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Resumen

Las evaluaciones genéticas convencionales han 
estado enmarcadas en la estimación de valores 
genéticos a partir de los sistemas de ecuaciones de 
modelos mixtos que consideran efectos aleato-
rios y fijos simultáneamente. En los últimos años, 
el desarrollo de tecnologías de secuenciación del 
genoma ha permitido obtener información genó-
mica que puede ser incluida en las evaluaciones 
genéticas para incrementar las confiabilidades y 
el progreso genético, así como para disminuir el 
intervalo generacional. El mejor predictor lineal 

insesgado en una etapa es una metodología que 
incluye información genómica, reemplazando la 
matriz de parentesco por una matriz que combina el 
parentesco por pedigrí y el parentesco genómico de 
una población genotipada, permitiendo la estimación 
de valores genéticos para animales no genotipados. 
El objetivo de este artículo de revisión fue la des-
cripción de la metodología y sus recientes avances, 
así como conocer algunas de las estrategias que 
podrían ser llevadas a cabo cuando el número de 
animales genotipados es bajo.

Palabras clave: fenotipos, ganadería, genómica, marcadores genéticos, mejoramiento genético

Abstract

Conventional genetic evaluations have been framed 
on estimated breeding values from equation systems 
of mixed models that consider simultaneously 
random and fixed effects. Recently, the develop-
ment in genome sequencing technologies has 
allowed obtaining genomic information to include 
in genetic evaluations in order to increase the 
accuracy and genetic progress, and decrease the 
generation interval. The single-step best linear 
unbiased predictor is a methodology developed in 

the last years and accepts including genomic infor-
mation replacing the genomic relationship matrix 
by a matrix that combines relationship by pedigree, 
and the genomic relationship of a genotyped popu-
lation, allowing the estimation of breeding values 
for non-genotyped animals. The aim of this review 
article was to describe the methodology and its 
recent progress, as well as to know some of the 
strategies that could be used when the number of 
genotyped animals is low.

Keywords: animal husbandry, genetic improvement, genetic markers, genomics, phenotypes 
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Introduction 

Meuwissen, Hayes and Goddard (2001) proposed 
the concept of genomic selection that is based on the 
homogeneous distribution of thousands of markers 
throughout the genome and the estimation of its 
effects on quantitative characteristics. Technological 
advances and the availability of high-density single 
nucleotide polymorphisms (SNPs) have facilitated 
the implementation of genomic evaluation models 
(Misztal, Legarra, & Aguilar, 2009). These models 
estimate genetic effects for chromosome segments 
in a population that has phenotypic and genomic 
information, allowing to know the effects of each 
SNP and estimate direct genomic values (Pintus 
et al., 2012).

At the same time, the accelerated growth of genomic 
data and the changes in selection programs demand 
a constant update of the genetic evaluation systems 
(VanRaden, 2016). Among the genomic selection 
models, the extended best linear unbiased predictor 
(BLUP), and the Bayesian and non-parametric 
methods stand out (Garrick, Dekkers & Fernando, 
2014; Howard, Carriquiry & Beavis, 2014). Most 
of these models explain a higher percentage of the 
additive genetic variance, increase the accuracy of 
the estimates, and reduce the generational interval, 
contributing significantly to higher genetic progress 
(Schaeffer, 2006). For these reasons, most of these 
approaches have generally shown superiority over 
evaluation methods based on the use of the relation-
ship matrix by pedigree, not including genomic 
information (Legarra & Ducrocq, 2012).

The use of these genomic tools is related to higher 
precision in the estimates and, consequently, an
increase in genetic gain. The first genomic eva-
luations contemplated a multi-step methodology 
(msGBLUP). However, breeding values could not be 
estimated for animals without genomic information 
in msGBLUP (VanRaden, 2008). Therefore, Misztal 
et al. (2009) developed the single step genomic 
best linear unbiased predictor (ssGBLUP) metho-
dology that incorporates genomic information 
and estimates breeding values for both genotyped 
and non-genotyped animals. Accordingly, the aims 

of this review were the following: 1) to describe 
the ssGBLUP methodology and its progress; 2) 
to identify advantages and limitations of the 
methodology, and 3) to know the feasibility of 
its use in breeding programs with small genotyped 
populations.

