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Resumen 

Los oxisoles de la altillanura en Colombia contienen hasta 400 mg/kg de fósforo. Sin embargo, la fracción 

disponible para las plantas es inferior a 3,5 mg/kg, lo que obliga la suplementación con fertilizantes 

fosfóricos. Las plantas pueden adaptarse a estas condiciones por medio de interacciones con bacterias 

solubilizadoras de fosfatos (BSF) presentes en el suelo. Los oxisoles serían una potencial fuente de BSF; 

no obstante, existe un desconocimiento de su diversidad en la altillanura colombiana. El objetivo de esta 

investigación fue aislar, caracterizar e identificar BSF de oxisoles de la altillanura colombiana. A partir de 

muestras compuestas de suelo con cultivos transitorios y sabana, se obtuvieron 42 aislamientos. De estos, 

14 cepas mostraron índices de solubilización de fosfatos entre 1,2 y 2,4. Las cepas M15 y M18 se 

seleccionaron por su alta actividad de las fosfatasas ácidas con 297,7 ± 89,6 y 638,3 ± 31,2 μg de p-

nitrofenilfosfato/mL/h, respectivamente. Los dos aislamientos promovieron el crecimiento vegetal en 

plantas de arroz en condiciones de invernadero. Mediante la secuenciación parcial del gen 16S rRNA, las 

dos cepas fueron identificadas dentro del género Burkholderia. Esta investigación amplía el conocimiento 

de las BSF presentes en los oxisoles de la altillanura colombiana, así como sus capacidades para favorecer 

la disponibilidad de fósforo en el suelo y promover el crecimiento vegetal. 

 

Palabras clave: ciclos biogeoquímicos, ecología microbiana, fósforo, oxisol, rizosfera  

 

 

 

Phosphate solubilization by Burkholderia species isolated from 

Oxisols from the Colombian high plains 

 

Abstract 

Oxisols from the Colombian high plains contain up to 400 mg/kg of phosphorus; however, the fraction 

available to plants is less than 3.5 mg/kg, requiring supplementation with phosphoric fertilizers. Plants 

can adapt through interactions with soil phosphate solubilizing bacteria (PSB). Oxisols might be a source 

of PSB, but we ignore its diversity in the Colombian high plains. This research aims to characterize and 

identify PSB isolated from Oxisols from this region. By sampling soil from transitory crops and the 

savanna, we obtained 42 isolates. Fourteen strains showed phosphate solubilization indices from 1.2 to 

2.4. We selected the M15 and M18 strains due to their high acid phosphatase activity with 297.7 ± 89.6 

and 638.3 ± 31.2 μg of PNPP/mL/h, respectively. These two isolates promoted plant growth in 

greenhouse rice plants. Through the 16S rRNA gene sequence, we identified the two strains within the 

genus Burkholderia. This research extends the knowledge of the PSB nature-occurring in Oxisols from the 

Colombian high plains and their capabilities to favor phosphorus availability in soil and promote plant 

growth. 

Keywords: biogeochemical cycles, microbial ecology, oxisol, phosphorus, rhizosphere 
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Introducción  
 

El fósforo (P) es un nutriente esencial para las plantas. Hace parte de moléculas como el ADN, ATP y 

RNA, e interviene en la biosíntesis de proteínas y ácidos grasos, la fotosíntesis, la glicolisis y la respiración, 

así como la división y multiplicación celular (Corrales-Ramírez et al., 2014; Krishnaraj & Dahale, 2014; 

Wyngaard et al., 2016). En suelos del trópico húmedo, la movilidad de este elemento es muy baja; solo 

un 4 % está disponible como ortofosfatos, encontrándose iones monobásicos (H2PO4
-1) y dibásicos 

(HPO4
-2) requeridos por las plantas para su crecimiento (Zhu et al., 2018). Por otra parte, es posible hallar 

fosfatos de calcio como la fluorapatita, oxiapatita e hidroxiapatita que, por procesos de precipitación o 

fijación, son de difícil acceso para las especies vegetales, así como óxidos hidratados de hierro o aluminio 

que forman complejos insolubles con el P, no disponible en el suelo (Cerón & Aristizábal, 2012; 

Daneshgar et al., 2018). La baja disponibilidad de P afecta el crecimiento de las plantas y la productividad 

agrícola (Lynch, 2007; Satyaprakash et al., 2017), lo que obliga su incorporación a través del uso de 

fertilizantes de síntesis química en cada campaña de cultivo.  

 

En Colombia, los suelos de la altillanura plana son, en su mayoría, del orden Oxisol (Tropeptic haplustox 

isohipertérmico) (Soil Survey Staff, 1999, 2014), y se caracterizan por bajos contenidos de nutrientes con 

porcentajes reducidos de materia orgánica (15.000 mg/kg a 30.000 mg/kg), altos contenidos de hierro y 

aluminio, y pH ácidos, entre 3,8 y 5,0 (Rivas et al., 2004). Esto hace que el P sea poco disponible para las 

plantas y que, a pesar de estar presente en concentraciones entre 200 y 430 mg/kg, se encuentre 

mayoritariamente fijado por las condiciones de acidez. 

 

Dada esta condición, las plantas han desarrollado estrategias adaptativas a nivel radicular como las 

modificaciones morfológicas con la dispersión de raíces laterales, la producción de exudados radicales o 

la interacción con BSF, que favorecen la biodisponibilidad de este elemento en el suelo (Mehta et al., 

2015; Richardson et al., 2011). La interacción entre BSF y raíces juega un papel clave en la movilidad y 

ciclo del P en muchos agroecosistemas, particularmente del trópico (Gumiere et al., 2019; Liang et al., 

2020). 

 

Bacterias de los géneros Achromobacter, Aerobacter, Arthrobacter, Azospirillum, Azotobacter, Bacillus, 

Burkholderia, Erwinia, Escherichia, Flavobacterium, Gluconacetobacter, Micrococcus, Pantoea, Pseudomonas y 

Rhizobium han sido reportadas por su capacidad para solubilizar fosfatos que, por procesos de fijación, 

no están disponibles en los suelos ácidos. Algunas de ellas están asociadas a la rizosfera de cultivos como 

el maíz y el arroz (Corrales-Ramírez et al., 2014; Sandanakirouchenane et al., 2017). Entre los mecanismos 

empleados por estos microorganismos para la solubilización está la disminución del pH del suelo, 

mediada por la producción de ácidos orgánicos de bajo peso molecular como el ácido butírico, succínico, 

oxálico, málico, glucónico, acético, láctico, cítrico y fumárico (Mehta et al., 2015; Stephen & Jisha, 2011). 

