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León, C., Martínez, C., & Cepeda, F. (2018). Short-term liquidity contagion in the 
interbank market. Cuadernos de Economía, 38(76), 51-80.

We implement a modified version of DebtRank to recursively measure the conta-
gion effects caused by the default of a selected financial institution. For this paper, 
contagion is a liquidity issue that is measured as the decrease in financial institu-
tions’ short-term liquidity position across the Colombian interbank network. We 
find that contagion negative effects are concentrated in a few financial institutions. 
However, as most of their impact is conditional on the occurrence of unlikely major 
widespread illiquidity events, and due to the subsidiary contribution of the inter-
bank market to the local money market, their overall systemic importance is still 
to be confirmed.
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León, C., Martínez, C., & Cepeda, F. (2018). Contagio de liquidez a corto plazo 
en el mercado interbancario. Cuadernos de Economía, 38(76), 51-80.

Implementamos una versión modificada de DebtRank para medir de manera recur-
siva los efectos de contagio causados por la cesación de pagos de una institución 
financiera. En nuestro caso, el contagio es un problema de liquidez, medido como 
la caída en la liquidez de corto plazo de las instituciones en la red interbancaria 
colombiana. Encontramos que sus efectos negativos están concentrados en pocas 
instituciones. Pero como estos en su mayoría son condicionales a la ocurrencia de 
eventos improbables de iliquidez generalizada, y debido a la contribución subsidia-
ria del mercado interbancario al mercado monetario local, su importancia sistémica 
total está aún por confirmarse.
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León, C., Martínez, C., & Cepeda, F. (2018). Contagion de liquidité à court 
terme dans le marché interbancaire. Cuadernos de Economía, 38(76), 51-80.

On emploie une version modifiée de DebtRank pour mesurer de manière récursive 
les effets de contagion causés par le cessation de paiement d’une institution finan-
cière. Dans notre cas, la contagion est un problème de liquidités, mesuré comme 
la chute dans la liquidité à court terme des institutions dans le réseau interbancaire 
colombien. Nous constatons que les effets négatifs sont concentrés chez peu d’ins-
titutions. Mais comme ceux-ci dans leur majorité sont conditionnés par l’occu-
rence d’événements improbables d’illiqudité généralisée, et dus à la contribution 
subsidiaire du marché interbancaire au marché monétaire local, leur importance 
systémique totale reste à confirmer.
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León, C., Martínez, C., & Cepeda, F. (2018). Contágio de liquidez a curto 
prazo no mercado interbancário. Cuadernos de Economía, 38(76), 51-80.

Implementamos uma versão modificada de DebtRank para medir de maneira 
recursiva os efeitos de contágio causados pela cessação de pagamentos de uma 
instituição financeira. Em nosso caso, o contágio é um problema de liquidez, 
medido como a queda na liquidez de curto prazo das instituições na rede interban-
cária colombiana. Constatamos que seus efeitos negativos estão concentrados em 
poucas instituições. Mas como estes, na maioria são condicionais à ocorrência de 
eventos improváveis de iliquidez generalizada, e devido à contribuição subsidiária 
do mercado interbancário ao mercado monetário local, sua importância sistêmica 
total ainda deve ser confirmada.
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INTRODUCTION
One lesson from the global financial crisis is that the soundness of each financial 
institution does not ensure the stability of the financial system, per se. Likewise, 
it has been suggested that a financial institution’s liquidity is not ensured by the 
liquidity position of each single institution, but that their interconnections may 
determine whether they are able to fulfil their short-term liquidity needs. In this 
sense, as Allen and Gale (2000) noted, interconnections between financial institu-
tions determine the possibility and extent of financial contagion.

Financial institutions’ interconnections comprise direct and indirect linkages 
(Allen & Babus, 2009). Direct linkages are related to mutual exposures acquired 
in financial markets (e.g. interbank lending, securities, and foreign exchange set-
tlements), whereas indirect linkages correspond to holding similar portfolios (as 
in fire-sales) or sharing the same mass of depositors (as in deposit runs). We focus 
on direct-linkage contagion.

Despite differing in their specific features and assumptions, most direct-linkage 
contagion simulation models focus on how defaults on mutual exposures may 
erode financial institutions’ solvency by affecting their capital buffer. From a net-
work perspective, the literature related to direct-linkage contagion is composed by 
endogenous recovery models and exogenous recovery models.

The endogenous recovery models, as their name indicates, determine banks’ 
recovery rates that have been exposed to an insolvent counterparty in an en- 
dogenous way (Elsinger, Lehar, & Summer, 2006). Based on the Eisenberg and 
Noe (2001) model, this strand of the literature represents financial institutions as 
nodes connected to each other by their interbank obligations to replicate the shock 
transmission mechanism and assess the impacts that shocks imposed on an entity 
may cause to the entire financial system. Related research using a similar frame-
work was proposed by Furfine (2003), who found that bilateral interbank expo-
sures in the U.S. are neither large enough nor distributed in a way that cause a great 
risk of contagion by capital exhaustion. Very few cases of knock-on effects arise 
from a financial institution failing. Similarly, Upper (2011) pointed out that direct 
contagion based on actual interbank exposures is likely to be rare and can only 
happen if interbank exposures are large relative to a lender’s capital.

Several extensions have been developed using the Eisenberg and Noe (EN) model. 
From a theoretical point of view, Cifuentes, Ferrucci, and Shin (2005), used a sim-
ilar framework to EN, and found that small shocks can trigger contagious failures 
via balance sheet interlinkages and asset prices. Rogers and Veraart (2013) pro-
posed another theoretical extension considering the costs of default along with 
an incomplete refund of payments induced by a defaulting bank since this is pre-
cisely what can generate other collapses that may possibly end in financial con-
tagion. From an empirical point of view, the EN model has also been considered. 
Elsinger, et al. (2006) included uncertainty and assessed the risk on system level 
using macroeconomic risk factors. Glasserman and Young (2015) modified the EN 
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model from a clearing model to a valuation model and estimated the amplification 
of defaults and losses that may result from original shocks. Capponi, Chen, and 
Yao (2015) included the bankruptcy costs and additionally proposed a method that 
allows comparisons to be established between financial networks. Capponi and 
Chen (2015) adjusted the algorithm of the baseline network model (EN) to exa- 
mine the dynamic component of systemic risk, while Capponi and Larsson (2015) 
analyse financial institutions’ reactions to changes in asset prices using the same 
framework.