Method 

Relevant bibliographic information was consulted 
in the following databases: Science Direct, Google 
Scholar, Scopus, NCBI, and Scielo, from the year 
2001, i.e., the year in which the first genomic selec-
tion article that refers to the use of SNP in genetic 
assessments was published. The words used for the 
search were: genomic evaluation, single step, genetic 
evaluation, genomic selection, genomic prediction, 
single nucleotide polymorphism, and genetic 
modeling. The review did not include books or 
scientific articles published in a language other 
than English as bibliographic sources, nor articles 
published in journals not specialized in genetics 
and animal breeding.

Topic development  

Conventional genetic improvement programs have 
been based on the estimation of breeding values 
from genealogical and phenotypic information 
(Chen et al., 2011). The methodology for these 
evaluations has been the use of mixed linear models, 
which relate productive performance to genetic 
effects and are adjusted for non-genetic fixed and 
random effects (Christensen, Madsen, Nielsen, 
Ostersen, & Su, 2012). Additionally, the inclusion 
of the pedigree-based relationship matrix allows 
estimating and adjusting the breeding values of 
animals that lack phenotypic information but are 
related to the population evaluated. However, the 
adjustment is based on average probabilities of 
Mendelian segregation and could, in some cases, 
lead to the estimation of identical breeding values 
for complete siblings. This ignores the real relation-
ship coefficient and leads to underestimation or 
overestimation of breeding values for some animals.
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The previous scheme has been successful, but the 
genetic progress obtained is slow if the characteristic 
can only be measured in one sex, after sacrifice 
or late in the life of the animal. For this, genomic 
selection schemes allowed to significantly increase 
the genetic gain rate (Meuwissen et al., 2001). 
Initially, genetic evaluations with genomic infor-
mation were made from panels with thousands of 
SNPs, in which all loci were associated with quanti-
tative characteristics and were in linkage imbalance 
with at least one SNP (Goddard & Hayes, 2009). 
Therefore, selection decisions are based on the SNP 
effects of each animal (Moser, Khatkar, Hayes, & 
Raadsma, 2010). Currently, genomic selection is 
widely used in meat and milk cattle in developed 
countries such as the United States. This has been led 
by breeder associations and private artificial insemi-
nation companies, whose objective leads towards 
genetic evaluations that improve the ability to iden-
tify genetically superior animals (Elzo et al., 2015).

The first genomic evaluations in the world used 
msGBLUP (figure 1), which consisted of the 
following: 1) estimation of breeding values in a 
conventional way through an animal model, 2) 
estimation of the effects of SNPs from a group of 
animals with phenotypes and genotypes (reference 
population), and 3) the combination of the infor-
mation available under the theory of the selection 
index to obtain genomic breeding values (VanRaden, 
2008). However, the msGBLUP methodology 
only estimates breeding values for genotyped animals 
and generates a high variation of reliabilities 
(Garrick, Taylor, & Fernando, 2009). Although 
this methodology allowed increasing the precision 
of the estimates for the selection of young animals 
(König & Swalve, 2009), this genomic prediction 
also did not consider the pre-selection effect, under-
estimating breeding values for young animals 
(Patry & Ducrocq, 2011).

Figure 1. Working structure of the best linear unbiased predictor in multiple steps (msGBLUP) and in a single step 
(ssGBLUP) for the estimation of breeding values.
Source: Adapted from Aguilar et al. (2010) and Vanraden (2008)
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To overcome the obstacles mentioned above, 
ssGBLUP was developed as a unified work structure 
that allows genomic estimates to be made throu-
ghout the population and that are more accurate 
than those obtained in msGBLUP (Aguilar et al., 
2010) (figure 1). Additionally, the rapid decrease 
in genotyping costs allows increasing the number 
of genotyped animals and further, strengthen the 
analyzes through observed and unexpected relation-
ships as occurs in the relationship matrix by 
pedigree (Legarra, Aguilar, & Misztal, 2009). 
However, this trend may not be evident for deve-
loping countries due to the lack of genealogical, 
phenotypic and economic limitations for genotyping 
a large population.