Por otro lado, la producción de fosfatasas ácidas, fosfatasas alcalinas, lipasas y fitasas también contribuye 

a la disponibilidad de fosfatos en el suelo mediante la mineralización del P orgánico (Billah et al., 2019; 

Othman & Panhwar, 2014). 
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Teniendo en cuenta que en la rizosfera se pueden encontrar diversos géneros de microorganismos 

solubilizadores de fosfatos naturalmente adaptados a ambientes locales, y dada la condición de baja 

disponibilidad de este elemento para las plantas, el objetivo de esta investigación fue aislar, caracterizar e 

identificar bacterias rizosféricas solubilizadoras de fosfatos de oxisoles de la altillanura plana colombiana 

y evaluar su potencial para promover el crecimiento vegetal bajo condiciones de invernadero. 

 

Materiales y métodos  

Muestreo y aislamiento de microorganismos solubilizadores de fosfatos  

Se colectaron diez muestras compuestas, cada una conformada por cuatro submuestras previamente 

homogeneizadas, de la rizósfera de maíz (Zea mays), soya (Glycine max), arroz (Oryza sativa) y la pastura 

Brachiaria sp. presente en una sabana, cuyo suelo fue mejorado con la aplicación de enmiendas, 

fertilizantes y rotación de cultivos en diferentes puntos de la altillanura plana colombiana, en el transecto 

Puerto López - Puerto Gaitán (04 °09' 42.231", -72° 49' 39.669"; 04° 20' 38.9754", -72° 01' 9.156"), en el 

departamento del Meta. Para el aislamiento de bacterias rizosféricas asociadas a cada especie vegetal, se 

seleccionaron dos lotes establecidos con maíz, dos con arroz, dos con soya y uno con la pastura.  

A las muestras compuestas se les determinó el pH, la cantidad de P disponible por Bray II (Bray & Kurtz, 

1945) y el porcentaje de materia orgánica por el método de Walkley y Black (1934) con modificaciones. 

Para el conteo de unidades formadoras de colonias (UFC) y el aislamiento de bacterias solubilizadoras de 

fosfatos, se pesaron 10 g de rizosfera con fragmentos de raíces de las muestras compuestas de cada punto 

de muestreo, y se adicionó en 90 mL de medio de cultivo líquido SMRS con modificaciones (g/L): 

glucosa, 10; Ca3(PO4)2, 5; (NH4)2SO4, 0,5; NaCl, 0,2; MgSO47H2O, 0,3; KCL, 0,2; MnSO4H2O, 0,004; 

FeSO47H2O, 0,002); pH: 7,0 ± 0,2 (Sundara & Sinha, 1963, citado por Suliasih & Widawati, 2005). Se 

dejó en agitación constante por 24 h a 200 rpm en un agitador orbital (Lab-Line instruments Inc, modelo 

3520, USA).  

A partir de cada muestra, se realizaron diluciones seriadas hasta 10-6 en solución salina estéril al 0,85 % 

(p/v). Se sembró una alícuota de 100 µL de cada dilución en medio de cultivo Pikovskaya (Pikovskaya, 

1948) (g/L): glucosa, 10; Ca3(PO4)2, 5; (NH4)2SO4, 0,5; NaCl, 0,2; MgSO47H2O, 0,1; KCL, 0,2; extracto 

de levadura, 0,5; MnSO4H2O, 0,002; FeSO47H2O, 0,002; agar-agar, 15, pH: 7,0 ± 0,2 y medio de cultivo 

SMRS, suplementado con roca fosfórica (RF) (5 g/L), con adición de púrpura de bromocresol como 

indicador de pH. Las cajas Petri con los medios citados se incubaron por cinco días a 28 °C ± 2 °C hasta 

observar el crecimiento de colonias con halos que acidificaron el medio evidenciado por un cambio de 

color. Las cepas seleccionadas se caracterizaron microscópicamente y se conservaron en glicerol al 20 % 

a -20 °C, hasta su posterior evaluación e identificación molecular. 
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Caracterización de los aislamientos como potenciales solubilizadoras de fosfatos 

 

Determinación del índice de solubilización (IS)  

Las 42 cepas aisladas se sembraron en caja Petri con medio de cultivo SMRS suplementado con roca 

fosfórica (RF) (5 g/L), y SMRS con fosfato tricálcico (FT) (5 g/L) como única fuente de P. En cada 

medio de cultivo se colocaron tres anillos de plástico (diámetro: 0,5 cm) esterilizados y se inocularon 

30 µL de una suspensión celular (concentración 108 UFC/mL) de cada cepa. Se incubaron por 24 a 48 h 

a temperatura de 28 °C ± 2 °C hasta observar la formación de halos alrededor del anillo (Chakraborty et 

al., 2010). La medida del diámetro de la colonia y del halo de hidrolisis en el medio de cultivo se realizó 

con ayuda de un decímetro. Se establecieron tres replicas biológicas por triplicado a través del tiempo, y 

con las mediciones obtenidas, se determinó el índice de solubilización (IS) como criterio para la selección 

de cepas promisorias, siguiendo la ecuación propuesta por Awais et al. (2017): 

 

𝐼𝑆 = (𝑑𝑖á𝑚𝑒𝑡𝑟𝑜 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑙𝑎𝑟𝑎𝑚𝑖𝑒𝑛𝑡𝑜 − 𝑑𝑖á𝑚𝑒𝑡𝑟𝑜 𝑐𝑜𝑙𝑜𝑛𝑖𝑎 𝑏𝑎𝑐𝑡𝑒𝑟𝑖𝑎𝑛𝑎)                                    Ecuación 1 

 

Los datos fueron analizados estadísticamente utilizando el programa SAS, versión 9,3 (SAS Institute, 

USA), mediante un análisis de varianza empleando la prueba de Tukey (α = 0,05) para la determinación 

de diferencias estadísticamente significativas entre las medias de los tratamientos evaluados (fuente de 

fósforo vs. cepas). 

 

Determinación de la actividad fosfatasas ácidas  

Se empleó la metodología propuesta por Tabatabai y Bremner (1969), usando como sustrato 

colorimétrico p-nitrofenilfosfato (PNPP 0,025 M). Adicionalmente, se evaluó la evolución del pH en el 

medio de cultivo como indicador de la producción de ácidos orgánicos. Las cepas bacterianas se 

cultivaron en medio Pikovskaya (PVK) (Pikovskaya, 1948) y se dejaron en agitación constante a 180 rpm 

durante nueve días, con una temperatura de 28 °C ± 0,5 °C (Incubador Heidolph 1000, Heidolph Co., 

Alemania). Después del tercer, sexto y noveno día de incubación, se tomaron alícuotas de 5 mL de medio 

de cultivo y se determinó el pH (Hanna Hi8314, Hanna Instruments, Alemania). Adicionalmente, se 

obtuvieron muestras de sobrenadante sin células bacterianas (muestra control) mediante centrifugación 

de 2 mL de cultivo a 24.400 xg, a 20 °C ± 0,5 °C, durante 10 min (Centrifuga Rotina 420 Hettich 4701-

01, Hettich GmbH & Co., Alemania).  

