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Abstract: Pastures dedicated to cattle production in Venezuela have a low crude protein concentration. One of the 
nutritional strategies to correct the forage protein deficit is using non-protein nitrogen in the diet. To evaluate the effect of 
two non-protein nitrogen sources on the metabolic profile of lactating dairy cows, 31 F1 Holstein × Zebu multiparous cows 
averaging 419 ± 46 kg body weight and 17.1 ± 3.3 kg milk·animal·d-1 were randomly assigned to two treatments for 91 days: 
1) 59 g·animal-1·d-1 of urea and 2) 64 g·animal-1·d-1 of Optigen II® as slow-release urea (SRU). The animals were grazing 
(2.12 AU·ha-1) on Urochloa decumbens, U. humidicola, and U. brizantha (7.98-9.61 % CP) and supplied with 4 kg·animal·d-1 of 
concentrate (15 % CP), and 108, 60, and 108 g·animal·d-1 of mineral, molasses, and bypass fat, respectively. Glucose, total 
protein, albumin, cholesterol, urea, and β-hydroxybutyrate concentrations, aspartate aminotransferase, and gamma-glutamyl 
transferase activities were determined in blood serum samples every 28 days. ANOVA analyzed data in a completely 
randomized design with repeated measures. There were no differences among treatments in the parameters investigated; 
however, collecting time influenced all of them. No treatment × time interactions were found except for albumin 
concentration, higher in urea at day 0. The results indicate that under the conditions assayed in the present work, Optigen 
II® offers no advantage over urea concerning blood indicators of energy and protein metabolism and hepatic functionality 
in dairy cows. 
 
Keywords: animal feeding, blood serum, dairy cows, supplementation, tropical pasture, urea. 

 

Resumen: Los pastos dedicados a la producción ganadera en Venezuela tienen una baja concentración de proteína cruda. 
Una de las estrategias nutricionales para corregir el déficit de proteína del forraje es el uso de nitrógeno no proteico en la 
dieta. Con el objetivo de evaluar el efecto de dos fuentes nitrógeno no proteico sobre el perfil metabólico de vacas lecheras 
lactantes, 31 vacas F1 Holstein × Cebú multíparas con promedios de 419 ± 46 kg de peso vivo y 17,1 ± 3,3 kg leche/animal·d-

1 se asignaron de forma aleatoria a dos tratamientos durante 91 días: 1) 59 g·animal·d-1 de urea y 2) 64 g·animal·d-1 de Optigen 
II® como fuente de urea de degradación lenta (UDL). Los animales pastaron (2,12 AU·ha-1) en Urochloa decumbens, U. 
humidicola y U. brizantha (7,98-9,61 % PC); adicionalmente, se les suministraba 4 kg·animal·d-1 de alimento concentrado (15 % 
PC) y 108, 60 y 108 g·animal·d-1 de mineral, melaza y grasa sobrepasante, respectivamente. Cada 28 días se determinó en 
suero sanguíneo las concentraciones de glucosa, proteínas totales, albúmina, colesterol, urea, β-hidroxibutirato, y la actividad 
de las enzimas aspartato aminotransferasa y gamma-glutamil transferasa. Los datos se analizaron mediante ANAVAR bajo 
un diseño completamente al azar con medidas repetidas. No hubo diferencias entre los tratamientos en las variables 
estudiadas; sin embargo, el tiempo de muestreo influyó en todas ellas. No se observaron interacciones tratamiento × tiempo, 
excepto para la concentración de albúmina, que fue mayor en urea en el día 0. Los resultados obtenidos indican que bajos 
las condiciones experimentales del presente trabajo, Optigen II® no ofrece ventajas adicionales sobre la urea con respecto 
a los indicadores sanguíneos del metabolismo energético y proteico y de la funcionalidad hepática en vacas lecheras. 
 