Best linear unbiased predictor in one step
 (ssGBLUP) 

ssGBLUP allows, from the covariance of gene 
frequencies, to model the genotype of an individual 
from the relationship matrix (Legarra & Ducrocq, 
2012). This information is included in the classic 
system of equations of the mixed model, through 
the addition of a modified relationship matrix based 
on the differences of genomic relationship and 
pedigree of animals with genotypes (Fragomeni 
et al., 2015). The system of equations of the mixed 
model that includes the genomic information in 
ssGBLUP proposed by Misztal et al. (2009) is 
as follows: 

Where b is a vector of solutions for fixed effects, 
â is a vector of solutions for random effects, and y 
is a vector of observations; X is an incidence matrix 
that relates observations to fixed effects, Z is an 
incidence matrix that relates the observations with 
the vector of direct additive genetic random effects, 
α is the ratio between the environmental variance 
and the direct additive genetic variance, and H 
is a matrix that combines pedigree and genomic 
relationships in a population in which only some 
individuals are genotyped. This animal model has 

the same structure proposed by Henderson (1984), 
except for the relationship matrix by pedigree (A), 
which is replaced by matrix H.

Likewise, this model assumes that the effects of the 
markers have a normal distribution with a common 
variance (Legarra et al., 2009). Matrix H is obtained 
from the following matrix operation:

H = A + A∆

Where A is the relationship matrix by pedigree and  
A∆ contains the genomic and additive relationship 
differences of genotyped animals: 2( pi - 0,5)

The estimation of the genomic matrix (G) is gene-
rated as RR´⁄ k, where R is a matrix that is obtained 
from (P - M), and P is a matrix that contains allelic 
frequencies expressed as a difference from 0.5 and 
multiplied by 2; each P column is represented by 
2( pi - 0,5). Further, M is a matrix that contains the 
information of each marker that the individuals 
inherited (VanRaden, 2008); k is a scalar calculated 
from 2∑ pi (1-pi), interpreting pi as the frequency 
of the reference allele for all cases. The subtraction 
G-A22 is performed to avoid redundancy in relation-
ship information and inflation in the genomic 
value estimates (Liu, Goddard, Reinhardt, & Reents, 
2014; Misztal et al., 2013).

Aguilar et al. (2010) performed the first genetic 
evaluation with ssGBLUP in Holstein cattle in the 
United States, obtaining higher precision results. 
From that moment on, ssGBLUP has become a 
simpler and more accurate method for estimating 
breeding values. However, a part of the population 
must be genotyped for its implementation, consi-
dering computational requirements and evaluating 
factors that could influence the accuracy of the 
estimates, such as the number of genotyped animals 
and their relationship with the population evaluated.

0 G - A22 
0 0

 A∆ =

b
â Z´ X     Z´ Z + H-1α Z´ y

X´ X X´ yX´ Z -1

=
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Genotyped population in ssGBLUP 

In general, the size of a genotyped population 
in genomic selection programs should be larger 
when the selected candidate population has a lower 
genetic relationship with the genotyped population 
(Meuwissen, 2009). Also, the genomic information 
of the ancestors is important to increase the accu-
racies (Mulder, Calus, Druet, & Schrooten, 2012), 
but sometimes this is difficult because the genomic 
information usually comes from the youngest animals 
in the population. Specifically, for ssGBLUP, the 
construction of the G matrix should be based on 
the allelic frequencies of the founding animals 
of the evaluated population (Christensen et al., 
2012). However, the construction of this matrix 
is not always feasible in practice because normally, 
the founding animals are not genotyped.

Lourenco et al. (2015) suggested that the geno-
typing strategy in ssGBLUP should be directed 
towards the most important animals, which are 
generally the oldest and with most genealogical 
and phenotypic information. Consequently, the 
composition and size of the genotyped population 
are factors that affect the structure of variances 
and covariances of breeding values, and with it, the 
precision. Although genotyped populations for 
ssGBLUP are sometimes small, it is crucial to keep 
in mind that larger genotyped populations will 
contribute more to the estimation of allelic effects 
and with higher precision (VanRaden, 2016). 
Currently, a higher number of genotyped animals 
with a more significant number of SNPs is more 
accessible due to the decrease in genotyping costs 
and higher efficiency in statistical and computa-
tional methods in imputation processes (Uemoto, 
Sasaki, Sugimoto, & Watanabe, 2015).