The exogenous recovery models are mainly composed by default cascades models 
and the DebtRank method. Within default cascades models, the theoretical works 
of Nier, Yang, Yorulmazer, and Alentorn, (2007) and Gai and Kapadia (2010) 
investigate how financial systems’ structure and capitalization affect systemic risk 
using artificial networks. They found that contagion decreases with capitalization, 
but increases with concentration or with the size of interbank liabilities. In terms 
of connectivity, they found that the relationship with contagion is non-monotonic: 
when connectivity is low (high), an increase in the number of links increases 
(decreases) the likelihood of knock-on defaults. Battiston, Gatti, Gallegati, Green-
wald, and Stiglitz (2012a) find that systemic risk will be reduced as long as the 
network density increases; while for Roukny, Bersini, Pirotte, Caldarelli, and Bat-
tiston (2013), the network topology only (but substantially) matters when financial 
markets are under stress (e.g. illiquid).

A recent development on direct-linkage contagion simulation models is DebtRank 
(Battiston, Puliga, Kaushik, Tasca, & Caldarelli, 2012b). Inspired by feedback 
centrality, DebtRank recursively measures the impact of the default of a selected 
financial institution on the capital buffer of financial institutions across the entire 
financial network. DebtRank serves to determine the size of the contagion caused 
by the initial default of a financial institution; it also provides an assessment of 
the systemic importance of each financial institution based on the severity of its 
impact on the system. However, unlike previous direct-linkage contagion models 
based on default cascade dynamics, the impact from default is not limited to those 
cases in which the capital buffer is exhausted: partial impact on solvency is quan-
tified and accumulated recursively. There are some implementations of DebtRank 
on actual data (e.g. Battiston, Caldarelli, D’Errico, & Gurciullo, 2016; Poledna, 
Molina-Borboa, Martínez-Jaramillo, van der Leij, & Thurner, 2015; Tabak, Souza, 
& Guerra, 2013).

Most research on direct-linkage contagion focuses on the subsequent failure of 
other financial institutions through the exhaustion of capital buffers (a solvency 
issue). Nevertheless, liquidity is also a key factor. Furfine (2003) concludes that 
the liquidity effect, in the form of the unwillingness to lend money due to the ina-
bility to borrow, may be greater than the solvency effect in the U.S. interbank mar-
kets. Müller (2006) concludes that direct linkages affect solvency and liquidity 
substantially in the Swiss interbank market, and that both sufficient capital and 
liquidity buffers are necessary to mitigate spill-overs. Cepeda and Ortega (2015) 
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find that liquidity contagion in the Colombian large-value payment system is mit-
igated when considering the stock of high-quality assets available as a potential 
source of liquidity.

We implement a modified version of DebtRank in order to recursively measure the 
impact of the default of a selected financial institution on the short-term liquidity 
position of financial institutions across the entire interbank network. We construct 
the financial network based on actual interbank (i.e. non-collateralized) data from 
the Colombian financial market. We use the local version of the Liquidity Cover-
age Ratio (LCR),1 the Liquidity Risk Indicator (IRL for its acronym in Spanish), as 
the initial short-term liquidity position of financial institutions. Our modified ver-
sion of DebtRank allows for determining the size of short-term liquidity contagion 
caused by the default of a designated financial institution and for assessing the sys-
temic importance of each of these institutions based on the severity of its impact 
over the short-term liquidity of the system.

Consistent with most related literature (e.g. Furfine, 2003; Roukny et al., 2013; 
Upper, 2011) we find that –ceteris paribus– in the Colombian interbank market 
the effects of contagion are not themselves a threat to the stability of the system. 
Unless a major –but unlikely– drop in the short-term liquidity position of all par-
ticipants precedes contagion, we find that the effects of contagion are rather small. 
It is most likely that the small size of Colombian interbank market exposures, 
with respect to the short-term liquidity position of financial institutions (about 
1.5% of IRL), along with the subsidiary contribution of interbank loans to liquid-
ity exchanges between financial institutions (about 9.68%), explain why contagion 
effects alone are trivial.

Our results support a salient feature of the past financial crisis reported by Upper 
(2011): the vast majority of banking crises were followed by shocks that hit se- 
veral banks simultaneously rather than domino effects from idiosyncratic fail-
ures. Our methodological proposal provides a quantitative assessment of finan-
cial institutions’ systemic importance based on their potential contagion effect on 
the short-term liquidity position of the remaining financial institutions across the 
Colombian interbank network. Moreover, based on the potential effect on the sys-
tem’s liquidity, our results may provide a quantitative assessment of the liquid-
ity that should be obtained from other available sources in case of a default by 
a financial institution such as collateralized borrowing (e.g. from other financial 
institutions or the central bank), selling financial assets, or increasing deposits. 
However, as our results are limited to the local interbank market, conclusions are 
to be weighted according to their contribution to the money market and to the size 
of the financial system.

1 The purpose of the LCR is to ensure that each financial institution has an adequate stock of unen-
cumbered high-quality liquid assets that can be easily and immediately convertible into cash, in 
private markets, so as they can meet their liquidity needs for a thirty-calendar-day stress scenario 
(see Basel Committee in Banking Supervision, 2013).
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METHODOLOGY
There is a rather recent interest in using network analysis in finance and eco- 
nomics, which places great emphasis on systemic risk and financial stability. 
Using this approach, financial institutions are nodes that participate in a system 
(e.g. large-value payment, securities settlement) or market (e.g. interbank, deri- 
vatives), that have exposures or payments as their links. In a formal setting, finan-
cial institutions as well as their connections are represented in a network of mutual 
claims or flows, with elements arranged in a squared and potentially non-symmet-
ric matrix (i.e. non-reciprocal) that has elements in the main diagonal equal to zero 
due to self-connections’ absence or lack of economic interest.

Several methods or measurements belonging to the realm of network analysis 
have been used to assess the extent to which a default or failure-to-pay by a finan-
cial institution may affect others in a network environment. A natural choice is 
to use centrality measures as proxies for financial institutions’ systemic impor-
tance, and to use these measures to estimate their contagion potential in the net-
work being analysed.