Palabras Clave: alimentación animal, pasto tropical, suero sanguíneo, suplementación, urea, vacas lecheras. 
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Introduction 

Due to the marked seasonality, pastures dedicated to cattle production in Venezuela show 
limited quality and amount of dry matter available to animals. They are characterized by their 
low nutritional value, particularly their low crude protein (CP) concentration, and high neutral 
and acid detergent fiber contents (Bello-Faria et al., 2021; Parada-Sánchez & Mora-Luna, 2019). 
One of the nutritional strategies to correct the forage protein deficit is the inclusion of non-
protein nitrogen (NPN) sources in the diet, mainly urea (46 % N, 287.5 % CP). The first report 
of the use of this ingredient in Venezuela dates back to the 1970s, with results including 
improved weight gain and nitrogen (N) retention (Chicco et al., 1971, 1972; Shultz et al., 1978), 
and increased ammonia nitrogen, acetic acid, and nitrogen microbial concentrations in the rumen 
(Chicco et al., 1972; Shultz et al., 1974, 1978). 
 
The rapid hydrolysis of urea to ammonia in the rumen could lead to an asynchrony with the 
available energy for the microorganisms (Salami et al., 2021), with the subsequent loss of 
efficiency of the available N for microbial protein synthesis (Lu et al., 2019). For this reason, 
since the same decade of 1970, technologies began to be developed worldwide for producing 
“slow-release urea” (SRU) (Owens et al., 1980). Those technologies included complexing urea 
with carbohydrates (Shultz et al., 1972), carboxy resin (Huston et al., 1974), sodium bentonite 
(Britton et al., 1978), formaldehyde treatment (Pal & Negi, 1977), and coating urea with oils 
(Owens et al., 1980). One product that uses the latter is Optigen II® (Alltech Inc. Nicholasville, 
KY, USA), in which urea is evenly coated with a semi-permeable vegetable fat matrix containing 
88 % urea (41 % N, 256 % CP) and 11-12 % fat (Salami et al., 2020). 
 
Several papers have described the effects of Optigen II® on nutrient intake and its digestibility 
(Corte et al., 2018; Gadegaonkar et al., 2018), ruminal fermentation (Gonzalez-Munoz et al., 
2019; Mota et al., 2022), N balance (El-Zaiat et al., 2022; Miranda et al., 2019), carcass 
characteristics and meat quality (Corte et al., 2018), and milk’s yield and chemical composition 
(Herrera-Angulo et al., 2017; Miranda et al., 2019). In the works above, the response to SRU has 
been variable, with contrasting results when SRU replaced either soybean meal or urea.  
 
Animal response to different feeding strategies can be evaluated through blood biochemistry, 
which reliably reflects the balance between the input and output of nutrients and their 
metabolism in the animal tissues (Wittwer, 2018 a, b). Nevertheless, there are few published 
studies about the SRU effects on the blood parameters of dairy cattle grazing tropical pastures. 
Therefore, the objective of the present work was to evaluate the effects of dietary 
supplementation with two NPN sources, urea, and Optigen II®, on the metabolic profile 
(energy, protein, and liver) of F1 Holstein × Zebu lactating dairy cows under grazing conditions 
in the western Llanos of Venezuela. It was hypothesized that SRU supplementation could 
improve the metabolic profile by enhancing ruminal synchronization between energy and N of 
the diet, decreasing blood urea and hepatic enzymes, and reducing the ketone body’s production. 
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Materials and methods 

The experiment was carried out in the western Llanos of Venezuela at the Mata de Mamón farm 
belonging to the Agropecuaria ASUBRI SA, located at Santa Bárbara de Barinas, Barinas state. 
The study followed the guidelines and recommendations for the Use of Animals in Teaching 
and Research of the Code of Bioethics and Biosafety of the National Science and Technology 
Fund [FONACIT] (2002) of Venezuela. Thirty-one F1 Holstein × Zebu multiparous cows 
averaging 419 ± 46 kg of body weight, 51 ± 18 days in milk, and 17.1 ± 3.3 kg·animal·d-1 of milk 
yield were randomly assigned to one of two experimental groups: 1) ad libitum grazing + 
concentrate + 59 g·animal·d-1 of urea (UREA hereafter), and 2) ad libitum grazing + concentrate 
+ 64 g·animal·d-1 of Optigen II® (SRU hereafter). Both NPN supplements provided 160 g 
CP·animal·d-1 and were individually fed in two equal parts at milking times. Simultaneously, 2 kg 
of commercial concentrate (15 % CP) were offered per animal (4 kg·d-1). Cows were milked twice 
daily at 04:00 and 16:00 h with mechanical milking, and the experiment lasted 91 days.  
 