Pasado este tiempo, se agregaron 2 mL de tampón universal modificado al 0,5 M (MUB, pH 6,5) y 0,5 mL 

del sustrato (PNPP 0,025 M) a 1 mL de medio sobrenadante de PVK. Las reacciones se llevaron a cabo 

a 37 °C ± 1 °C, durante 60 min, y se detuvieron agregando 1 mL de CaCl2 0,5 M y 4 mL de NaOH 0,5 

M. Las muestras se filtraron con papel de filtro (grado 401 cualitativo, VWR, Cat 5160282), con tamaño 

de poro de 12-15 µm. El p-nitrofenol (PNP) formado se midió en un espectrofotómetro (Optizen POP 

UV-Vis, Mecasys, Corea del Sur) a 400 nm. Se evaluaron tres réplicas independientes por cada cepa. Los 

controles fueron analizados bajo las mismas condiciones experimentales. La actividad enzimática (U) se 

definió como microgramos de PNP liberado por mililitro por hora (µg/mL/h) (Barrera et al., 2019).  

https://doi.org/10.21930/rcta.vol22_num2_art:1897


Lina Margarita; Moreno-Conn; et al.                        Solubilización de fosfatos por bacterias del género Burkholderia 

 
 
Cienc. Tecnol. Agropecuaria, 22(2): e1897                                            
DOI: https://doi.org/10.21930/rcta.vol22_num2_art:1897   

 

 

Determinación del porcentaje de solubilización de fosfatos  

Se empleó el método de fosfomolibdeno por medio la prueba analítica de Spectro Quant® Fósforo 

(Merck KGaA, Darmstadt, Alemania) para la determinación del porcentaje de solubilización (Murphy & 

Riley, 1962, citado por Ortiz et al., 2016). De cada cepa sembrada en SMRS, se tomaron 10 mL del medio 

con una concentración de 108 y se diluyeron en 90 mL de solución salina al 0,85 % (p/v). Posteriormente, 

se inoculó por triplicado, 2 mL de cada dilución en 100 mL de medio de cultivo líquido NBRIP (Nacional 

Botanical Research Institute Phosphate growth medium) (g/L): glucosa, 10; Ca3 (PO4)2, 5; MgCl26H2O, 

5; (NH4)2SO4, 0,1; NaCl, 0,2; MgSO47H2O, 0,25; KCL, 0,2; pH: 7,0 ± 0,2, descrito por Nautiyal (1999), 

suplementado con FT (5 g/L).  

Como control positivo se utilizó un inóculo de Penicillium janthinellum (Cepa: FP010 - Colección del 

laboratorio de Bioinsumos del Instituto de Biotecnología de la Universidad Nacional de Colombia 

[IBUN]), hongo solubilizador de fosfatos empleado como ingrediente activo de un bioproducto para 

cultivos de arroz (Pineda, 2014), y como control negativo se utilizó el medio de cultivo sin inocular por 

triplicado. Se incubaron en agitación constante, a 150 rpm a 28 °C ± 2 °C, durante 10 días. Luego del 

tiempo de incubación, se homogenizó el caldo de fermentación y se tomaron 2 mL de muestra, que se 

centrifugaron a 11.200 xg durante 10 min a 20 ± 0,5 °C, hasta separar completamente la fracción soluble. 

Este sobrenadante traslucido se refrigeró a 4 °C ± 2 °C hasta el momento de la lectura de las muestras. 

 

Para la determinación de la prueba cuantitativa, en un tubo Eppendorf se dispensaron 250 µL del 

sobrenadante (obtenido previamente); se adicionaron 750 µL de agua destilada y 240 µL del reactivo 

Spectro Quant® Fósforo (Merck, Alemania). Las muestras se agitaron en vortex (Genie®2, modelo G560 

Scientific Industries Inc., USA); se dejaron en reposo por 10 min y se determinó la absorbancia en un 

espectrofotómetro (Optizen POP UV-Vis, Mecasys, Corea del Sur) a 450 nm. La cantidad de fosfato 

solubilizado por los microorganismos, expresada en mg/L y el porcentaje de solubilización, se determinó 

con las siguientes ecuaciones: 

 

𝐹𝑜𝑠𝑓𝑎𝑡𝑜 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜 (𝑚𝑔 𝐿 − 1 𝑃𝑂4) = (𝑃𝑂4 𝑚𝑢𝑒𝑠𝑡𝑟𝑎 ∗ 𝑑𝑖𝑙𝑢𝑐𝑖ó𝑛) − (𝑃𝑂4 𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∗ 𝑑𝑖𝑙𝑢𝑐𝑖ó𝑛)           Ecuación 2       

                                                                               

 

𝑃𝑜𝑟𝑐𝑒𝑛𝑡𝑎𝑗𝑒 𝑑𝑒 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑎𝑐𝑖ó𝑛 =
(𝑃𝑂4 𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑧𝑎𝑑𝑜)

(𝑃𝑂4 𝑖𝑛𝑖𝑐𝑖𝑎𝑙 𝑒𝑛 𝑒𝑙 𝑚𝑒𝑑𝑖𝑜)
∗ 100                                                     Ecuación 3 

 

La determinación del porcentaje de solubilización se realizó una vez se obtuvieron las colonias puras de 

los microorganismos aislados (tiempo 0) y, posteriormente, se evaluó esta actividad a los seis meses 

después de conservado el material biológico a -20 °C (tiempo 1).  

 

Determinación de compuestos indólicos  

Se empleó el método colorimétrico basado en la reacción del reactivo de Salkowsky, descrito por 

Glickmann y Deessaux (1995) con modificaciones. Las cepas se cultivaron en medio NBRIP 

suplementado con triptófano (2 mg/L), se observó el viraje de color en el medio de cultivo bajo 
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condiciones in vitro después de 30 min, y se hizo la lectura de absorbancia a 450 nm en el 

espectrofotómetro (Optizen POP UV-Vis, Mecasys, Corea del Sur). Las determinaciones se realizaron 

por triplicado para cada cepa evaluada. 