FROM CENTRALITY TO DEBTRANK
The simplest measures of centrality, namely degree centrality and strength cen-
trality, corresponding to the number of links and their weight, are not particularly 
useful for quantifying contagion dynamics. They are local (non-global) measures 
of centrality (i.e. non-adjacent nodes are not considered), thus they do not allow 
to estimate impacts on a network-wide level. Path dependent centrality measures, 
namely closeness centrality and betweenness centrality, may take into account 
non-adjacent nodes by calculating how far nodes are in terms of the number of 
links that compose the shortest paths between them, and the fraction of those 
shortest paths that run through each node, respectively. However, measuring cen-
trality based on the shortest path between financial institutions may be difficult to 
interpret in a financial contagion context (see Soramäki & Cook, 2013).

Feedback centrality refers to all those measures in which the centrality of a node 
depends recursively on the centrality of the neighbours (Battiston, Puliga, Kau-
shik, Tasca, & Caldarelli, 2012c). The simplest measure of feedback centrality is 
eigenvector centrality (Bonacich, 1972), whereby the centrality of a node is pro-
portional to the sum of the centrality of its adjacent nodes. Thus, the eigenvector 
centrality of a financial institution is the weighted sum of all other financial insti-
tutions’ centrality at all possible order adjacencies (see Newman, 2010). Eigen-
vector centrality’s analytical value to measure contagion dynamics is illustrated 
by Soramäki and Cook (2013), who depict eigenvector centrality as the proportion 
of time spent visiting each node during an infinite random walk through the net-
work. Other popular feedback centrality measures based on eigenvector centrality 
are PageRank (Brin & Page, 1998), which is the algorithm behind Google’s search 
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engine; hub centrality and authority centrality (Kleinberg, 1998); and SinkRank 
(Soramäki & Cook, 2013).

All feedback centrality measures share a common drawback when applied to con-
tagion dynamics: in the presence of a cycle (i.e. a loop) in the network there is 
an infinite number of reverberations of a node’s impact on the others and back 
to itself, which impedes simple and measurable economic interpretations (Batti-
ston et al., 2012b). That is, despite them being useful by providing relative mea- 
sures (i.e. scores) of the importance of each node, feedback centrality measures 
fall short when a monetary value of contagion size is required.

DebtRank (Battiston et al., 2012b) is a centrality measure inspired by feedback 
centrality that overcomes this drawback by not allowing an infinite number of 
reverberations through the network. By excluding walks in which one or more 
links are repeated, it has a measurable economic interpretation (see Appendix 1). 
As defined by Poledna et al. (2015), it is a quantity that measures the fraction of 
the total economic value in the financial network that is potentially affected by the 
distress of an individual node or a set of nodes. Moreover, DebtRank also accounts 
for the fact that when a default does not propagate in the form of a subsequent 
default, there is still a contagion effect in the form of a reduction in the robustness 
(i.e. solvency) of those directly affected and potentially in the robustness of the 
entire network. These two features allow DebtRank to provide a simple and eco-
nomically meaningful measurement of the size of the contagion dynamics follow-
ing the default of a designated financial institution and a forthright measurement 
of its systemic importance.

Our methodological approach to determine the size of contagion caused by the 
default of a financial institution in an interbank exposures network is closely 
related to DebtRank. However, our approach does not rely on how the exposure 
among financial institutions may affect their capital buffer (i.e. a solvency issue) 
in case of a default by a designated financial institution but on how it may affect 
their short-term liquidity. Hence, in our case, we measure the depletion of short-
term liquidity when financial institutions face failure-to-pay by a participant of the 
interbank claims network. A straightforward by-product is assessing the systemic 
importance of financial institutions in the local interbank market.

THE INPUTS
Two main inputs are used in our approach: a proxy for the short-term liquidity of 
financial institutions participating in the interbank market and the actual network 
of interbank financial claims.

The first input, a proxy for the estimated short-term liquidity position of the i-finan-
cial institution ( ), is our individual measurement of financial robustness –instead 
of a proxy for solvency. We use the coverage provided by financial institution i’s 
high-quality liquid assets to meet the estimated net liquidity requirements for a 
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7-day horizon (IRL) as reported by local financial institutions to the Colombian 
Financial Superintendency. Hence,  denotes the estimated short-term liquidity 
position of financial institution i at time t.

The calculation of the high-quality liquid assets and the estimated net liquid 
requirements for regulatory purposes in the Colombian case is intricate and has 
several non-linear features (see Annex 1 - Circular Externa 017 de 2014 of the 
Colombian Financial Superintendency). Nevertheless, for analytical purposes, we 
use the reported value of the expected short-term liquidity position ( ) as a proxy 
of the short-term liquidity position of each financial institution, and we affect it in 
a linear manner: for example, not collecting $1 in interbank loans due to counter-
party’s default will decrease the short-term liquidity position by $1. This simpli-
fication not only allows a generalized version of the algorithm to be designed, but 
it also makes changes in liquidity tractable, while preserving the analytical sub-
stance of the model.

The second main input in our approach is a directed weighted network in which 
nodes represent financial institutions participating in the interbank market with 
links representing non-collateralized financial claims. Let C be the weighted 
matrix representing the network of interbank claims, with C

ij
 containing the out-

standing amount that financial institution i owes to j.

If financial institution i is unable to refund an interbank loan to j, then j faces an 
unexpected reduction of its robustness, . It is an unexpected reduction because j 
could not anticipate i’s failure to pay when estimating its short-term liquidity posi-
tion; that is, j had estimated its short-term liquidity position under the assump-
tion that i would fulfill its commitment to refund. The unexpected reduction in 

short-term liquidity faced by i’s counterparties (i.e. the system) is C Ci ijj
=∑ .  

As bankruptcy procedures may be rather lengthy (see Battiston et al., 2012b; Tabak 
et al., 2013), we assume that in the short-run there are no recoveries of any losses. 
Likewise, as netting in interbank borrowing is not a common practice in the local 
market, we also assume that no netting of claims is available.2

THE DYNAMICS
Whenever financial institution i fails to pay j the outstanding amount C

ij
 at moment 

t, the liquidity position of j is unexpectedly affected: . The 

aftermath of the updated short-term liquidity position of j depends on the choice 

of a short-term liquidity threshold that allows j to be considered as imposing (or 
not) a significant risk for the system. Let  be this short-term liquidity threshold, j 
fails to pay its counterparties as a consequence of the failure of i to refund the out-
standing amount C

ij
 whenever . In such case, j defaults (i.e. it is unable 

2 However, netting may be appropriate to examine other types of financial exposures, say derivatives.



60 Cuadernos de Economía, 38(76), enero-junio 2019

to pay), and the process continues recursively. On the other hand, if  

j is affected but it does not default: j is able to fulfil its commitments to refund its 
counterparties, but its short-term liquidity position and that of the entire system 
have decreased (i.e. the robustness of j means the system has weakened).