Computational aspects  

Methods based on genomic BLUP require the 
inverse of the genomic relationship matrix (Pocrnic, 
Lourenco, Mazuda, Legarra, & Misztal, 2016). The 
investment cost to construct G and A matrices of 

genotyped animals is a cubic function of the number 
of genotyped animals (Legarra & Ducrocq, 2012), 
a condition that makes the convergence of evalua-
tions difficult. Experiences with databases with 
more than one million animals included showed that 
the convergence of the genetic evaluation depends 
on the G matrix used, which is generally unique 
and cannot be reversed without additional proce-
dures (Aguilar et al., 2010). Therefore, VanRaden 
(2008) defined G=RR´⁄ k aiming at obtaining the 
G matrix in a semi-definite positive form. Despite 
this, the matrix can still be unique when there are 
two individuals with the same genotype (identical 
twins), a condition that causes singularity in matrix 
A. In the same study, a method based on the weigh-
ting of G and A matrices of genotyped animals was 
developed, as follows:

wG + (1 - w) A

Where w is the weighting given to the genomic 
matrix to facilitate matrix operations. This avoids 
singularity problems and facilitates the construction 
of the matrix that contains the differences between 
pedigree and genomic relationship of genotyped 
animals. Although w could affect the estimates, 
Aguilar et al. (2010) showed that weighting values 
between 0.95 and 0.98 did not report significant 
differences and did generate higher accuracy of the 
ssGBLUP methodology versus msGBLUP.

Mass genotyping of animals allowed a higher number 
of animals genotyped, considering the amount of 
SNPs used in genotyping. This condition, again, 
prevented the conventional inversion of the genomic 
matrix, because, in that scenario, the matrices are 
always unique (Liu, Goddard, Hayes, Reinhardt, 
& Reents, 2016). From this point, several compu-
tational approaches have been proposed in recent 
years, but all have convergence problems or are 
expensive and complex to be programmed, especially 
when using multi-character models and random 
regressions (Fragomeni et al., 2015). Initially, 
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ssGBLUP programming included the equations 
previously shown, but this application would be 
limited for an approximate number of up to one 
hundred thousand genotyped animals. A higher 
quantity made it difficult to find the inverse of the 
genomic relationship matrix due to limitations in 
memory and computation time (Misztal, Legarra, 
& Aguilar, 2014; Misztal et al., 2013).

This obstacle was predictable because ssGBLUP 
allows including in its methodology all the animals 
in the evaluation, demanding more efficient 
algorithms (Liu et al., 2014). One of the latest 
advances for ssGBLUP proposed by Misztal et al. 
(2014), was the development of the algorithm for 
tested and young animals (ATY), which divides the 
genotyped population into animals with records 
and young animals. This algorithm makes use of 
genomic recursion to approximate the inverse 
of the genomic matrix. 

Genomic recurrences can be estimated from the 
addition of the genomic relationship coefficient of 
each animal and the conditional variance (Misztal 
et al., 2014). These estimates are based on the 
assumption that there is a limited number of chro-
mosome segments or SNP effects that explain the 
total genetic variance (Pocrnic et al., 2016). The use 
of this algorithm drastically reduced costs when the 
number of genotyped animals was higher than fifty 
thousand and helped with the stability of the itera-
tive process. Even an evaluation with one million 
genotyped animals is possible (Misztal et al., 2014).

Misztal (2016) showed that, when using the genomic 
recursion theory supported by the ATY algorithm, 
the correlation between the estimates found with 
the algorithm versus those found with the direct 
and complete inversion of the genomic matrix was 
higher than 0.99. Therefore, the ATY algorithm 
facilitates genomic evaluation, estimation of genetic 
parameters, and studies of genomic association in 
large genotyped populations. For example, with a 
population larger than five hundred thousand animals, 
ten thousand animals were sufficient in genomic 

recursion to obtain even more accurate estimates 
compared to the complete inversion of the genomic 
matrix (Pocrnic et al., 2016).

