A new species, *Hyphessobrycon natagaima*, is described from the upper Magdalena River Basin in Colombia. It differs from all other species of *Hyphessobrycon* with a dark lateral stripe inhabiting the Magdalena River Basin: *H. poecilioides*, *H. proteus* and *H. ocasoensis*, by having eight to twelve pored lateral-line scales (vs. 14-26); four scales between the lateral line and the pelvic-fin insertions (vs. five or six); one tooth on the maxilla (vs. zero in *H. poecilioides*, and two to five in *H. proteus*; except *H. ocasoensis*, with one), a dark, interrupted, lateral stripe that is not in contact with the caudal peduncle spot (vs. absence of caudal spot in *H. poecilioides*, lateral stripe continued that is in contact with the caudal peduncle spot in *H. ocasoensis*). It has a rhomboid shaped caudal-peduncle spot that continues on to middle caudal-fin rays (vs. absence of caudal peduncle spot in *H. poecilioides* and caudal peduncle spot round and not continued on to middle caudal-fin rays in *H. ocasoensis*); and presence of hooks on all fins in mature males (vs. males with hooks on anal, pelvic and pectoral fins). *Hyphessobrycon natagaima* differs from *H. ocasoensis*, in addition to the above characters, by having four scale rows between the lateral line and the anal-fin origin (vs. six); three or four scale rows between the lateral line and the pelvic-fin insertions (vs. six); ten or eleven predorsal scales (vs. nine); i,9,i dorsal-fin rays (vs. ii,8,i); 18-20 branched anal-fin rays (vs. 21-22) and eleven branched pectoral-fin rays (vs. twelve). A key for the identification of *Hyphessobrycon* species present in the Magdalena River Basin is provided.
INTRODUCTION

Hyphessobrycon is a genus of small fishes known for their beauty and color, and they are widely desired by aquarists. Although Hyphessobrycon is usually treated as a valid genus (Durbin in Eigenmann 1908, Eigenmann 1917, 1918, 1927, Géry 1977, García–Alzate et al 2008a), it remains poorly defined and is polyphyletic. No modern hypothesis of phylogenetic relationships exists for all species of the genus, and the characters traditionally used to define species have not been analyzed in a phylogenetic perspective, often leading to misinterpretation of those characters. Current phylogenetic hypotheses for Characidae (Mirande 2010, Oliveira et al 2011) include some species of Hyphessobrycon, and recognize that the genus is not monophyletic. However, those works did not include the type species, Hyphessobrycon compressus (Meek), which is a species from the northernmost extreme of the range of this genus, in Mexico.

MATERIALS AND METHODS

Fishes were captured using seines and were preserved in situ with 10% formalin and later stored in 70% ethanol. Measurements and counts follow Fink & Weitzman (1974). Measurements were made with digital calipers to 0.01mm precision and are expressed as percentages of standard (SL) and head length (HL). In count ranges, values for the holotype are indicated with an asterisk (*). Counts and measurements were taken on the left side of specimens when possible. Osteological observations were made on cleared and stained specimens (C&S) prepared according to Taylor & Van Dyke (1985) and Song & Parenti (1995). Bone nomenclature follows Weitzman (1962) and Vari (1995). Type specimens are deposited in the University of Atlántico Caribbean region, Dept. Biology, Museum Collection, Barranquilla, Colombia (UARC-IC), Laboratorio de Ictiología de la Universidad del Quindío, Armenia, Colombia (IUQ) and Colección Zoológica de la Universidad del Tolima, Sección Ictiología, Ibagué, Colombia (CZUT-IC). In the lists of paratypes, the number of individuals is given in parentheses immediately after the catalog number. Institutional or museums abbreviations are as listed at http://www.asih.org/node/204.

We performed a Principal Component Analysis (PCA) of morphometric characters with the software program R version 2.15.3 (available free at the website http://www.ipez.es/ModestR). The Burnaby method was used to eliminate the influence of overall size, with the Past program, version 3.0 for Windows.

Comparative material examined. All lengths are Standard Length in millimeters.

Hyphessobrycon natagaima a new species from Colombia

Hyphessobrycon natagaima new species (Table 1; Figs. 1-4)

Holotype. Male, COLOMBIA, Tolima department: Natagaima County, upper Magdalena River drainage, Laguna Saldañita, 03°30’83”N, 75°09’30”W, 390 masl, 20 Mar 2010, Villa-Navarro, CZUT-IC 11769, 29.5 mm SL.