A natural choice for the short-term liquidity threshold is  = 0. A financial institu-
tion i with a short-term liquidity position below zero may be considered to be on 
the limit of failing to fulfil its immediate commitments to pay: liquidating the stock 
of high-quality liquid assets would not suffice to face estimated short-term net 
liquidity requirements. Technically speaking this does not mean that i is in default 
or that it is unable to pay; it may still be able to get new funds from financial insti-
tutions or the central bank in order to roll-over existing loans or to increase de- 
posits. Nonetheless,  is a rather clear signal of substantial exposure to a 
potential liquidity risk, and it should force certain actions from the financial insti-
tution. Hence, for analytical purposes, we set  = 0 to determine the tipping point 
of the default cascade, which is the threshold that determines the transition from 
undistressed to distressed.3

Formally, analogous to DebtRank, the dynamics are as follows:  is the short-
term liquidity position of financial institution i, which is a continuous variable 
with . s

i
 is a discrete variable with three possible states, undistressed 

(U), distressed (D), and inactive (I), corresponding to institutions able, currently 

unable (i.e. in default), and already unable (i.e. defaulted earlier or with ) 

to refund their interbank loans, respectively (s U D Ii ∈{ }, , ). Let  denote the 
actual value of  (i.e. the reported IRL), x be the set of financial institutions un- 
able to pay (i.e. distressed or inactive) at t = 1, and y the selected short-term liquid-
ity threshold that determines the ability to pay. The initial conditions (t = 1) are:4

                                      
s U i xi 1( ) = ∀ ∉� �

 

                                           s D i xi 1( ) = ∀ ∈� �  (1)

At a later stage (i.e. t ≥ 2), the dynamics of  and s
i
 are determined by the speci-

fication below (in (2) and (3)). As usual, the dynamics depend on the initial con-

ditions, namely the initial allocation of robustness ( ), the structure of the 

3 Technically, a financial institution with a negative 7-day IRL may be able to pay its counterparties, 
and it may also be solvent. Likewise, in DebtRank it is arguable that a financial institution may 
be viable (e.g. able to pay) even after the capital buffer against shocks is exhausted. In fact, as 
balance sheets are updated on a monthly basis, financial institutions may continue to function for 
days or weeks before the capital buffer is officially reported as exhausted. Another case is also 
possible: as in Müller (2006), solvent financial institutions may find themselves in default be-
cause they have no liquid assets to refund their borrowing.

4 This means that at t = 1 two types of institutions may be unable to pay: Those selected as unable 
to pay by forcing their situation as distressed irrespective of their short-term liquidity position 
(i.e. designated financial institutions), and those that already have a short-term liquidity position 
below the selected threshold (i.e. ˆ 0il < ).
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interbank claims network (Cij), and the initial choice of financial institutions in 
distress (x). The key in the dynamics is that the sum in (2) (i.e. the liquidity impact) 
arises from those j financial institutions that entered in distress during the preced-
ing period (i.e. those j that are neither undistressed nor inactive).

  (2)

and

  (3)

The process continues recursively, and it is repeated for each financial institution 
that has commitments to refund. The process for each i-financial institution stops 
at time T when all financial institutions are either inactive or undistressed (i.e. no 
distressed institutions pending to impact the system). The measurement of the dis-
tress (in (4)) caused by the set x is the change in the overall short-term liquidity 
position of the system from t = 1 to T. If x is a single financial institution, such 
change is denoted F

i
, and it gauges the impact of that i-financial institution in 

the system’s ability to pay as measured by the variation in the short-term liquid-
ity position of its counterparties (i.e. the initial distress in x is not considered). In 
this case, the nominal value of F

i
 and its contribution to all financial institutions’ 

impact (Fi) are, respectively,

  (4)

 F F Fi i i i= / Σ  (5)

As expected, F
i
 and Fi  provide a straightforward assessment of the systemic impor-

tance of financial institution i in the interbank funds market. The higher the dis-
tress caused by a financial institution in the robustness of its counterparties (i.e. 
their short-term liquidity position), the greater its systemic importance in the inter-
bank funds market.

As pointed out by Tabak et al. (2013), it should be noted that adding the systemic 

importance of all financial institutions into a single figure (F Fii
=∑� ) may not 

be considered a measurement of systemic risk or the financial system’s impact. 

As this is the sum of financial institutions’ individual potential stress, it should 
be considered a proxy for financial system’s stress. As usual, measuring systemic 
risk would require multiplying the size of the individual potential stress (F

i
) by the 
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probability of its occurrence over a determined time horizon (as in Poledna et al., 
2015; and Tabak et al., 2013).

THE DATA
Interbank exposures in C are estimated by implementing Furfine’s algorithm (Fur-
fine, 1999) using data from the Colombian large-value payment system (see León, 
Cely, & Cadena, 2016). Daily interbank exposures networks are available with 
daily frequency for the April 1, 2013 – December 30, 2014 period (i.e. 428 obser-
vations). During this period, 33 financial institutions participated in the market.5 
Despite many other types of financial institutions being authorized to borrow and 
lend in the interbank funds market (e.g. investment funds, broker-dealer firms), 
actual participants are credit institutions only. As usual in non-collateralized funds 
markets around the world, most loans have a low time-to-maturity at inception: 
78.9% are overnight loans with an average maturity of about 2.6 calendar days.

Figure 1 exhibits a graph representing C for a randomly selected date. Nodes rep-
resent financial institutions, with their height (width) corresponding to financial 
institutions’ contribution to the total value of claims as a lender (borrower). The 
direction of the arrows represents the existence of an interbank claim (i.e. from the 
lender to the borrower), whereas their width represents its contribution to the total 
value of claims in the system. Interbank exposures in C allow us to follow the path 
of direct linkages considered by the algorithm.