Additional alternatives have included the imple-
mentation of an indirect method of ssGBLUP 
supported by the ATY. In this, the effects of SNPs 
can be calculated using the conventional ssGBLUP 
method, obtaining a direct genomic value. Then, 
identical weights are used throughout the popu-
lation for different sources of information, which 
decreases the computational time required to 
estimate the breeding values of genotyped young 
animals.  (Lourenco et al., 2014b). Thus, a genotyped 
population larger than one hundred thousand 
animals could show redundancy in genomic data, 
so a subset of this population and the use of indirect 
methods could explain the same estimated genetic 
variance with the entire population. Although 
some problems associated with the genomic data 
dimension have been solved, there is no doubt that 
the genomic selection will continue to evolve with 
new developments in sequencing and genotyping 
(Garrick et al., 2014). However, algorithms and 
computational resources are becoming more limi-
ting than other aspects because the number of 
animals and genotyped markers increase rapidly 
(VanRaden, 2016).

Advantages of ssGBLUP  

The adjustment of the (co)variances between indi-
viduals carried out in ssGBLUP allows obtaining 
an automatic derivation of the weights for the 
combination of different sources of information in 
the estimation of the breeding values, being a more 
practical and precise form of genetic evaluation, 
even for multi-character analyses (Aguilar et al., 
2010; Lourenco et al., 2014a). Besides, estimates 
based on single or multi-character models with 
ssGBLUP allow obtaining breeding values for 
non-genotyped animals, which is not possible in 
analyzes with msGBLUP (Tsuruta, Misztal, Aguilar, 
& Lawlor, 2011).
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Possibly, the precision in genetic evaluations is 
the most important aspect, because it allows the 
proper classification of animals and greater genetic 
progress if the same selection intensity is assu-
med. In genomic selection, a mechanism by which 
precision is increased is through the validation and 
quality control of the pedigree (Christensen et al., 
2012). ssGBLUP allows identifying conflicts in 
the pedigree and adjust relationship relationships 
between genotyped and non-genotyped animals 
that comprise the genealogical archives of the popu-
lation evaluated, reducing biases in the adjustment 
of breeding values for animals without phenotypic 
information.

Likewise, consanguinity values are more precise 
in ssGBLUP, because Mendelian segregation is 
estimated with observed events (SNPs) and not 
with expected average probabilities included in the 
relationship matrix by pedigree (De Roos, Schrooten, 
Veerkamp, & Arendonk, 2011). For example, two 
genotyped animals that have no relationship in the 
relationship matrix by pedigree could show a relation-
ship in the genomic matrix due to a common ancestor 
that was not recorded in the pedigree. Likewise, 
higher inbreeding coefficients may appear in the 
descendants of genotyped animals as much as they 
are related (Legarra et al., 2009). Genomic selection 
can then have a fundamental role in the control 
of the consanguinity of populations, which allows 
greater control over the conservation of the genetic 
diversity of populations (Wensch-Dorendorf, Yin, 
Swalve, & König, 2011), and estimate more accurately 
the negative effect of consanguinity on phenotypic 
performance. 

On the other hand, a more considerable amount 
of information generally leads to higher accuracy of 
the estimates in selection programs. For this reason, 
the accuracies and additive genetic variance also 
increase when higher density chips are used (Jattawa, 
Elzo, Koonawootrittriron, & Suwanasopee, 2015). 
However, some populations, such as the one reported 
by Loberg et al. (2015) explain a higher percentage 
of the genetic variance when using the relationship 
matrix by pedigree. Similarly, Haile, Nieuwhof, 

Beard, Konstatinov and Hayes (2013) found that 
the genetic proportion of the variance explained by 
the genomic information and the pedigree varied 
considerably between characteristics, suggesting 
that the discrepancies could be dependent on factors 
such as heritability, as well as phenotypic and genomic 
information. 