Paratypes. COLOMBIA, Tolima: 51, collected with holotype. CZUT-IC 4257, 25.1-47 mm SL. COLOMBIA, Tolima: five, collected with holotype. UARC-IC 359, 22.8-40.4 mm SL. COLOMBIA, Tolima: three, collected with holotype. IUQ 3730, 31.2-34. mm SL. COLOMBIA, Tolima: two (C&S), collected with holotype. UARC-IC 360, 25.5-34.7 mm SL. COLOMBIA, Tolima: three, Armero-Guayabal, Laguna El Hato, El Hato, 05°04’06”N, 74°50’64”W, Villa-Navarro. CZUT-IC 2308, 31.2-43.7 mm SL.
Hyphessobrycon natagaima a new species from Colombia

Profile of head straight from tip of upper lip to vertical through middle of orbit of eye, then convex to dorsal-fin origin. Dorsal-fin base nearly straight, then convex to adipose fin and slightly concave to base of upper caudal-fin lobe. Ventral profile of head convex from lower lip to anal-fin insertion then slightly concave to base of lower caudal-fin lobe.

Head and snout long, jaws equal, mouth terminal, lips soft and flexible, outer premaxillary tooth row not exposed. Premaxilla with long lateral process, rounded over ethmoids, and two rows of teeth: outer row with two* (24), three (20) or four (two) all tricuspid; inner row with five (46) pentacuspid teeth (with the last tooth tricuspid), that gradually diminish in size away from symphysis. Maxilla long and narrow, its posterior margin straight but anterior margin convex, posterior tip reaches ventral border of second infraorbital, with one (46) pentacuspid tooth. Dentary with convex ventral margin, four (46) heptacuspid front teeth followed by three* (32) or four (14) smaller tricuspid teeth (Fig. 3).

Scales cycloid. Lateral line with eight (one), nine (two), ten (three), eleven* (seven) or twelve (33) pored scales. Lateral scales including those with pores 31 (17), 32* (18) or 33 (eleven). Six* (43) or seven (three) horizontal scale rows between dorsal-fin origin and lateral line, not including scale of predorsal series just anterior to first dorsal-fin ray. Four scale rows (46) between anal-fin origin and lateral line. Four horizontal scale rows (46) between pelvic-fin insertions and lateral line. Predorsal scales ten* (44) or eleven (two). Four scales in a single row on base of anterior anal-fin rays.

Table 1. Morphometric data for *Hyphessobrycon natagaima* n. sp. Standard and total length in mm, average in parentheses. SD = standard deviation. N = 46

<table>
<thead>
<tr>
<th></th>
<th>Holotype</th>
<th>Paratypes</th>
<th>SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard length</td>
<td>29.5</td>
<td>25.1-43.7 (30.7)</td>
<td>4.3</td>
</tr>
<tr>
<td>Total length</td>
<td>37.1</td>
<td>31.3-53.3 (38.9)</td>
<td>4.9</td>
</tr>
<tr>
<td>Percent of SL:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Body depth</td>
<td>37.6</td>
<td>34.1-42.9 (38.3)</td>
<td>1.9</td>
</tr>
<tr>
<td>2. Snout to dorsal origin length</td>
<td>53.2</td>
<td>50.0-60.0 (54.8)</td>
<td>1.9</td>
</tr>
<tr>
<td>3. Snout to pectoral-fin origin length</td>
<td>32.9</td>
<td>27.1-67.3 (31.8)</td>
<td>7.7</td>
</tr>
<tr>
<td>4. Snout to pelvic-fin insertion length</td>
<td>49.2</td>
<td>39.2-54.9 (50.1)</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Snout to anal-fin length</td>
<td>66.8</td>
<td>38.1-70.9 (64.4)</td>
<td>6.2</td>
</tr>
<tr>
<td>6. Dorsal-fin to hypural length</td>
<td>50.2</td>
<td>47.8-57.5 (51.5)</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Dorsal-fin to anal-fin length</td>
<td>35.9</td>
<td>35.4-41.6 (38.3)</td>
<td>1.5</td>
</tr>
<tr>
<td>8. Dorsal-fin to pectoral-fin length</td>
<td>42.1</td>
<td>36.5-46.1 (41.8)</td>
<td>1.9</td>
</tr>
<tr>
<td>9. Dorsal-fin length</td>
<td>26.1</td>
<td>24.7-29.6 (27.3)</td>
<td>1.5</td>
</tr>
<tr>
<td>10. Pectoral-fin length</td>
<td>20.0</td>
<td>18.1-25.6 (22.1)</td>
<td>1.9</td>
</tr>
<tr>
<td>11. Pelvic-fin length</td>
<td>16.6</td>
<td>12.3-19.5 (16.3)</td>
<td>1.5</td>
</tr>
<tr>
<td>12. Anal-fin length</td>
<td>20.7</td>
<td>17.6-24.8 (20.6)</td>
<td>1.6</td>
</tr>
<tr>
<td>13. Caudal to peduncle length</td>
<td>13.9</td>
<td>10.8-15.7 (12.7)</td>
<td>0.9</td>
</tr>
<tr>
<td>14. Caudal to peduncle depth</td>
<td>9.5</td>
<td>7.9-15.9 (10.9)</td>
<td>2.1</td>
</tr>
<tr>
<td>15. Head length</td>
<td>30.8</td>
<td>28.4-34.6 (30.9)</td>
<td>1.4</td>
</tr>
<tr>
<td>Percent of Head Length:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Snout length</td>
<td>18.7</td>
<td>12.7-22.8 (18.0)</td>
<td>2.2</td>
</tr>
<tr>
<td>17. Eye diameter</td>
<td>30.8</td>
<td>28.3-42.2 (32.5)</td>
<td>2.9</td>
</tr>
<tr>
<td>18. Postorbital length</td>
<td>41.7</td>
<td>35.6-51.2 (43.3)</td>
<td>3.6</td>
</tr>
<tr>
<td>19. Maxilla length</td>
<td>24.2</td>
<td>22.7-35.0 (27.6)</td>
<td>2.5</td>
</tr>
<tr>
<td>20. Interorbital width</td>
<td>42.9</td>
<td>36.1-53.3 (44.3)</td>
<td>3.1</td>
</tr>
<tr>
<td>21. Upper orbital width</td>
<td>30.8</td>
<td>20.2-31.1 (26.6)</td>
<td>2.6</td>
</tr>
</tbody>
</table>
Figure 1. *Hyphessobrycon natagaima* n. sp. holotype, CZUT-IC 11769, 29.5 mm SL, male, Colombia, Tolima, Natagaima, Lago Saldaña. Bar = 1 cm.