The animals were kept, as a whole group, under grazing conditions (2.12 AU·ha-1) in a rotational 
system with 1 day in and 32 days out of the paddocks, in pastures with Urochloa decumbens, U. 
humidicola, and U. brizantha. All animals, previous to milking, had free access to a mix constituted 
by 108 g·animal·d-1 of a mineral mix (%: 18.6 Ca; 4.02 P; 7.96 Mg; 2.96 Na; 0.15 Cu; 1.42 Zn; 0.4 
Fe, and 0.4 Mn), 60 g·animal·d-1 of cane molasses, and 108 g·animal·d-1 of bypass fat (Bio-Lac®, 
Agrominerales, Venezuela) (g·100 g-1 of fatty acids: 440 palmitic acids, 400 oleic acids, 95 linoleic 
acids, 50 stearic acids, and 15 myristic acids). Before the experiment started, the cows’ diet 
consisted of grazing, concentrate feed, and mineral mix, which were maintained throughout the 
trial. 
 
The experiment was carried out between October and January. Information related to forage 
mass and chemical composition (Table 1) was described by Herrera-Angulo et al. (2017). Rainfall 
during the experimental period was 66, 12, 42, 11, 11, and 5 mm, respectively, for 1-14, 15-28, 
29-42, 43-56, 57-70, and 71-91 days of the experiment.  

 

Table 1. Forage mass and chemical composition during the experiment 

Season Day 

Forage mass Chemical composition (g·kg-1 DM) 

kg DM·ha-1 
kg 

DM·AU·d-1 
CP NDF ADF Ca P 

Rainy-dry transition 
0 4,570 ± 286  65 ± 4  70.8 

± 
16.9 

737 
± 

18.2 

408 
± 

20.5 

1.0 
± 

0.2 

2.8 
± 
0.2 28 2,557 ± 471  37 ± 7  

Dry 
56 1,832 ± 358  26 ± 5  96.1 

± 
27.3 

731 
± 

13.1 

409 
± 

27.3 

1.5 
± 

0.3 

2.4 
± 
0.3 91 1,513± 156  22 ± 2  

DM: dry matter. AU: animal unit.  

Source: Adapted from Herrera-Angulo et al. (2017). 
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Blood samples were taken between 06:00 and 07:00 h (after morning feeding) on days 0, 28, 56, 
and 91 of the experiment using jugular puncture with 21G×1” needles (BD Vacutainer®, USA) 
and deposited into tubes without anticoagulants (Vacuum Diagnostics®, 6 mL, China). After 
clotting at room temperature, blood samples were centrifuged (IEC Centrifuges, Model Clinical, 
USA) at 915 × g for 15 minutes. The serum obtained was transferred via aspiration into plastic 
tubes. Serum samples were kept in ice boxes and carried to the Laboratory of Research of 
Physiology and Animal Health at the National Experimental University of Táchira (UNET) and 
stored at -20 °C (Bosch® Model GSD32, Germany) for further analysis. Glucose, cholesterol, 
total protein (TP), albumin, β-hydroxybutyrate, aspartate aminotransferase (AST), and gamma-
glutamyl transferase (GGT) were determined according to the methods, commercial kits, and 
wavelength described in Table 2. Absorbance readings were taken using an OMEGA IV 
spectrophotometer (OMEGA IV, USA). 
 
After outlier deletion, the intra-class correlation coefficient was determined. The data were 
analyzed using the MIXED procedure of SAS® (“SAS® OnDemand for Academics”) according 
to a complete randomized design with repeated measures (Stroup et al., 2018). The statistical 
linear mixed model was: 
 
 

Yijk = μ + Di + Aij + Tk + (D×Tik) + Eijk,  
 
 
 