Identificación molecular  

La obtención del ADN de las cepas se realizó con un kit de extracción (GenElute™ Bacterial Genomic 

DNA Kits, Sigma Aldrich Co. LLC). La determinación de la pureza y la cuantificación se realizó en un 

espectrofotómetro NanoDrop® (ND-1000 UV-Vis Thermo Fisher Scientific, Alemania). Con el ADN 

extraído de las cepas M15 y M18 se realizó la PCR en un termociclador (PTC100 MJ Research® Global 

Medical Instrumentation, Inc., Minnesota, EE. UU.), con una concentración de 25 µg, empleando los 

primers universales 27F (5’ AGAGTTTGATCCTGGCTCAG 3’) y 1492R (5’ 

AGAAAGGAGGTGATCCAG CC 3’) para la amplificación del gen 16S rRNA. El producto amplificado 

se visualizó en un gel de agarosa al 2 % previo a su secuenciación, y se envió a Macrogen Inc., (Seúl, 

Korea). Las secuencias obtenidas se editaron y se ensamblaron utilizando el software Geneious®, versión 

9,8 (Biomatters Ltda, Auckland, Nueva Zelanda). Posteriormente, se analizaron con el algoritmo BLAST 

(http://blast.ncbi.nlm.nih.gov/) y el análisis taxonómico de las secuencias ensambladas se comparó con 

las bases de datos del RefSeq Genomic GenBank (National Center for Biotecnology Information [NCBI]), 

Grengenes (Laurence Berkeley National Laboratory, http://greengenes.lbl.gov/cgi-bin/nph-index.cgi) y 

RDP Versión 11 (Ribosomal Database Project, http://rdp.cme.msu.edu).  

Pruebas de virulencia de cepas bacterianas  

Las pruebas de virulencia de las cepas bacterianas identificadas se realizaron en Agar King B y en tejido 

vegetal de cebolla Allium cepa L. (Amaryllidaceae), utilizada como planta modelo (Leitão et al., 2010; Sinha 

et al., 2017), adaptando la metodología propuesta por Karki (2010). Las cepas se sembraron en medio de 

cultivo King B (g/L): peptona de carne, 10; peptona de caseína, 10; K2HPO4, 1,5; MgSO47H2O, 1,5; agar-

agar, 15, pH: 7,0 ± 0,2 (King et al., 1954), para determinar la producción de pigmento difusible en el 

medio relacionado con la producción de fitotoxinas (Sinha et al., 2017). Posteriormente, se realizaron 

cortes de tejido de cebolla de aproximadamente 2 × 3 cm, previamente desinfectados con hipoclorito de 

sodio al 1 %, y la inoculación se realizó con 10 µL de cada cepa, con concentraciones de 103, 105 y 

108 UFC/mL. Se dejó en incubación a 30 °C ± 1 °C, haciendo monitoreo desde las 24 h hasta las 72 h. 

La prueba se consideró positiva cuando se evidenciaron síntomas de maceración del tejido y cambios de 

color, desde amarillo pálido hasta marrón, en el borde de la lesión, indicando la presencia de enzimas 

degradadoras.  

Como control positivo se emplearon tres cepas de la colección de trabajo del Centro de Investigación La 

Libertad de Agrosavia, caracterizadas molecularmente como Burkholderia glumae (Kurita & Tabei, 1967), 

aisladas a partir de panículas sintomáticas de un cultivo de arroz establecido en la altillanura. Como 

control negativo se empleó la cepa B02, identificada molecularmente con un 99 % de similitud como un 

Rhizobium sp. (GenBank número de accesión MK559029) (Amaya et al., 2020), perteneciente al Banco de 

Germoplasma de Agrosavia.  
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Evaluación de la promoción de crecimiento en plantas de arroz en condiciones de invernadero  

 

Para evaluar el efecto de la actividad solubilizadora de fosfatos en las cepas seleccionadas y su relación 

con la promoción de crecimiento vegetal, se estableció un ensayo en materos con 3 kg de suelo (oxisol) 

sin esterilizar, proveniente de un lote sin manejo previo, con bajo contenido de P (2,52 mg/kg), pH: 4,9 

y 6.800 mg/kg de materia orgánica. Se sembraron en cada matero dos semillas de arroz Oryza sativa L. 

(Poaceae), previamente desinfectadas con hipoclorito de sodio al 2 % por 3 min y enjuagadas con agua 

destilada estéril. Las semillas antes de la siembra se embebieron con un inóculo de la cepa M15 y M18 

individualmente y fueron coinoculadas con una concentración celular de 108 UFC/mL durante 30 min. 

Quince días después de germinado el material, se realizó una reinoculación en la rizosfera de cada planta, 

aplicando 2 mL del medio de cultivo PVK con cada una de las cepas con una concentración de 

108 UFC/mL empleando una jeringa estéril. Las plantas control se inocularon con un medio de cultivo 

estéril.  

 

Se evaluaron nueve tratamientos distribuidos en bloques completos al azar con seis repeticiones (T1: 

Testigo-Plantas control no inoculadas y sin fertilización con P; T2: Plantas inoculadas con la cepa M15 

sin P; T3: Plantas inoculadas con la cepa M18 sin P; T4: Plantas coinoculadas con M15 y M18 sin P; T5: 

Plantas fertilizadas con 50 % de P (60 kg/ha); T6: Plantas inoculadas con M15 más 50 % de P; T7: Plantas 

inoculadas con M18 más 50 % de P; T8: Plantas coinoculadas con M15 y M18 más 50 % de P; T9: Plantas 

fertilizadas con 100 % de P). Las cepas M15 y M18 fueron evaluadas previamente en pruebas de 

compatibilidad. La fertilización con P2O5 se realizó al momento de la siembra, utilizando superfosfato 

triple, y la cantidad de fertilizante se definió en función de los requerimientos del cultivo, siendo el 100 % 

la dosis recomendada para el arroz establecido en suelos ácidos de la altillanura correspondiente a 

120 kg/ha (Aristizábal et al., 2000).  

 

Se realizó un muestreo destructivo en el estadio de floración del cultivo (escala BBCH 69) (Enz et al., 

1998), tomando variables asociadas a crecimiento como biomasa seca foliar y radical, número y peso de 

panículas. Los datos se analizaron estadísticamente con el software SAS, versión 9,3 (SAS Institute, USA), 

mediante un análisis de varianza empleando la prueba de Tukey (α = 0,05) para la determinación de 

diferencias estadísticamente significativas entre los tratamientos.  