Although high-density chips do not capture the 
entire genetic variance, the accuracy in the selection 
of young animals is higher. However, this variation 
also depends on other factors such as the size and 
relationship of the genotyped and non-genotyped 
population. Although the pedigree, in some cases, 
explains a more significant proportion of the variance, 
the error was higher in the estimates based on the 
pedigree (Haile et al., 2013). This indicates that, 
in addition to the genotyped population, genetic 
parameters and the magnitude of their estimates 
could also affect genomic estimates, which are based 
on the (co)variance found between individuals in 
the genotyped population and their relationship 
with non-genotyped animals. 

Regarding the economic component, the reduction 
of the generational interval, the increase in the 
accuracy of breeding values, and a possible decrease 
in the collection of phenotypic records in livestock 
companies have been enough reasons to justify the 
implementation of genomic selection programs. 
Schaeffer (2006) indicated that genomic selection 
could even allow the existence of herds in which 
registration is not necessary so that selection decisions 
would be made based on genomic information. 
For now, ssGBLUP seems to be the most efficient 
alternative to simultaneously adjust information of 
genotyped and non-genotyped animals, especially 
for countries with a low number of genotyped 
animals, in which access to genotyping of the entire 
population can be limited and even null. This 
places ssGBLUP as the methodology with the most 
opportunities and economic impacts to replacing the 
traditional genetic evaluation systems (Christensen 
et al., 2012).
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Limitations of ssGBLUP 

Statistical methods based on the distribution of the 
effects of SNPs can be classified into two groups: 
the first assumes that SNPs have some effect on the 
characteristic and that the variance of each effect 
is the same; the second allows markers to have 
different types of distribution (Zhang et al., 2010). 
Linear genomic predictions are governed by the 
infinitesimal model, which assumes that all SNPs 
contribute uniformly to the genetic variance, so it is 
not possible to identify large-effect loci associated 
with quantitative characteristics (Goddard, 2009). 
The ssGBLUP methodology does not consider the 
major effects of loci given the assumption of the 
infinitesimal effect with which ssGBLUP was 
constructed. Although the assumption of common 
variance remains in continuous discussion and 
would seem to be a disadvantage, working with 
another type of distribution and contemplating 
major effect loci has not presented significant gains 
in accuracy compared to ssGBLUP.

Legarra and Ducrocq (2012) described that the 
three most important limitations that ssGBLUP 
has are the following: 1) the computational cost, 2) 
the need to modify existing software that covers a 
variety of used evaluation models, and 3) its linear 
form, which excludes non-linear estimators including 
genomic information. Although scientific and 
computer developers mentioned in this review have 
covered the first two issues, the discussion is still 
present in the assumptions assumed by the model. 
Simulation studies have shown that Bayesian 
approaches have resulted in more accurate estimates; 
however, when evaluating real milk production 
data, lower accuracy estimates have sometimes been 
obtained (Su et al., 2012). In addition, Aguilar 
et al. (2010) showed that using a large number of 
SNPs with equal variance was appropriate for most 
of the productive characteristics.

Although the most realistic scenario is when the 
model assumes that there are genes of more signi-

ficant effect, studies in which genomic estimates were 
compared through Bayesian methodologies and 
ssGBLUP, showed that the accuracies and losses of 
variance are very similar (Wang, Misztal, Aguilar, 
Legarra, & Muir, 2012). Therefore, ssGLUP would 
have a more significant advantage over other 
methodologies that do not allow the inclusion of 
non-genotyped animals and require phenotypic 
data for the breakdown of breeding values. This 
limits the practical application of genomic selection 
in populations in which it is not possible to geno-
type the entire population, a condition that often 
occurs. However, when the number of records is 
low, and the density of the chips used is high, other 
methodologies appear to be better compared to 
ssGBLUP (Lourenco et al., 2014b).

Use of ssGBLUP in small populations 

The interest of genomic selection is to identify a set 
of SNPs to increase the accuracy of the breeding
values. For this, it is necessary to estimate the effects 
of SNPs from the genotyped population (Misztal, 
2016; Misztal & Legarra, 2016). One of the most 
useful alternatives that economically allow increa-
sing the number of genotyped animals has been the 
genotypes imputed from chips of various densities 
and that are combined in a single genomic evaluation 
to reduce costs and increase accuracy. For example, 
the number of genotyped animals of the Holstein 
breed in the United States increased considerably to 
more than 950,000 animals in 2016 (Misztal, 2016).