Where: Yijk is the response at time k on animal j in treatment i, μ is the overall mean, Di is the 
fixed effect of treatment i, Aij is the random effect of animal j in treatment i, Tk is the fixed effect 
of the collection time k, (D×T)ik is the fixed interaction effect of treatment i with the collection 
time k, and Eijk is a random error at time k on animal j in treatment i. The SP(POW) (spatial 
power law) covariance structure for unequally spaced repeated measures was used (Stroup et al., 
2018). Orthogonal polynomial contrasts for unequally spaced measures were used to determine 
the linear and quadratic effects of the collection time. Differences were declared statistically 
significant at p < 0.05 with a Bonferroni adjustment for the number of response variables (0.05/8 
= 0.00625) (VanderWeele & Mathur, 2019). The PLM procedure of SAS and the Tukey-Kramer 
test were used when there was a significant interaction. 
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Table 2. Methods, commercial kits, and wavelength used for blood metabolite determinations 
 

Variable Method Commercial kit 
Wavelength 

(nm) 
Intra-assay 

VC (%) 
Inter-assay 

VC (%) 
Minimum 
detection 

limit 

Glucose Colorimetry Glicemia Enzimática 
(Wiener lab®, 

Argentina) 

505 1.25 1.77 0.54 mg·dL-1 

Cholesterol Colorimetry Colesterol Enzimático 
(Qualitest®, 
Venezuela) 

505 - - - 

BHB Enzymatic 
kinetic 

Ranbut (Randox®, 
UK) 

340 to 405 3.77 5.16 0.10 mmol·L-

1 

TP Colorimetry Proti-2 (Wiener lab®, 
Argentina) 

545 - 0.43 0.2 g·L-1 

Albumin Colorimetry Proti-2 (Wiener lab®, 
Argentina) 

630 - 2.07 0.1 g·L-1 

Urea Enzymatic 
kinetic 

BUN Cinético 
Enzimático UV 
(Invelab S.A.®, 

Venezuela 

600 to 630 2.91 3.01 2.20 mg·dL-1 

AST Enzymatic 
kinetic 

GOT (AST) (Invelab 
S.A®, Venezuela) 

340 to 405 4.60 5.30 2.0 IU·L-1 

GGT Enzymatic 

kinetic 

ɤ-G-test (Wiener 

lab®, Argentina) 

405 to 505 0.89 2.64 1.0 IU* 

BHB: β-hydroxybutyrate. TP: total protein. AST: aspartate aminotransferase. GGT: gamma-
glutamyl transferase. VC: variation coefficient. *Minimum detectable activity change. 
Source: Prepared by the authors. 
 
 

Results and discussion 

Energetic profile 

There was no influence of either the NPN source (p = 0.376) or collection time (linear p = 0.071, 
quadratic p = 0.240) on glucose concentrations, and no interaction between NPN and collection 
time was observed (p = 0.671) (Table 3). Average glucose concentrations remained within the 
normal range of 45-74 mg·dL-1 (Wittwer, 2018b). These results are similar to other findings when 
SRU was compared to either UREA (Kraisoon et al., 2018) or soybean meal (El-Zaiat et al., 
2022) in the diet of lactating dairy cows. The authors noted that bovine glucose concentration 
remained within physiological ranges and without differences in their concentrations due to the 
protein source. 
 
 
 
 
 
 

https://doi.org/10.21930/rcta.vol24_num3_art:2858


Mora-Luna., et al.                                                        Metabolic profile of F1 Holstein × Zebu lactating dairy cows 

 

DOI: https://doi.org/10.21930/rcta.vol24_num3_art:2858   

Cienc. Tecnol. Agropecuaria, 24(3): e2858                                            

Table 3. Effect of the supplementation with two non-protein nitrogen sources on energetic 
profile 
 

Energetic 
metabolites 

 
 

ICC 
NPN 
source 

Collection time (day) 
Mean  

p-value 

NPN 
Time NPN 

× 
Time 

0 28 56 91 L Q 

 
Glucose1 

 
0.715* 

 
UREA 50.6 52.5 52.0 54.2 

 
52.4 ± 
1.28 

 
0.376 

 
0.071 

 
0.240 

 
0.671 

   
SRU 54.1 53.5 52.4 55.9 

 
53.9 ± 
1.24 

    

 