 

 

Resultados  
 

Aislamiento de microorganismos solubilizadores de fosfatos  

Los oxisoles presentaron rangos de pH entre 4,40 y 5,90, con un contenido de P disponible menor a 

3,51 mg/kg y materia orgánica entre 13.600 mg/kg a 21.000 mg/kg. Por otra parte, al realizar el recuento 

de UFC de BSF en los suelos agrícolas y la sabana, se obtuvo un conteo de 4,3 × 106 UFC/g de suelo en 

la rizósfera de la soya, seguido por el maíz, el arroz y el pasto Brachiaria sp., con valores de 4,0, 2,6 y 1,2 

× 106 UFC/g de suelo, respectivamente. Se obtuvieron 42 aislamientos descritos microscópicamente 

como bacterias Gram negativas. 
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Determinación del Índice de Solubilización (IS)  

De las 42 cepas bacterianas aisladas de suelos de la altillanura, se seleccionaron 14 por presentar índices 

de solubilización (IS) entre 1,2 y 2,4, solubilizando la RF y el FT en el medio de cultivo SMRS. Tres cepas 

fueron seleccionadas a partir de la rizosfera de soya, cuatro de la rizosfera de maíz, cinco cepas aisladas 

de la rizosfera de arroz y dos aisladas de la rizosfera del pasto Brachiaria sp. presente en la sabana. 

Los valores más altos para el IS se observaron en las cepas M1, M15, M20, M22, M27, M3, M8, M13, 

M7, evidenciándose diferencias estadísticamente significativas con respecto a M18, M23, M25, M26 y 

M28 (F 13, 41 = 9,68; p < 0,001, Tukey α = 0,05) (tabla 1). Cuando las cepas fueron inoculadas en el medio 

de cultivo SMRS con FT, se pudo observar que M23 y M27 no formaron halo de solubilización después 

de 24 h de incubación, comparadas con las demás cepas que solubilizaron esta fuente de P en el medio. 

 

Tabla 1. Índices de solubilización determinados en las cepas seleccionadas en medio de cultivo SMRS 

suplementado con roca fosfórica y fosfato tricálcico  

 

 
Nota. Medias con letras diferentes sobre las barras indican diferencias estadísticamente significativas 
según la prueba de Tukey (α = 0,05); ND: no determinado; ± error estándar. 
Fuente: Elaboración propia 
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Determinación de la actividad fosfatasa ácida  

Se encontró un efecto significativo relacionado con el día de muestreo (F 2, 98 = 38; p < 0,001) y la 

identidad de la cepa (F 2, 98 = 46,95; p < 0,001). Al tercer y sexto día de incubación, las cepas M15, M18 

y M23 mostraron la mayor actividad fosfatasa ácida con valores de 297,7 ± 89,6, 638,3 ± 31,2 y 

666,7 ± 26,9 µg de PNPP/mL/h, respectivamente (Chi2 = 31,20; df = 10; p = 0,00054), observándose 

diferencias estadísticamente significativas comparadas con las demás cepas estudiadas (Chi2 = 30,36; 

df = 10; p < 0,001). A los nueve días de evaluación, las tres cepas disminuyeron su capacidad de producir 

fosfatasas ácidas (Chi2 = 31,09; df = 10; p = 0,00056). Para el caso de las cepas M1, M7, M25 y M26, 

estas no presentaron actividad fosfatasas ácidas en el medio de cultivo (figura 1).  

 
Figura 1. Actividad de la enzima fosfatasa ácida determinada en cepas bacterianas sembradas en el medio 

de cultivo Pikovskaya (PVK) (media ± desviación estándar, n = 3); medias con letras diferentes sobre las 

barras indican diferencias estadísticamente significativas según la prueba de Tukey (α = 0,05). La 

comparación entre aislamientos se realizó agrupando tiempos de muestreo.   

Fuente: Elaboración propia  

 

 

En la figura 2 se observa cómo el pH en el medio de cultivo PVK disminuyó junto con el tiempo de 

incubación del cultivo (F 2, 98 = 1,049; p = 0,0002). Después de tres días de incubación, las cepas M15, 

M20 y M22 mostraron una acidificación significativa en el medio de cultivo, pasando de pH 7,0 (inicial) 

a 3,90 ± 0,09, 3,85 ± 0,19 y 3,61 ± 0,32 respectivamente (Chi2 = 30,131 df = 10; p = 0,00081). 
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Figura 2. Evolución del pH en el medio de cultivo Pikovskaya (PVK) durante el crecimiento de las 

bacterianas (media ± desviación estándar, n = 3); medias con letras diferentes sobre las barras indican 

diferencias estadísticamente significativas según la prueba de Tukey (α = 0,05). La comparación entre 

aislamientos se realizó agrupando tiempos de muestreo.  

Fuente: Elaboración propia  

 

Determinación del porcentaje de solubilización de fosfatos  

Las cepas M15 y M18 mostraron una mayor significancia en su capacidad para liberar PO4
3-

 en el medio 

(F 13, 41 = 58,04; p < 0,001, Tukey HSD α = 0,05), presentando una eficiencia del 47 % en la solubilización 

de fosfatos bajo condiciones in vitro, con valores de 1.460 y 1.458 mg/L, respectivamente, similar al 

control positivo (Penicillium jantinellum) (figura 3). La actividad solubilizadora de fosfatos observada en las 

cepas M15 y M18 se mantuvo después de seis meses de conservación a -20 °C, con valores similares a 

los obtenidos en el tiempo 0; caso contrario se observó con los demás aislamientos cuya capacidad no 

fue detectable después de este tiempo de almacenamiento. Para la cepa M28 se evidenció una baja 

producción de fosfatasas ácidas en los tiempos evaluados, por lo cual se excluyó de las evaluaciones 

posteriores. 
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Figura 3. Contenido de PO4

3- solubilizado por las cepas seleccionadas como potenciales solubilizadores 

de fosfatos; Tiempo 0: colonias puras de los microorganismos aislados; Tiempo 1: evaluación de la 

actividad a los seis meses de conservado el material biológico a -20 °C; (media ± desviación estándar, 

n = 3); medias con letras diferentes sobre las barras indican diferencias estadísticamente significativas 

según la prueba de Tukey (α = 0,05).  

Fuente: Elaboración propia  

 

 

Determinación de compuestos indólicos  

En cuanto a la determinación de compuestos indólicos, las cepas M15 y M18 mostraron producciones 

de 0,229 y 0,05 mg/L, respectivamente. 