The proxy variable we use for the short-term liquidity position is the 7-day IRL 
calculated by the Colombian Financial Superintendency based on reports from 
financial institutions. This indicator, which measures financial institutions’ liquid-
ity risk, is available on a weekly basis (each Friday) from January 4, 2013 to 
December 26, 2014 (i.e. 104 observations).6 As the proxy for the short-term liquid-
ity position has the lowest frequency (i.e. weekly) and the least number of obser-
vations, this variable determines the period and the frequency of data used in the 
exercise. Thus, the sample period goes from April 5, 2013 to December 26, 2014, 
which corresponds to 90 weekly observations (n = 90).

In Colombia, the short-term liquidity position (7-day IRL) exceeds the interbank 
(i.e. non-collateralized) exposures by two orders of magnitude (see Table 1). The 
mean (and maximum) interbank exposure is about 1.5% the mean (and maximum) 
short-term liquidity position. This is expected because the size of the local inter-
bank funds market is rather small. Most liquidity exchanges between financial 
institutions in the money market consists of collateralized lending in the form 
of sell/buy backs (i.e. simultáneas) and repos, with the interbank (i.e. non-col-
lateralized) market contributing with about 9.68% of the total (see Banco de la 

5 The number of participating financial institutions is lower in some days.
6 An alternative proxy for short-term liquidity may be the net liquid assets (i.e. liquid financial 

assets minus current liabilities), or some other balance-sheet measure of short-term liquidity; 
however, as balance-sheet is a low-frequency source of data (e.g. monthly) our choice appears to 
be superior in terms of opportunity. 
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República, 2015).7 Despite the size of the interbank exposures appearing to be 
negligible and incapable of resulting in sizeable liquidity contagion, examining 
how the short-term liquidity position is affected is relevant for analytical purposes.

Figure 1. 
Interbank claims network for a randomly selected date 

Nodes (in rectangles) correspond to participating financial institutions. The height (width) 
of each node corresponds to its contribution to the total claims of the market as a lender 
(borrower). The direction of the arrows represents the existence of an interbank claim (i.e. 
from the lender to the borrower), whereas their width represents its contribution to the 
total value of claims in the system. Non-connected nodes (in the right border of the graph) 
correspond to financial institutions without outstanding lent or borrowed amounts in the 
selected date. 
Source: León et al. (2016).

7 Intraday interbank lending is not considered because it does not involve financial exposure at the 
end of the day.
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Table 1. 
Descriptive Statistics for Interbank Exposures and Short-Term Liquidity Position 
Datasets

In Million COP
(on daily data)

Interbank
exposures

Short-term
liquidity position

Mean 16,299 1,098,813

Standard deviation 2,731 2,195,172

Maximum 215,500 14,391,923

Minimum 50 156

Measured in millions of Colombian pesos (COP) and based on daily data for the 90 days being 
analysed. The short-term liquidity position exceeds the interbank exposures by two orders of 
magnitude. Only data with values greater than zero were used to estimate the statistics.
Source: Authors’ calculations.

Other research works do not limit their analysis to non-collateralized borrowing 
as we do. For instance, it is unclear whether Battiston et al. (2012b) distinguish 
between collateralized or non-collateralized investments (i.e. funding) among 
financial institutions. However, in the case of collateralized funding (e.g. repos, 
sell/buy backs) the default would be followed by a rather swift process of liqui-
dating and collecting the cash value of the pledged collateral, thus rendering direct 
contagion as an unlikely outcome. Consequently, despite collateralized borrowing 
could make contagion effects sizeable, they should have a negligible impact on 
our examination of direct contagion: the main impact arising from a default (i.e. 
principal risk) is minimized by pledged collateral.8 The same argument applies for 
foreign exchange and securities transactions that are settled under exchange-for-
value arrangements (e.g. delivery-versus-payment).

Accordingly, instead of including collateralized funding or exchange-for-value 
transactions to magnify and examine the dynamics of liquidity contagion under 
debatable assumptions, we consider short-term illiquidity scenarios. We choose 
to examine the dynamics of liquidity contagion following an ex-ante general-
ized reduction in the short-term liquidity position equivalent to a fraction of the 
observed short-term liquidity position (IRL). Let p be a fraction (p ∈[ ]0 0 99,�. ), 

and  is the short-term liquidity scenario after a drop of , with . 
We expect that illiquidity scenarios, consisting in reducing the short-term liquidity 
position of financial institutions, will reveal how the dynamics of liquidity conta-
gion may occur in a hypothetical stress setup.9

8 However, other risks related to collateralized lending –not considered here- would remain, such 
as replacement cost risk arising from collateral with a market value below the refund value and a 
potential fire-sale risk arising from the widespread liquidation of collaterals to face the default.

9 Moreover, the illiquidity scenarios considered, from 100% to 1% of 7-day IRL, allow particularly 
interesting short-term liquidity levels to be implicitly evaluated. For instance, as reserve require-
ments are representative when calculating the IRL (i.e. the mean ratio of reserve requirements to 



Short-term liquidity contagion in the interbank market Carlos León et al.  65

MAIN RESULTS
We choose to examine the dynamics of liquidity contagion following an ex-ante 
generalized reduction in the short-term liquidity position. 100 scenarios are 
selected, starting with a base scenario consisting of a null reduction ( π ).  
This is a scenario consisting of a short-term liquidity reduction equivalent to 99% 

of observed IRL ( ) with 1% increases ( ). We 
expect the first scenario (p= 0 ) to show slight contagion effects –if any. Regard-
ing the other 99 scenarios, we expect results to be monotonically increasing in the 
size of the reduction in short-term liquidity: the higher  (i.e. the size of ex-ante 
liquidity reduction), the higher the contagion effects.

First, we report the effect of contagion. For each day and scenario, we examine 
the average and maximum change in the short-term liquidity position of the sys-
tem and the number of financial institutions defaulting as a result of contagion. 
Second, as we are concerned about financial institutions’ systemic importance, we 
report how designated individual financial institutions contribute to the contagion 
effect estimated for each day and illiquidity scenario.

CONTAGION EFFECTS
Figure 2 shows the average contagion effects. Each (blue) line in Figure 2 cor-
responds to one of the 90 n-day estimated average contagion effects initiated by 
all financial institutions with outstanding claims in the interbank market. That is, 
lines display the average percent drop in a financial system’s short-term liquidity 

(y-axis) as a function of the selected illiquidity scenario . The 
bold (red) line is the average of the 90 lines.