BHB2 

 
0.619* 

 
UREA 0.67 0.60 0.49 0.44 

 
0.55 ± 
0.03 

 
0.104 

 
<0.001 

 
0.771 

 
0.112 

   
SRU 0.49 0.55 0.44 0.42 

 
0.48 ± 
0.03 

    

 
Cholesterol1 

 
 

0.911* 

 
 

UREA 
 

181 
 

216 
 

219 
 

199 

 
 

204 ± 
10.8 

 
 

0.582 

 
 

0.064 

 
 

<0.001 

 
 

0.218 

 

  
SRU 198 219 219 211 

 
212 ± 
10.5 

    

1mg·dL-1, 2mmol·L-1. *p < 0.05. BHB: β-hydroxybutyrate. ICC: intra-class correlation coefficient. 
NPN: non-protein nitrogen. SRU: slow-release urea. L: linear; Q: quadratic. 
Source: Prepared by the authors. 
 
 
The NPN source (p = 0.104) or NPN source × collection time interaction (p = 0.112) did not 
affect BHB concentrations (Table 3). Kraisoon et al. (2018) and El-Zaiat et al. (2022) also 
observed no effect on BHB when SRU was used in the diet of lactating dairy cows. Herrera-
Angulo et al. (2017) evaluated the productive performance of these cows, and no differences 
were observed in the body score condition and the average daily gain due to the NPN supplied. 
Being the BHB an indicator of body reserve mobilization, the similarity in their concentrations 
among treatments coincides with the abovementioned response in the body score condition and 
the average daily gain (data not presented). 
 
The collection time influenced the BHB concentrations, decreasing linearly (p < 0.001) during 
the experiment with values of 0.58, 0.57, 0.47, and 0.44 mmol·L-1 for 0, 28, 56, and 91 days, 
respectively. This decrease can be due to the body reserve mobilization (Rodriguez et al., 2021) 
since between 0 and 28 days, the animals were at the milk yield peak, which is between 45-56 
days postpartum in crossbred dairy cows (Ali et al., 2021; Bangar & Verma, 2017). The BHB 
values observed were lower than 1.2 mmol·L-1, considered the threshold in lactating dairy cows. 
A value greater than this indicates high body reserve mobilization and the occurrence of clinical 
ketosis (Benedet et al., 2019). 
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There was no effect of either NPN source (p = 0.582) or NPN source × collection time 
interaction effect (p = 0.218) on cholesterol concentrations (Table 3). Mazinani et al. (2023) also 
observed no difference in the cholesterol concentrations between UREA and Optigen in dairy 
goats. From day 28, both the groups showed average values above the reference range (104-205 
mg·dL-1) considered by Wittwer (2018a). These higher cholesterol concentrations can be due to 
the bypass fat inclusion in the diet (108 g·animal·d-1). Cholesterol increases have been observed 
in dairy cows when bypass fat is offered, and this increase is evident after 7 days of 
supplementation (Waghmare et al., 2016). 
 
The collection time affected the cholesterol concentrations (p < 0.001), showing a quadratic 
response (p < 0.001; y = -0.0114x2 + 1.1842x + 190.97), with values of 190, 218, 219, and 205 
mg·dL-1 for 0, 28, 56, and 91 days, respectively. The maximum cholesterol concentration was 
222 mg·dL-1 on day 52. At this time, the cows showed an average of 103 days in milk. Walter et 
al. (2022) and Kessler et al. (2014) observed lower cholesterol concentrations at the beginning 
of lactation and increased steadily the remaining lactation after that. This variation in the 
cholesterol concentration in lactating dairy cows is due to changes in serum lipoprotein 
concentrations during lactation (Raphael et al., 1973). 
 
Protein profile 

There was no influence of the NPN source on urea concentrations (p = 0.403), and no 
interaction between NPN and collection time was observed (Table 4) (p = 0.298), with an overall 
mean of 38.4 mg·dL-1. Similar results were reported by Miranda et al. (2019) and El-Zaiat et al. 
(2022). The lack of treatment can be due to the low energy availability in the rumen. When there 
is an imbalance between the energy intake and ruminal degradable protein, caused by a limited 
provision of energy, the concentration of ruminal NH3-N increases since the capacity of the 
ruminal microbiota for using it is exceeded. Ammonia is then absorbed across the ruminal wall 
epithelium and converted to urea in the liver (Hailemariam et al., 2021). It is known that tropical 
grasses have low metabolizable energy content (Azevedo et al., 2021; Boschma et al., 2017; 
Wassie et al., 2019), and despite N ruminal degradability of Optigen II being lower compared to 
UREA (Sinclair et al., 2012), the low availability of energy in the rumen could have limited the 
NH3-N utilization and led to the similar serum urea concentration among treatments. 
 