 

Identificación molecular de las cepas  

Teniendo en cuenta los resultados anteriores, la investigación continuó con la identificación de las cepas 

promisorias M15 y M18 seleccionadas por la producción de fosfatasas ácidas y solubilización de P en el 

medio de cultivo in vitro. Los análisis taxonómicos de la secuencia del 16S rRNA ensamblada, comparada 

con la base de datos nr/nt del NCBI y Greengenes, indicaron que la cepa M15 presentó un 99,1 % de 

identidad en el 100 % de su longitud, con secuencias del gen ribosomal 16S, pertenecientes a Burkholderia 

ubonensis (GenBank número de accesión MN935186.1); para el caso de la cepa M18, se pudo identificar 

https://doi.org/10.21930/rcta.vol22_num2_art:1897


Lina Margarita; Moreno-Conn; et al.                        Solubilización de fosfatos por bacterias del género Burkholderia 

 
 
Cienc. Tecnol. Agropecuaria, 22(2): e1897                                            
DOI: https://doi.org/10.21930/rcta.vol22_num2_art:1897   

 

 

como perteneciente al complejo de Burkholderia cepacia (Bcc) (GenBank número de accesión 

MN935187.1). 

Pruebas de virulencia de cepas bacterianas  

Los resultados de la identificación molecular de M15 (Burkholderia ubonensis) y M18 (Burkholderia cepacia) 

permitieron evaluar dos factores de virulencia a nivel in vitro. En los ensayos realizados con las dos cepas 

mencionadas, no se observó la presencia de pigmentos difusibles asociados a la producción de toxoflavina 

en el medio de cultivo King B durante los tiempos evaluados comparados con los controles positivos 

(figura 4). 

 
 

Figura 4. Evaluación de la producción de pigmento difusible en el medio de cultivo King B. De izquierda 

a derecha: M18 (B. cepacia) y M15 (B. ubonensis). Controles positivos de B. glumae: 19,1; 19,2; 22,1.  

Fuente: Elaboración propia  

 

 

Los resultados en bulbos de cebolla mostraron que las concentraciones de 103 y 105 UFC/mL, empleadas 

en las inoculaciones con las cepas M15 (B. ubonensis) y M18 (B. cepacia), no ocasionaron daños en el tejido 

vegetal. Sin embargo, la cepa M15 (B. ubonensis), inoculada a una concentración de 108 UFC/mL, generó 

una lesión en el sitio de la punción, evidenciada por un cambio de color en el tejido, indicando la presencia 

de enzimas degradadoras. Asimismo, este cambio fue observado en los bulbos inoculados con los 

controles positivos (B. glumae) a esa misma concentración. Por otra parte, no se evidenciaron síntomas en 

el tejido de la cebolla inoculado con la cepa M18 (B. cepacia) bajo las tres concentraciones celulares 

evaluadas. Aunque fueron reconocidas las lesiones en los bulbos de cebolla con la cepa M15 (B. ubonensis), 

es importante mencionar que, a la máxima concentración valorada en los diferentes ensayos realizados 

en este estudio, fue donde se evidenció su mayor capacidad para la producción de fosfatasas ácidas, 

enzimas encargadas de mineralizar el P orgánico del suelo. 

 

Evaluación de la promoción de crecimiento en plantas de arroz en condiciones de invernadero  

Al analizar la biomasa seca foliar en las plantas de arroz, sembradas en un suelo con bajo contenido de 

P, se observó que no hubo diferencias estadísticamente significativas entre los tratamientos fertilizados e 

inoculados individualmente como coinoculados, pero sí con respecto al tratamiento testigo (T1), cuyas 

plantas no fueron inoculadas ni fertilizadas presentando los valores más bajos para esta variable (Tukey: 

p < 0,05) (figura 5). 
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Figura 5. Biomasa seca foliar y radical (g) tomada en plantas de arroz inoculadas con las cepas M15 (B. 

ubonensis) y M18 (B. cepacia) en etapa de floración (media ± desviación estándar, n = 6); medias con letras 

diferentes sobre las barras indican diferencias estadísticamente significativas según la prueba de Tukey 

(α = 0,05).   

Fuente: Elaboración propia  

 

 

Es importante resaltar la tendencia observada en los tratamientos inoculados con las cepas y que no 

fueron fertilizados, en donde no se evidenciaron diferencias estadísticamente significativas comparadas 

con el tratamiento químico fertilizado con la dosis de P al 100 %. En el tratamiento T4, en el que el arroz 

se coinoculó con M15-M18 y no se fertilizó, las plantas alcanzaron una producción de biomasa 

estadísticamente similar al tratamiento T9, en donde las plantas se fertilizaron con un 100 % de la dosis 

de P recomendada para esta especie vegetal, evidenciándose la función que cumplieron las bacterias 

solubilizadoras en el suelo con baja disponibilidad de este elemento, haciendo más eficiente su 

adquisición. 

 

Con respecto a la biomasa seca radical, se evidenció que el tratamiento T1 (testigo) mostró el valor más 

bajo para esta variable con 2,0 g ± 0,1 g, asociado a un limitado desarrollo radical de las plantas, como 

consecuencia de la baja disponibilidad de P en el suelo, presentando diferencias estadísticamente 

significativas con respecto a los tratamientos T4, T5, T6, T7, T8 y T9, donde el peso de la biomasa fue 

similar, con valores entre 4,0 g ± 0,3 g y 5,0 g ± 0,3 g.  
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En relación con el número de panículas, se observó un mayor número de estructuras en el tratamiento 

T4, donde se realizó la coinoculación bacteriana a las plantas y no se fertilizó con P, seguido por los 

tratamientos T6, T7, T8 y T9. En cuanto al peso de las panículas, se evidenció que los tratamientos T6, 

T7, T8 y T9 mostraron los valores más altos para esta variable con 2,23 g ± 0,2 g, 2,27 g ± 0,03 g, 

2,10 g ± 0,02 y 2,10 g ± 0,1 g, respectivamente, correspondientes al peso de los granos en formación, 

comparados con los demás tratamientos, donde el rango estuvo comprendido entre 0,95 g ± 0,05 g a 

1,9 g ± 0,1 g (figura 6). 

 

 

 
Figura 6. Número y peso de panículas en plantas de arroz inoculadas con las cepas M15 (B. ubonensis) y 

M18 (B. cepacia) muestreadas en etapa de floración (media ± desviación estándar, n = 6); medias con letras 

diferentes sobre las barras indican diferencias estadísticamente significativas según la prueba de Tukey 

(α = 0,05).  