As expected, the average contagion effect monotonically increases. In terms of 
the average contagion effect for the base case scenario ( ), effects are 
bound to a rather negligible reduction in short-term liquidity: between 0.00% and 
0.11%. The greatest n-day average contagion effect in our sample is equivalent 
to a reduction of about 5.90% in short-term liquidity; however, this occurs in the 
worst-case scenario ( ). It is straightforward that average contagion 
effects in short-term liquidity become relevant only after extreme illiquidity sce-
narios are considered (e.g. ).

Studying the average contagion may hinder identifying interesting effects in net-
works that are characterized by an inhomogeneous connective structure. It is 
well-documented that most real-world networks are inhomogeneous and have par-
ticularly skewed distributions of their connections (i.e. degree) and their weights, 
allegedly following a power law distribution in the form of a scale-free network. 
Actual financial networks have also been characterized as particularly skewed, 
either following a power-law distribution of linkages (see Bech & Atalay, 2010; 

IRL is about 24% for the selected sample), illiquidity scenarios corresponding to about 76% of the 
short-term liquidity are interesting to examine.
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Boss, Elsinger, Summer, & Thurner, 2004; Inaoka, Ninomiya, Tanigushi, Shimizu, 
& Takayasu, 2004; Soramäki, Bech, Arnold, Glass, & Beyeler, 2007) or some other 
type of skewed distribution (see Craig & von Peter, 2014; Fricke & Lux, 2014; and 
Martínez-Jaramillo, Alexandrova-Kabadjova, Bravo-Benítez, & Solórzano-Mar-
gain, 2012). In the Colombian case, actual financial networks –including interbank 
networks- have been characterized as approximately following a power-law distri-
bution of linkages and their weights (see Cepeda, 2008; León & Berndsen, 2014; 
and León, Machado, & Sarmiento, 2018).

Figure 2. 
Average Contagion Effects 

Each line corresponds to one of the 90 n-day estimated average contagion effects caused by 
all financial institutions with outstanding claims in the interbank market (y-axis) as a function 

of the selected scenario . The bold line is the average of the 90 lines.
Source: Authors’ calculations.

Consequently, by focusing on the average effect, we are implicitly relying on the 
existence of a typical financial institution. This is a misleading approach due to the 
well-documented heterogeneous distribution of linkages and their weights among 
institutions participating in financial networks. As it is advisable to study extreme 
cases in particularly heterogeneous systems –such as financial systems-, Figure 3 
exhibits the maximum contagion effects.
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Maximum contagion effect also increases monotonically. The maximum conta-
gion effect for the base case scenario ( ) is bound to a reduction in 
short-term liquidity between 0.00% and 1.21%, which is –once more– rather neg-
ligible. The greatest n-day maximum contagion effect in our sample is equivalent 
to a short-term liquidity reduction of about 45.78%, but it occurs –again– only 
after a rather extreme and very unlikely illiquidity scenario ( ).

Figure 3. 
Maximum Contagion Effects 

Each line corresponds to one of the 90 n-day estimated maximum contagion effects caused 
by all financial institutions with outstanding claims in the interbank market (y-axis) as a func-

tion of the selected scenario . The bold line is the mean of the 90 lines.
Source: Authors’ calculations.

Figure 4 compares the distribution of the average and maximum contagion effects 
for all financial institutions and all illiquidity scenarios. Similarly to the previ-
ous situation, the average contagion effect is negligible, below 6% of the initial 
short-term liquidity for any financial institution or illiquidity scenario. The distri-
bution of the maximum contagion effects displays sizeable reductions in short-
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term liquidity, but they correspond to extreme illiquidity scenarios that appear to 
be implausible at best.10

Figure 4. 
Distribution of Average and Maximum Contagion Effects 

The average contagion effect is negligible, below 3% of the initial short-term liquidity for 
any financial institution or illiquidity scenario. The distribution of the maximum contagion 
effects displays sizeable reductions in short-term liquidity, but they correspond to extreme 
illiquidity scenarios that appear to be implausible at best.
Source: Authors’ calculations.

The time-series dynamics of potential contagion effects may be illustrative for 
monitoring purposes by financial authorities. For instance, tracking the dynamics 
of the average and maximum contagion effect for the base scenario ( )  
may help to identify changes in the potential outcomes of a default for the inter-
bank market, and the potential liquidity needs that the system may face in such 
event. Correspondingly, Figure 5 presents the dynamics of the estimated aver-
age and maximum contagion effects throughout the sample in the absence ex-ante 
liquidity reductions. Consistent with previous results, in the base case scenario, the 

10 It is quite likely that financial authorities will avoid these extreme scenarios by any means neces-
sary (e.g. last-resort lending facilities, emergency acquisitions, or bail outs, etc.).
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interbank market would face an average drop in short-term liquidity of between 
0.00%-0.11%, whereas the maximum drop would be between 0.00%-1.21%. Once 
again, contagion in this type of base case scenario appears to be minor, but their 
time-series dynamics may be worth monitoring by financial authorities.

Figure 5. 
Contagion Effects Throughout the Sample 

This figure displays the average and maximum contagion effect arising from the default of 
a financial institution for each day in the sample in the base case scenario ( ). 
Consistent with previous results, in this scenario, the interbank market would face an aver-
age drop in short-term liquidity of between 0.00%-0.11%. The maximum drop would be 
between 0.00%-1.21%.
Source: Authors’ calculations.

Estimating the effects caused by each financial institution defaulting under each 
illiquidity scenario for each of the 90 days in the sample yields 138,900 observa-
tions (i.e. number of days (90) times the scenarios (100) times the number of finan-
cial institutions with outstanding borrowing in the interbank market in each day). 
98.97% correspond to dynamics not leading to any default; that is, irrespective of 
the designated default or the illiquidity scenario, subsequent defaults caused by 
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contagion are particularly rare. As exhibited in Figure 6, 1,197 (0.86%) obser-
vations correspond to one financial institution defaulting. Cascades consisting of 
two, three, four, five, and six defaulting institutions are rare as well, and they 
are observed on 172 (0.12%), 44 (0.03%), 17 (0.01%), 3 (0.00%), and 1 (0.00%) 
occasions, respectively. Consequently, as expected from the size of the Colombian 
interbank market, contagion effects are rather minor, and they tend to occur as the 
illiquidity scenario becomes tougher (e.g. ).

