression analyses were significant 
for Osmia when reward molarities were 
different (Expt. 1: F=49.80; df=1,13; 
P<0.0001), Apis when reward molarities 
were different (Expt. 2: F=1200.07; 
df=1,13; P<0.0001), Osmia with reward 
volume differences (Expt. 3: F=256.53; 
df=1,13; P<0.0001), and Apis with reward 
volume differences (Expt. 4: F=548.09; 
df=1,13; P<0.0001). Thus, the learning 
coefficient was significantly different 
than zero for both species when presented 
a reward volume or molarity foraging 
problem (Fig. 1). In addition, significant 
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differences existed among the regression 
slopes, which are the learning coefficients 
(F=89.50; df=2,39; P<0.0001). However, 
when regression slopes with standard error 
are plotted (Fig. 2) it is apparent that those 
for Apis (reward molarity and volume) 
plus Osmia when reward volume varied do 
not differ (Expts. 2, 3 & 4). The learning 
coefficient when Osmia was presented 
the reward molarity problem (Expt. 1) 

was significantly less than in the other 
experiments. Results are based on the first 
15 flowers visited in Treatment II for each 
bee (Osmia and Apis). Results are based 
on 546 flowers visited by 15 blue orchard 
bees for Experiment 1, 1847 flowers visited 
by 20 honey bees in Experiment 2, 657 
flowers visited by 19 blue orchard bees in 
Experiment 3, and 1, 1208 flowers visited 
by 19 honey bees in Experiment 4.

Figure 1. Fit to learning Model. Least squares linear regression based on the learning model 
ln(1-P) = ln(c) – dv for Experiments 1 (■ = Osmia – molarity), 2 (□ = Apis – molarity), 3 
(▲= Osmia – volume) and 4 (Δ = Apis – volume). P = cumulative relative frequency of 
white flowers visited divided by the number of flowers visited, c = initial preference for 
blue flowers, d = learning factor, and v = number of flower visits. A negative slope indicates 
learning, and the steeper the slope the faster the task is learned. Data and best-fit lines are 
shown. 
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DISCUSSION

Social and solitary bees exhibited 
behavioral plasticity when they exploited 
the experimental floral patches. Both bee 
species were sensitive to the caloric value of 
the flower reward, whether nectar quality or 
quantity, were varied. Bees of both species 
changed flower species preference during 
training (Treatment II). The results do not 
support the social complexity hypothesis 
(Kamil 2004) because differential rates of 
learning were not consistently associated 
with a particular bee species. That is, the 
solitary blue orchard bee learned the reward 
volume problem as fast as the social honey 

bee. Further, honey bee learning when there 
was a reward molarity problem was not faster 
than when either honey bees or blue orchard 
bees were given the reward volume problem. 
Thus, sociality is not the factor explaining 
the cognitive abilities exhibited by bees 
exploiting the floral patches. Our results are 
consistent with the predictions derived from 
central place foraging, supporting the idea 
that the cognitive system of bees involved 
in learning about flowers is linked to a more 
inclusive cognitive system related to spatial 
memory (Menzel 2001). 

Cognitive similarities between solitary 
and social species of Hymenoptera have 

Figure 2. Comparison of learning rates. Regression line slope, and standard error of the slope, 
are presented for Experiments 1 (Osmia – molarity), 2 (Apis – molarity), 3 (Osmia – volume) 
and 4 (Apis – volume). The line slope for each experiment is the learning coefficient (d) in the 
learning model P = 1 – ce-dv (Dukas & Real 1991) where P = cumulative relative frequency of 
white flowers visited divided by the number of flowers visited, c = initial preference for blue 
flowers, d = learning factor, and v = number of flower visits. 
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been reported outside the domain of flower 
exploitation. In context-dependent social 
interactions, it has been recognized that an 
individual female of a solitary bee species 
is able to recognize conspecifics and modify 
her behavior in accordance (Wcislo 1997); 
similar capacities are known from solitary 
wasp studies (Pfennig & Reeve 1989), 
and from individuals of social bee species 
(Michener and Smith 1987). These results 
suggest that intelligence in bees is derived 
from the ancestral solitary forms (West-
Eberhard 1989, 2003). 

A condition for sociality to evolve in 
Hymenoptera is the ability of ancestral 
solitary wasps and bees to recognize other 
individuals (Gadagkar 2001), and thus rely on 
mutual reciprocation to make group living an 
evolutionary stable strategy (ESS) (Cheney 
& Seyfarth 1982; Silk et al. 1999; Giraldeau 
& Caraco 2000). It may seem paradoxical 
to attribute an adaptive value to the ability 
to recognize other individuals in solitary 
species, but many solitary bee species are 
gregarious because nesting places are rare. In 
fact, nest sites are probably a more limiting 
resource than flowers for solitary bees (Hurd 
& Moure 1961; Gathmann & Tscharntke 
2002). This leads to recurrent nest use by 
bees for several years by some species. 
Wcislo & Cane (1996: p. 257) have pointed 
out that “nesting of solitary bees in localized 
areas influences the intensity of interactions 
with enemies and competitors.” Therefore, 
not only the distinction between solitary and 
social species based on life cycle, but also 
ecological associations are relevant when 
testing the social complexity hypothesis. 

The differential learning rate shown by the 
blue orchard bee and honey bee to nectar 
quality and quantity may relate to water 
requirements. Water is a resource involved 
in thermoregulation of individual bees 
(Willmer 1991), as well as for the masonry 

used in orchard bee nest construction. The 
economic necessity of water for bees rarely 
has been taken into account in relation to 
foraging. However, bees sometimes derive 
water from nectar (Willmer 1986), and that 
may explain interspecific differences observed 
here. This idea is worth further study, and can 
be examined even within the same species 
by controlling for different environmental 
conditions (temperature/humidity). If the bees 
have a significant water need from nectar then 
preference for different nectar, types should 
be correlated with weather regimes. 
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