Fuente: Elaboración propia  

 

Discusión  
 

La deficiencia de P es la mayor limitante para el crecimiento de los cultivos en los oxisoles tropicales 

(Fageria & Baligar, 2008). La presencia de BSF en la rizosfera que permita la disponibilidad de este 

nutriente para las plantas reduciría el uso de fertilizantes de síntesis química en cultivos como el maíz, la 

soya y el arroz de importancia para la altillanura. Es importante anotar que la concentración de las 

poblaciones de BSF es influenciada por factores como el tipo de vegetación/cultivar, pH, los exudados 

radiculares, las prácticas de manejo, la actividad microbiana, la aplicación de fertilizantes y las condiciones 
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ambientales locales, como temperatura y humedad (Rooney & Clipson, 2009). Es así como en este estudio 

se seleccionaron 14 cepas bacterianas a partir de oxisoles de diversas locaciones, que evaluadas bajo 

condiciones in vitro mostraron un potencial en la solubilización de fosfatos.  

 

La cantidad de BSF encontradas en este estudio estuvo en el rango reportado por Caballero et al. (2007), 

quienes evidenciaron que, en suelos de sabana, arvenses y cultivados con soya en la misma zona de 

estudio, los conteos de BSF variaron entre 9,6 × 105, 2,5 × 105 y 7,6 × 106 UFC/g suelo, 

respectivamente, y a lo descrito por Bhardwaj et al. (2017) en suelos cultivados con coliflor (Brassica 

oleracea var. botrytis L.) con poblaciones de 1,3 × 106 y 2,2 × 106 UFC/g suelo. En contraste, se 

evidenciaron conteos mayores a los reportados por Becerra et al. (2011) para suelos de zonas productoras 

de uchuva (2,9 × 104 y 3,6 × 105 UFC/g suelo) en el departamento de Cundinamarca (Colombia). 

 

Con respecto a los valores de IS, los indicadores para las cepas seleccionadas en este estudio son similares 

a los presentados por Collavino et al. (2010), quienes para bacterias rizosféricas aisladas de ultisoles en 

Argentina, de los géneros Acinetobacter, Burkholderia, Enterobacter, Exiguobacterium, Pantoea y Pseudomonas, 

determinaron IS entre 1,1 y 2,7, empleando FT como fuente de P. Los resultados también son 

comparables con los reportados por Motamedi et al. (2016) con bacterias Gram negativas de suelos 

cultivados con repollo, con IS entre 1,3 y 4,7. Por otra parte, Alam et al. (2002) evaluaron bacterias aisladas 

de la rizosfera de maíz, bajo condiciones in vitro, encontrando que el IS osciló entre 1,2 y 6,3 a las 24 h de 

incubación, incrementándose el halo de solubilización con el aumento del diámetro de la colonia después 

de siete días de evaluación. Otros estudios seleccionaron microorganismos solubilizadores de fosfatos de 

la rizosfera de arroz basados en el IS y cambios en el pH del medio, observando valores que oscilaron en 

un rango entre 2,1 a 6,2 a las 24 h de incubación, con pH que pasaron de 5,96 a 2,75 (Rashid et al., 2004). 

 

La presencia de halo alrededor del anillo formado por las bacterias evaluadas bajo condiciones in vitro 

estaría principalmente asociado con la producción de ácidos orgánicos. Esto se evidenció con el cambio 

de color en el medio de cultivo suplementado con la fuente de P insoluble, que pasó de purpura a amarillo 

como resultado de la acidificación (Bashan et al., 2013). Esta condición puede variar a través del tiempo 

y es considerado como un criterio para la selección de BSF (Chung et al., 2005; Puente et al., 2004). 

 

En cuanto a la producción de fosfatasas ácidas, las cepas M15 (B. ubonensis) y M18 (B. cepacia) mostraron 

actividades altas, comparadas con los reportadas por Oliveira et al. (2009), para Burkholderia y Pantoea, 

aisladas de la rizosfera de maíz, con producción de 3,57 y 50,2 µg de PNPP/mL/h, respectivamente. 

Además, son iguales a las reportadas por Acosta-Martínez et al. (2007) para bacterias que presentaron 

valores de 498,6 µg de PNPP/g/h. Otros estudios realizados con oxisoles de la amazonia del Brasil 

demostraron que la actividad fosfatasa en suelos puede llegar a valores cercanos a 700 µg de PNPP/g/h 

(Soltangheisi et al., 2019). 

  

Los valores de PO4
3− mayores a 1.400 mg/L y una eficiencia del 47 % en la solubilización de fosfatos 

indican que las cepas aisladas de oxisoles colombianos tienen un alto potencial en la solubilización de 

fosfatos. Resultados contrastantes fueron presentados por Pérez et al. (2007), quienes obtuvieron 

bacterias de los géneros Burkholderia, Serratia, Ralstonia y Pantoea a partir de ultisoles venezolanos que 
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mostraron rangos de solubilización entre 188 y 375 mg/L bajo condiciones in vitro, empleando FT como 

fuente de P. En particular, otros estudios determinaron bacterias del género Burkholderia anthinaen y Pantoea 

agglomerans con capacidades de solubilización de 600 mg/L a las 48 h de incubación (Walpola & Yoon, 

2013). Igualmente, Oliveira et al. (2009) aislaron microorganismos potenciales en la solubilización de 

fosfatos, de la rizosfera de maíz en Brasil, y evidenciaron que Bacillus y Burkholderia fueron los géneros 

predominantes y más efectivos, solubilizando el 67 % y 59 % del P total, respectivamente, después de 

diez días de evaluación. Asimismo, bacterias de los géneros Klebsiella y Burkholderia, aisladas a partir de la 

rizosfera de caña de azúcar, mostraron porcentajes de solubilización que varió entre 41 % y 63 % 

sembrados en medio NBRIP suplementado con FT (Dar et al., 2014). 

 

Las cepas M15 (B. ubonensis) y M18 (B. cepacia) seleccionadas como BSF produjeron cantidades bajas de 

compuestos indólicos comparadas con otras cepas de Burkholderia, que han sido reportadas como 

productoras de este tipo de compuestos empleando la misma metodología para esta determinación. Tal 

es el caso de Burkholderia heleia PAK1-2 con rendimientos cercanos a 100 µM y capacidad para inhibir 

patógenos como Burkholderia plantarii (Wang et al., 2016), y Burkholderia pyrrocinia con un máximo de 

producción de compuestos indólicos de 6,9 mg/L después de 36 horas de cultivo in vitro (Liu et al., 2019). 

En otros estudios con bacterias aisladas a partir de la rizosfera de mango Mangifera indica L. 