First gill arch with 20 rakers, three on hypobranchial, ten on ceratobranchial and seven on epibranchial. Proximal pterygiophores of dorsal-fin rays inserted between neural spines nine to 16; anal-fin with 21 proximal pterygiophores, the first two inserted between hemal spines eleven and twelve, reaching ventral border of centrum of hemal spine twelve. Five elongate supraneurals with cartilage on upper and lower tips, inserted over fourth to ninth neural spines.

Sexual dimorphism. Males with hooks on all fin rays, two pairs of eight small hooks on fourth unbranched anal-fin ray, two to eight pairs of hooks from first to seventh branched anal-fin rays. Two to ten pairs of hooks on branched pelvic-fin rays, located on internal branch of the ray. Pectoral-fin rays with two to eight pairs of hooks on first and eighth branched rays. Dorsal-fin with small hooks on distal tip of anterior rays. Caudal-fin with one to four small hooks on middle rays.
Hyphessobrycon natagaima a new species from Colombia

Figure 3. Hyphessobrycon natagaima n. sp., UARC-IC 360, paratype, 34.7 mm SL. P premaxilla (A), maxilla (B) and dentary (C), left side. Bar = 1 mm

Color in alcohol. Body light brown, dorsum dark brown. Conspicuous, rhomboidal caudal peduncle spot extends on to middle caudal-fin rays. Flanks with dark stripe, posteriorly to humeral spot, interrupted and not in contact with caudal-peduncle spot, deeper at vertical through dorsal-fin origin. Dark humeral spot, vertically elongate, covering two scales below pored lateral-line. Posterior margin of scales with dark cromatophores. Edges of dorsal and caudal fins dark. Pectoral, pelvic and anal fins hyaline; anal fin with dark cromatophores on membranes. Top of head dark brown (Fig. 2).

Distribution. Hyphessobrycon natagaima is known from Laguna Saldanita and Laguna El Hato, upper Magdalena river drainage, Tolima.

Etymology. Hyphessobrycon natagaima is in reference to the Amerindian people who have inhabited the region where this new species was found. The legend relates that a chief Nataga and a princess Aima were married to originate the tribe.
Ecology. The Laguna Saldañita wetland, habitat of new taxon, is characterized by riparian vegetation consisting of grasses and rooted and floating aquatic vegetation. *Hyphessobrycon natagaima* was collected with *Roeboides dayi*, *Cyphocharax magdalaeae*, *Saccoderma hastatus*, *Astyanax fasciatus*, *Ctenolucius hujeta* and *Poecilia caucana*. This wetland was previously much more extensive and is seriously threatened by encroaching agriculture.

Remarks. These taxa, cited below, are in evident allopatric distribution. In addition, principal component analysis revealed differences among *H. natagaima* and *H. poecilioides*, *H. proteus* and *H. ocasoensis* along the first axis (PC1) related to the distance from the dorsal-fin origin to the hypurals, dorsal-fin length, and the length of the maxilla. On the second axis, the snout-pelvic-fin insertion distance, head length, upper jaw length and caudal peduncle depth were the variables explaining the observed variation. And on the third axis, caudal-peduncle length, and upper jaw length were important. The first axis explained 84.87% of variation; the second 11.31%, and the third 2.57 for a total of 98.75% (Fig. 4).