Collection time influenced urea concentrations (p < 0.001) showing a quadratic response (y = -
0.004x2 + 0.5402x + 26.429), with values of 25.4, 41.4, 41.5, and 43.3 mg·dL-1 for 0, 28, 56, and 
91 days, respectively. The maximum urea concentration was estimated at 44.7 mg·dL-1 on day 
68. The decrease in blood urea from 68 days was possibly due to the low forage mass. Between 
70-91 days, the forage mass decreased to 1,513 kg DM·ha-1 (Herrera-Angulo et al., 2017), which 
was less than 2,000 kg DM·ha-1, a value below which forage intake reduces (Minson, 1990), and 
therefore protein intake could also decrease. Urea concentrations were within the reference 
range Wittwer (2018a) reported until day 56 of the experiment (15.6-42.2 mg·dL-1) and slightly 
above at day 91. 
 
The NPN source did not affect total protein (p = 0.460) and albumin concentrations (p = 0.214) 
(Tabla 4). Mazinani et al. (2023) reported that in dairy goats fed with UREA or Optigen, the 
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concentrations of total protein and albumin were not affected. The same response was observed 
when Optigen partially replaced soybean meal in dairy cow diets (El-Zaiat et al., 2022).  
 
Table 4. Effect of the supplementation with two non-protein nitrogen sources on protein 
profile 
 

Protein 
profile 

ICC 
NPN 
source 

Collection time (day) 
Mean 

p-value 

NPN 
Time NPN 

× 
Time 

0 28 56 91 L Q 

 
Urea1 

 
0.263* 

 
UREA 22.8 40.3 42.0 43.8 

 
37.2 ± 
1.18 

 
0.403 

 
<0.001 

 
<0.001 

 
0.298 

   
 

SRU 28.0 42.5 41.0 42.9 

 
 

38.6 
± 

1.13 

    

 
 
TP2 

 
 

0.596* 

 
 

UREA 75.3 70.9 68.8 73.7 

 
 

72.2 
± 

0.80 

 
 

0.460 

 
 

0.011 

 
 

<0.001 

 
 

0.828 

   
 

SRU 75.0 69.5 68.3 72.5 

 
 

71.4 
± 

0.77 

    

Albumin1 0.537* 

 
 

UREA 39.9a 35.0bc 34.1c 34.8c 

 
 

36.0 
± 

0.42 

 
 

0.214 

 
 

<0.001 

 
 

<0.001 

 
 

0.002 

 

  
 
SRU 37.4ab 34.0c 34.2c 35.2bc 

 
 

35.2 
± 

0.41 

    

1mg·dL-1, 2g·L-1. *p < 0.05. TP: total protein. ICC: intra-class correlation coefficient. NPN: non-
protein nitrogen. SRU: slow-release urea. L: linear; Q: quadratic. a, b, c Means with different 
superscripts are different. 
Source: Prepared by the authors. 
 
 
On the other hand, a collection time effect was found on both variables, showing a quadratic 
response (p < 0.001). Concentrations of total protein of 75.2, 70.2, 68.5, and 73.1 g·L-1 were 
observed for 0, 28, 56, and 91 days, respectively (y = 0.0026x2 - 0.2648x + 75.289), while albumin 
concentrations were 38.7, 34.5, 34.2, and 35 g·L-1 for the same sequence of days (y = 0.0014x2 - 
0.1631x + 38.516). The minimum concentration of total protein was estimated at 68.5 g·L-1 on 
day 51, while for albumin, the minimum concentration was 33.8 g·L-1 on day 58. The total 
protein concentration decreases during lactation because of albumin decrease (Kaneko et al., 
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2008). Changes during lactation in total protein and albumin concentrations have been observed 
in dairy cows (Hussein et al., 2020). In addition, the interaction NPN × collection time (Table 
4) influenced albumin concentrations (p = 0.002), being different at day 0, with greater values in 
UREA and a decrease in both treatments from day 28. Differences at day 0 were not due to the 
treatment effect. During the experimental period, total protein and albumin average 
concentrations were within the reference range 66-90 and 29-41 g·L-1, respectively (Contreras, 
2018). 
 