(Anacardiaceae) reportaron la producción de 2 ± 0,2 mg/L de compuestos indólicos para Burkholderia 

caribensis (De los Santos-Villalobos et al., 2015). Panhwar et al. (2012) encontraron que BSF en suelos 

cultivados con arroz secano en Malasia presentaron rangos entre 0,74 y 4,34 mg/L de producción de 

compuestos indólicos. Por otra parte, Dawwam et al. (2013), en investigaciones similares, encontraron 

para bacterias procedentes de la rizosfera de batata (Ipomoea batatas) concentraciones de compuestos 

indólicos entre 0,6 y 10,73 mg/L en el medio de cultivo suplementado con triptófano. Dentro de los 

compuestos indólicos, la fitohormona más importante es el ácido indol acético (AIA), que puede ser 

producida por microorganismos rizosféricos y se encarga de regular procesos como la división celular, el 

alargamiento, la diferenciación y la formación de patrones en las plantas (Sahasrabudhe, 2011).  

 

La presencia de Burkholderia sp. en oxisoles tropicales ha sido escasamente registrada; no obstante, 

Oliveira et al. (2009) identificaron la especie B. cepacia en la región de Sete Lagoas en Minas Gerais, Brasil, 

con potencial en la solubilización de fosfatos. El género Burkholderia, comprendido por más de 60 

especies, habita una amplia gama de nichos ecológicos, dado su metabolismo versátil (Coenye & 

Vandamme, 2003; Sousa et al., 2011; Suárez-Moreno et al., 2012), encontrándose ampliamente distribuido 

en la rizosfera de diversos cultivos, y estableciendo diferentes tipos de interacciones con las plantas ya 

sea colonizando las raíces, los tallos o las hojas.  

 

Este género de bacterias Gram negativas puede llevar a cabo procesos asociados a la promoción de 

crecimiento vegetal como la conversión de nitrógeno atmosférico a amonio mediante la fijación biológica 

del nitrógeno, la producción de fitohormonas como el AIA, la solubilización de fosfatos y el control de 

patógenos (Caballero-Mellado et al., 2004; Estrada-De los Santos et al., 2001; Suárez-Moreno et al., 2012; 

Zhao et al., 2014). Es así como a las bacterias de este grupo se les han catalogado características como 

potenciales promotores de crecimiento vegetal y bioinoculantes para la agricultura, en cultivos como maíz 
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(Zhao et al., 2014), piña (Borges-Baldotto et al., 2010), tomate (Gao et al., 2015) y banano (Weber et al., 

2007), entre otros.  

 

Autores como Mora y Toro (2007) y Useche et al. (2004) reportaron especies del complejo B. cepacia (Bcc) 

por su habilidad para colonizar la rizosfera de arroz y el maíz, cultivos de interés económico en suelos 

ácidos venezolanos, así como en suelos oxisoles amazónicos colombianos, con demostrable actividad 

solubilizadora de fosfatos. Por otra parte, Ahmed y Shahab (2015) y Sashidhar y Podile (2010) 

encontraron que bacterias pertenecientes al género Burkholderia son más eficientes en la solubilización de 

fosfatos minerales, debido a la secreción al medio extracelular de ácidos orgánicos como mecanismos de 

solubilización. 

 

Pese a que varias especies del género Burkholderia son conocidas por su participación en procesos de 

promoción de crecimiento vegetal, también incluye reportes como agentes causales de enfermedades en 

humanos, animales y plantas (Li et al., 2013; Sinha et al., 2017; Rojas-Rojas et al., 2019; Stoyanova et al., 

2007). El resultado positivo observado con la cepa M15 (B. ubonensis) evidencia el fenómeno asociado al 

mecanismo de quorum sensing (Kwak et al., 2020; Venturi et al., 2004), indicando que la temperatura y la 

densidad poblacional fueron óptimas bajo las condiciones evaluadas, lo que sugiere la expresión 

fenotípica de los genes de virulencia de la cepa en el tejido vegetal de la cebolla, posiblemente por la 

acción de enzimas tipo lipasa producida extracelularmente, con características termosolubles y cuya 

acción se desconoce en plantas (Yang et al., 2016).  

 

Adicionalmente, Stone et al. (2012) reportaron cepas aisladas en Australia de B. ubonensis con el inusual 

lipopolisacarido tipo B de Burkholderia pseudomallei, soportado con estudios moleculares que sugieren en 

B. ubonensis una alta diversidad de este factor de virulencia, demostrando que es independiente de la zona 

geográfica del aislamiento y que podría presentarse el mismo factor en cepas de diferente origen (Price et 

al., 2017). De esta forma, se podría inferir que, para los resultados encontrados con M15, se debería al 

efecto de la expresión y regulación de varios factores de virulencia (Leitão et al., 2010). 

 

En el presente estudio, la aplicación de B. ubonensis y B. cepacia individual y coinoculadas promovió 

significativamente el crecimiento vegetal en las plantas de arroz bajo condiciones de invernadero, 

demostrando así el efecto benéfico de estos microorganismos, ya sea haciendo más eficiente el uso del 

fósforo presente en el suelo en bajas cantidades o el incorporado a través de la fertilización (Bhattacharyya 

et al., 2016). Resultados similares reportados por Pande et al. (2019) demostraron que cepas de B. cepacia 

y B. contaminans, inoculadas en maíz dulce, incrementaron la biomasa seca foliar de las plantas con valores 

de 0,48 y 0,32 g, respectivamente, comparadas con los tratamientos control donde el valor fue de 0,20 g. 

Estrada et al. (2013) evaluaron la inoculación de arroz con B. vietnamiensis y Herbaspirillum seropedicae como 

BSF en etapa vegetativa, evidenciando un incremento significativo en la biomasa total de las plantas con 

valores de 15,25 y 11,22 g, respectivamente, comparado con el testigo no inoculado, cuyo valor fue de 

5,86 g. Estos resultados muestran las ventajas de Burkholderia sp. como bacteria solubilizadora de fosfato 

y su efecto en el aumento del rendimiento de los cultivos.  
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Conclusiones  
 

De los oxisoles de la altillanura plana del departamento de Meta en Colombia se aislaron, caracterizaron 

e identificaron dos cepas del género Burkholderia (i. e., B. ubonensis [M15] y B. cepacia [M18]), que mostraron 

sobresaliente capacidad para la solubilización de fosfatos. En este estudio se demostró que la inoculación 

de B. ubonensis (M15) y B. cepacia (M18) en arroz incrementó significativamente el crecimiento en términos 

de biomasa seca foliar y radical, bajo condiciones de invernadero, en un suelo con baja disponibilidad de 

P. Las cepas M15 y M18 tendrían potencial para ser incorporadas como ingredientes activos en 

inoculantes, con capacidades para promover el crecimiento vegetal, favoreciendo la disponibilidad del P 

en el suelo, e incluso podrían ser compatibles con la fertilización fosfórica. 
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