Figure 6. 
Number of Financial Institutions Defaulting as a Result of Contagion 

This figure displays the number of financial institutions that defaulted because of contagion 
dynamics (y-axis) for each one of the illiquidity scenarios (x-axis) for each of the 90 days 
in the sample. Each dot may represent more than one observation. Most of the observations 
(98.97%) correspond to no defaults.
Source: Authors’ calculations.

All in all, it is rather evident that contagion effects by themselves are not a threat 
to the stability of the system under analysis. Irrespective of the metric employed 
(i.e. the reduction in short-term liquidity or the number of institutions default-
ing), results tend to display negligible or non-substantial contagion effects. Unless 
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a major drop in the short-term liquidity of all participants precedes the conta-
gion dynamics, we consistently find that the interbank network is rather robust 
to average events (i.e. the default of an average financial institution). Likewise, 
most maximum contagion events are far from substantial, whereas a major –but 
unlikely– drop precedes those that may be important for the short-term liquidity 
of all participants.

This result may be related to the size of the interbank market and its correspond-
ing claims network. This lack of substantial contagion effects in the Colombian 
financial market is not limited to this study. Cepeda and Ortega (2015) also find 
that contagion in the Colombian large-value payment system is mitigated once 
high-quality assets are considered as potential sources of liquidity. Upper (2011) 
suggests that contagion due to exposures in the interbank loan market is an 
unlikely event in the sense that it happens in only a small fraction of the scenar-
ios considered. In the same vein, Roukny et al. (2013) report that contagion effects 
in financial networks are not substantial if no additional sources of distress (e.g. 
deposit runs, fire-sales, credit runs) are considered. Battiston et al. (2015) suggest 
that as financial regulation recommends that financial institutions keep individual 
credit exposures to a manageable limit (e.g. with respect to equity or total credit 
exposure), it is very unlikely that a single initial financial institution’s default will 
trigger any other default. Therefore, our results regarding the limited impact of 
contagion effects on the local interbank market is an already documented trait of 
other financial markets.

SYSTEMIC IMPORTANCE OF FINANCIAL  
INSTITUTIONS
The previous section concluded that contagion effects are non-substantial. The 
number of financial institutions defaulting as a consequence of contagion dyna-
mics is low, and it is a rather exceptional outcome that involves unlikely extreme 
illiquidity scenarios. Also, most reductions in short-term liquidity caused by con-
tagion are non-substantial, and those that are non-negligible also involve implau-
sible extreme illiquidity scenarios. However, examining how individual financial 
institutions contribute to the occurrence of defaults and the reduction in short-
term liquidity may reveal important information about their systemic importance. 
Hence, the higher the contribution of financial institution i to defaults and short-
term liquidity drops, the higher its systemic importance.

Figure 7 displays to what extent each financial institution (y-axis) contributes to 
the contagion-related total short-term liquidity reduction for all illiquidity sce-
narios. It is evident that the default of financial institution #26 contributes the 
most to reductions in the system’s short-term liquidity: about 14.2%. Accordingly, 
financial institution #26 may be easily deemed as the most systemically impor-
tant for the interbank network under analysis in terms of its short-term liquidity 
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effects. Financial institutions #24, 28, and 20 belong to a second tier of systemi-
cally important financial institutions and contribute about 8%-9% each, whereas 
those remaining contribute less than 7% each.

Figure 7. 
Financial Institutions’ Individual Contribution to the System’s Short-Term Liqui-
dity Reduction for All Illiquidity Scenarios

Financial institution #26’s default contributes the most to reductions in the system’s short-
term liquidity: about 14.2%.
Source: Authors’ calculations.

Regarding the contribution to the total number of defaults caused by contagion 
effects, Figure 8 shows that financial institution #24 is the most representative 
(21.2%), and, hence, it may be considered the most systemically important finan-
cial institution in the Colombian interbank market in terms of subsequent defaults. 
The second most representative financial institution is #11 (17.6%). Financial 
institutions #17 and 26 are part of the third tier of systemic importance, con- 
tributing about 11% and 10%, respectively. The remaining financial institutions 
contribute less than 6% each.
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Figure 8.
Financial Institutions’ Individual Contribution to the System’s Total Defaults for 
All Illiquidity Scenarios

Financial institution #24’s default contributes 21.2% of the defaults.
Source: Authors’ calculations.

As expected when assessing financial institutions’ systemic importance, we find 
that the negative effects resulting from contagion are decidedly concentrated in 
just a few financial institutions: namely #26, 24, and 11. However, as most conta-
gion effects portrayed here are conditional on the occurrence of major –but very 
unlikely– scenarios of generalized illiquidity, conclusions about the systemic 
importance of these financial institutions for the entire financial system may be 
unjustified. Furthermore, their systemic importance is bounded to the local inter-
bank network, which, in the Colombian case, is not particularly representative of 
the whole financial system.

FINAL REMARKS
We used the DebtRank methodology (Battiston et al., 2012b) in order to examine 
how the default of a selected financial institution in the current Colombian inter-
bank network impacts the short-term liquidity position of its counterparties and 
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the system as a whole. Instead of focusing on the impact that default has on finan-
cial institutions’ capital buffer (i.e. their solvency), we focused on how an initial 
default eroded their ability to refund interbank loans (i.e. their short-term liquid-
ity) and eventually forced them into default.

Consistent with the literature on direct-linkage financial contagion (Furfine, 2003; 
Roukny et al., 2013; Upper, 2011), contagion effects resulting from an initial 
default in the interbank market are non-substantial. Unless contagion dynamics 
are preceded by a major –but unlikely– drop in the short-term liquidity position of 
all participants, we consistently find that contagion effects on individual and sys-
tem’s short-term liquidity are negligible. Our results are consistent with reported 
features of banking crises, which tend to be caused by shocks that hit several banks 
simultaneously rather than domino effects from idiosyncratic failures (see Upper, 
2011). Likewise, our results concur with those reported by Roukny et al. (2013), 
who find that the network topology matters only when financial markets are under 
stress (e.g. illiquid).