The imputation accuracy and genomic estimates 
are also affected when the number of genotyped 
animals, the linkage imbalance (< 0.2), and the 
genetic relationships between genotyped popula-
tions are low ( Jattawa et al., 2015; Vanraden et al., 
2013). This occurs because the haplotype segments 
shared among related animals cannot be accurately 
estimated, and consequently, predict the genotypes 
of the other SNPs of animals genotyped with lower 
density chips.
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An increase in the number of markers for geno-
typed animals could also be a strategy; however, 
this had contradictory effects on the accuracies. As 
the number of SNPs increases, the recombination 
rate decreases, and this is the reason why the accu-
racy increases. However, an increase in the number 
of markers without an increase in the number of 
phenotypes is counterproductive because collinea-
rity could confuse the effects and decrease accura-
cy (Muir, 2007). This alternative would have even 
greater contradictions in countries with limited 
populations since generally obtaining phenotypic 
records is also scarce.

The construction of strategies to improve prediction 
in small populations should arise from the theoretical 
concepts of ssGBLUP to increase reliability. These 
requirements are as follows: 1) more genotypes 
should result in equal or higher reliability; 2) a 
young animal that has been genotyped should not 
create additional information for other animals; 
3) the extra information that a young animal with 
non-genotyped ancestors can contribute to the 
genotyped population must be small or null, and 
4) additional reliability values cannot be obtained 
from animals of different lines or races (Misztal 
et al., 2013).

Countries with small populations and the absence 
of genetic evaluations generally support selection 
programs in the continuous import of genetic ma-
terial from improved populations (Andonov et al., 
2016). In genomic selection, this is more important 
when the correlation of phenotypic performance 
between different countries is high (Vanraden, 
2016), indicating that genomic estimates for animals 
from small populations may be derived from 
the effects of SNPs estimated in other genotyped 
populations (Andonov et al., 2016). Furthermore, 
the adjustment of the relationship matrix could be 
greater given the genetic contributions of bulls used 
in artificial insemination programs in countries 
with small populations.

The exchange of genomic information to increase 
the size of the genotyped population is an efficient 
approach to increase the accuracy of estimates 
when the number of genotyped animals is low 

(Wiggans et al., 2015). However, when the popu-
lation contains local and imported animals, 
phenotypic records are still necessary to increase 
the accuracy of the progeny (Lourenco et al., 
2014a). One way to strengthen this alternative is 
the inclusion of females with high genetic contri-
bution and their phenotypic performances (Mc 
Hugh, Meuwissen, Cromie, & Sonesson, 2011). 

The inclusion of genotyped females is desirable 
because they are an important part of breeding 
programs as they are also subject to a selection 
process and provide phenotypic values through 
their own performance and progeny. In addition, 
they allow increasing the size of the genotyped 
population, making them an alternative to reduce 
biases and increase accuracy (Tsuruta, Misztal, & 
Lawlor, 2013). Also, the inclusion of females could 
more accurately adjust the degrees of relationship 
based on the effects of the markers (Loberg et al., 
2015). Although Tsuruta et al. (2013) evaluated 
the inclusion of females in a genotyped population 
that had no limitations in size, a selection criterion 
was the inclusion of cows with records and bree-
ding values similar to the included bulls. Therefore, 
the inclusion of cows in small populations and with 
a lack of genetic evaluations could significantly 
improve the implementation of a genomic selection 
program through the ssGBLUP methodology.

Conclusions

The ssGBLUP methodology is a practical and 
more accessible approach to include genomic 
information through higher accuracy of the genetic 
(co)variance between individuals in selection pro-
grams. Although the most important limitations 
of ssGBLUP seem to be directed towards compu-
tational aspects, the continuous developments in 
programming have allowed the development and 
implementation of algorithms for genomic estima-
tions. Finally, it is necessary to include genomic 
information of local females and foreign bulls that 
allow increasing the genetic connectivity of the 
genotyped and non-genotyped population to 
obtain better estimates of breeding values.
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