Hepatic profile 

Regarding AST and GGT, there was no influence of either the NPN source (p = 0.713 and 
0.727, respectively) or NPN source × collection time interaction (p = 0.150 and 0.937, 
respectively) on the activity of these enzymes (Table 5), with overall means of 117.4 and 28.3 
IU·L-1, for AST and GGT, respectively. In the present work, 64 g·d-1 of SRU were supplied, and 
Baimishev et al. (2018) observed in high-producing cows that the use of 80 g·d-1 of Optigen did 
not influence AST activity; however, greater amounts than this increased the AST and alanine 
aminotransferase activities. 
 
Table 5. Effect of the supplementation with two non-protein nitrogen sources on hepatic 
profile 
 

Enzyme  ICC 
NPN 
source 

Collection time (day) 
Mean 

p-value 

NPN 
Time NPN × 

Time 0 28 56 91 L Q 
 
AST1 

 
0.789* 

 
UREA 107 99.4 124 131 

 
115 ± 
5.71 

 
0.713 

 
<0.001 

 
0.005 

 
0.150 

   
 
SRU 

 
115 

 
95.8 

 
131 

 
132 

 
 

118 ± 
5.53 

    

 
GGT1 

 
0.925* 

 
UREA 27.2 26.1 28.7 30.8 

 
28.2 ± 
1.73 

 
0.727 

 
<0.001 

 
0.005 

 
0.937 

   
 SRU 27.7 26.8 29.4 32.3 

 
29.0 ± 
1.68 

    

1IU·L-1. *p < 0.05. ICC: intra-class correlation coefficient. AST: aspartate aminotransferase. 
GGT: gamma-glutamyl transferase. NPN: non-protein nitrogen. SRU: slow-release urea. L: 
linear; Q: quadratic. 
Source: Prepared by the authors. 
 
The collection time affected the activity of these hepatic enzymes (Table 5) with a quadratic 
response (p = 0.005), with 111, 97.6, 127, and 131 IU·L-1 (y = 0.0035x2 - 0.024x + 107.02) for 
AST, and 27.5, 26.5, 29.1, and 31.5 IU·L-1 (y = 0.0008x2 - 0.0225x + 27.247) for GGT for 0, 28, 
56, and 91 days, respectively. For the same order of enzymes, the minimum values of AST and 
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GGT were estimated at 107 and 27 IU·L-1, respectively, on days 3 and 14. Now, cows had 54 
and 65 days in milk, respectively. The results are in line with Cozzi et al. (2011), who identified 
greater values of AST and GGT in mid-lactation cows (90-125 days) when compared to early-
lactation cows (10-89 days). Nonetheless, no reports were found in the literature that explain the 
causes of these increases during lactation. AST and GGT average concentrations during the 
experimental period were lower than threshold 120 (Wittwer, 2018a) and 40 IU·L-1 (Johnston et 
al., 2014), respectively. Values greater than those would indicate an impairment of liver function 
(Mordak et al., 2020). Finally, the lack of effect of the NPN source on blood parameters was in 
line with the findings of Herrera-Angulo et al. (2017) in these same cows, where differences in 
milk yield, milk protein and fat yield, milk urea, average daily gain, and changes in body score 
condition were not observed. 
 

 
Conclusions 
 
The blood indicators of energy and protein metabolism and hepatic functionality did not differ 
between UREA and SRU; hence, the Optigen II® did not offer an advantage over the commonly 
used urea supplement. However, we recommend further research regarding SRU use, evaluating 
carbohydrate sources of fast and intermediate ruminal degradation in the concentrate of lactating 
dairy cows grazing low-to-medium quality tropical forage. 
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