The methodological contribution of our work is relevant. By modifying DebtRank 
to recursively measure contagion effects in the short-term liquidity position of 
financial institutions, we supplement financial authorities’ monitoring tools. In this 
sense, we capture the advantages of DebtRank to conveniently measure how con-
tagion may affect financial institutions’ ability to refund interbank loans in the 
short-term.

Despite the lack of systemic impact of contagion effects in the base case sce-
nario, our results are also valuable for financial authorities. The numerical 
outcomes provide an economically meaningful quantitative assessment of the sys-
temic importance of financial institutions based on their potential effect on finan-
cial institutions’ short-term liquidity. Moreover, based on the potential effect on 
the system’s liquidity, our results provide a quantitative assessment of the liquid-
ity that should be obtained from other available sources in case of a default by 
a financial institution, such as collateralized borrowing (e.g. from other finan-
cial institutions or the central bank), selling financial assets, or increasing de- 
posits. Nevertheless, as most contagion effects here portrayed are conditional on 
the occurrence of major –but unlikely– scenarios of generalized illiquidity, conclu-
sions about the systemic importance may be unjustified. Consequently, it is impor-
tant to emphasize that systemic importance resulting from this exercise is bounded 
to the local interbank network, which may not be particularly representative of the 
whole financial system in the Colombian case.

Due to the aim and scope of our research, there are several issues that should 
be addressed in order to enhance the examination of financial contagion in the 
Colombian case. For instance, as in Müller (2006), it is advisable to simultane-
ously examine the impact of default contagion on solvency and liquidity. Estimat-
ing how financial institutions react to their counterparties’ defaults (see Martínez 
& Cepeda, 2015) and incorporating such reactions in the contagion dynamics may 
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also enrich the analytical reach of the model; additionally, it may be interesting to 
consider financial authorities’ reactions. Moreover, as in Tabak et al. (2013) and 
Poledna et al. (2015), it is imperative to articulate this type of systemic importance 
assessment by estimating default probabilities to assess systemic risk of finan-
cial systems’ expected impact over a determined time horizon. Furthermore, as 
illustrated in the multi-layer financial exposures network model by Poledna et al. 
(2015), it is convenient to associate different sources of exposures among finan-
cial institutions (e.g. derivatives, security cross-holdings) in order to have a com-
prehensive measure of direct-linkage contagion; therefore, it is likely that the 
non-substantial contagion effects reported here may be due to underestimating 
systemic impact that results from focusing on the interbank market only. Finally, 
it is also convenient to couple direct- (e.g. mutual exposures) and indirect-linkage 
(e.g. fire-sales, deposit runs, credit runs) contagion models with the aim of attain-
ing a comprehensive measure of financial contagion.
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APPENDIX 1: DEBTRANK
As noted by Battiston et al. (2012b), there are two variables associated with each 
node in a financial exposures network. One measures each financial institution’s 
level of distress (h

i
) and the other (S

i
) denotes three possible states that this finan-

cial institution may take: undistressed (U), distressed (D) and inactive (I). The 
individual level of distress (h

i
) is a continuous variable that takes a value in the 

zero-one closed interval: [0,1]. Thus, h
i 
(t) = 0 corresponds to an undistressed 

financial institution whereas h
i 
(t) = 1 belongs to a defaulting financial institution:

  (6)

For a given point in time t the dynamics for the i – th node (financial institution) 
are given by the minimum value between one and its updated level of distress. 
This updated level depends on its own level of distress registered in the previous 
period (h

i 
(t – 1)) and on the distress level that financial institution i received from 

its counterparties (represented by the summation of the impacts caused by all the  
j – th institutions that became distressed in the former period (h

j 
(t – 1)).

The weights matrix (w), required to compute the individual level of distress (h
i 
(t)) , 

contains impacts (w
ij
) that are measured as the minimum value between one (1) and 

the liabilities-to-capital ratio for financial institution i (A
ij 

/E
ij
):

 
. 

Hence, if node j defaults, node i suffers a loss equal to A
ij
. As long as the level of 

capital overpasses loss (E
i 
> A

ij 
), the impact of node j on node i is given by the lia-

bilities-to-capital ratio, otherwise, the impact is equal to one (indicating that node 
i defaulted).

The individual level of distress (given by equation 6) can be computed only for t  2.  
For t = 1, an initial condition should be imposed in order to make this expression 
mathematically possible. This initial condition consists of setting , 
where the (assumed) initial level of distress is , and S

f
 is the set of distressed nodes 

at t = 1. It is also assumed that , and that  = 1 represents the distressed 
node (Battiston et al., 2012b). Therefore, for t  2 equation (6) determines the 
DebtRank dynamics, which can be understood as the cases based on impacts that 
affect the nodes (financial institutions) irrespective of whether an event of default 
occurred (Battiston et al., 2015). The procedure continues computing impacts until 
all nodes (financial institutions) in the network are either undistressed (U) or inac-
tive (I). At that point, the dynamics stop, and the DebtRank (DR) measure can be 
calculated as:

 DR h T v h v
j

j j j j= ( ) − ∑ ( )∑ 1  (7)
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In equation (7) the economic value of a node is given by � �v j , and is computed by 
a financial institution’s assets invested as a fraction of the total assets invested in 

the market . Hence, DebtRank measures the distress of the entire 

system, excluding the initial (assumed) level of distress (second term in equation 
7). In economic terms, this measure computes the total loss in the system (in mone-
tary terms) that is generated by the assumed initial default (Battiston et al., 2012b).

Several authors have remarked on the advantages of DebtRank in contrast to 
other measures of systemic distress in a network (Battiston et al., 2012b; Tabak 
et al., 2013; and Thurner & Poledna 2013). In particular, the DebtRank mea- 
sure has an economic interpretation in monetary terms and, also, it is considered a 
good early-warning indicator. Likewise, the computation of distress by means of  
DebtRank excludes the possibility of double-counting the impacts of a shock 
(default). In other words, once a shocked financial institution has affected its coun-
terparties, it enters into an inactive state (I), which allows the institution to be 
impacted by shocks coming from other participants in the market; however, it 
blocks the re-transmission of these shocks. For this reason, unlike eigenvector 
centrality or PageRank, it is recognized that under the DR measure, cycles have a 
finite reverberation (Battiston et al., 2012b).
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