Identification key for *Hyphessobrycon* species of the Magdalena River Basin, Colombia

1. Caudal peduncle spot absent; anal-fin with 15 to 17 branched rays; humeral spot rounded, located above pored lateral-line scales; color in alcohol yellowish green; body robust *H. poecilioides*
1’. Caudal peduncle spot present; anal-fin with 18 to 26 branched rays; humeral spot vertically elongate and extending ventrally to first scale below pored lateral-line scales; body elongate and fusiform; color in alcohol light yellow .. 2
2. 19-26 pored lateral-line scales; anal-fin with 24-26 branched rays; premaxilla with four teeth in outer row; pelvic fins with seven branched rays *H. proteus*
Hyphessobrycon natagaima a new species from Colombia

2’. Eight-17 pored lateral-line scales; anal-fin with 18-22 branched rays; outer premaxillary row with two-three teeth; six branched pelvic-fin rays .. 3

3. Dark lateral stripe continuous with caudal-peduncle spot; caudal-peduncle spot rounded, and not extending onto middle caudal-fin rays; 15-17 pored lateral-line scales; six scales between lateral line and anal-fin origin; six scales between lateral line and pelvic-fin insertions; nine predorsal scales; ii,8,i dorsal-fin rays; anal-fin with 21-22 branched; pectoral-fins with twelve branched rays; males with bony hooks on anal and pelvic fins

... H. ocasoensis

3’. Dark lateral stripe interrupted, not in contact with caudal-peduncle spot; caudal-peduncle spot rhomboidal and extended on to middle caudal-fin rays; eight-12 pored lateral-line scales; four scales between lateral line and anal-fin origin; three or four scales between lateral line and pelvic fins; ten-eleven predorsal scales; ii, 9 dorsal-fin rays; anal-fin with 18-20 branched rays; pectoral fins with eleven branched rays; males with bony hooks on all fins-rays H. natagaima n. sp.

DISCUSSION

Recent papers describing species of *Hyphessobrycon* frequently indicate that the genus is paraphyletic (Ingenito et al 2013, Carvalho & Langeani 2013, Teixeira et al 2013), without deep exploration of the relationships of its subunits or their relationships. The new species described in this paper is not a member of the genus *Hyphessobrycon sensu stricto* (García-Alzate et al 2013) which includes only the type species *H. compressus* and related species in Central America. A phylogenetic reconstruction is needed that includes the type species to begin to unravel the phylogenetic relationships of the species of *Hyphessobrycon sensu lato*, the group to which *Hyphessobrycon natagaima* belongs, and to determine the limits of *Hemigrammus*. Until such a hypothesis is available, relationships will continue to be based on apomorphies and ambiguous characters.

Males of some species of Characidae usually have hooks on the anal, pelvic and less frequently on the dorsal and caudal-fins. The presence of bony hooks on all fins including the caudal is not common for species of *Hyphessobrycon*, for example *H. socolofi, H. erythrostigma* and *H. hamatus* are reported to have hooks on the anal, pelvic, pectoral and dorsal-fins (but not on the caudal fin) (Weitzman 1977, Bertaco & Malabarba 2005). Hooks on all fins of males have only been reported in *H. natagaima* described herein, *H. togoi* (Miquelarena & Lopez 2006), and *H. taguae* (García-Alzate et al 2008c).

The description of this new species from the upper Magdalena River Basin, a region often considered well explored ichthyologically, shows that we are far from complete in our discovery of the biodiversity of Colombian freshwater fishes.

ACKNOWLEDGEMENTS

We are grateful for the logistic support of the University of the Atlantic, Facultad de Ciencias, Programa de Biología (UA) and of the Universidad del Quindio, Facultad de Ciencias Basicas, programa de Biología (IUQ). CORTOLIMA and the Comité Central de Investigaciones de la Universidad del Tolima for financial support for his research (to FAV-N) included in the Convenio Interadministrativo 078 “Biodiversidad Faunística y Florística de los Humedales del departamento de Tolima” during which the type material was collected. We also are grateful to the following persons for lending material in their care: Mark Sabaj Pérez (ANSP), Karsten Hartel (MCZ), Gustavo Casas Andreu (IBUAM-P) and Carlos A. Lucena (MCP). We also thank James A. Maclaine (BMNH) and John Fong (CAS) for
sending photographs of the type material of *Hyphessobrycon compressus*, *H. poecilioides* and *H. proteus*.

LITERATURE CITED

Hyphessobrycon natagaima a new species from Colombia

Weitzman, S. 1962. The osteology of Brycon meeki, a generalized characid fish, with an osteological definition of the family. Stanford Ichthyological Bulletin 8: 3-77.

Recibido: 21/07/2014
Aceptado: 30/05/2015