
25

a Universidad Distrital Francisco José de Caldas, Colombia. 
 Correo electrónico: demontoyaa@correo.udistrital.edu.co. orcid: https://orcid.org/0000.0003.4747.0002
b Universidad Distrital Francisco José de Caldas, Colombia. 
 Correo electrónico: jmcaguah@correo.udistrital.edu.co. orcid: https://orcid.org/0000.0002.1683.9068
c Universidad Distrital Francisco José de Caldas, Colombia. 
 Correo electrónico: gapuerto@udistrital.edu.co. orcid: https://orcid.org/0000-0002-6420-9693

Design of a Flattening Filter Using Fiber 
Bragg Gratings for edfa Gain Equalization: 
An Artificial Neural Network Application
David Esteban Montoya Albaa ■ Jhonatan Mcniven Cagua Herrerab ■ Gustavo 
Adolfo Puerto Leguizamónc 

Abstract: This paper presents a proposal for the non-uniform gain compensation of an Erbium-
doped fiber optic amplifier (edfa) in a Wavelength Division Multiplexed (wdm) system using Fiber 
Bragg Gratings (fbg). In this proposal, the multilayer perceptron feed-forward artificial neural 
network with backpropagation was trained under the secant method (one-step secant) and was se-
lected according to mean square error measurement. The proposal optimizes fbg parameters such 
as center frequency, rejection level and length in order to determine a filtering response based on a 
reduced number of fbgs that will be used to flatten the non-linear response of the amplifier gain and 
avoid the per-carrier treatment of a standard flattening filter. While an artificial neural network with 
a 7-10-6 structure demonstrated the feasibility of equalizing the gain of an edfa using as few as three 
fbgs, a 25-18-12 structure improved the results when the configuration consisted of an fbg array of 
six resonances that provided similar results to that featured by the standard gain-flattening filter. 
The proposal was evaluated in an amplified wdm system of eight optical carriers located between 
195-196.4 THz.
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Resumen: este artículo presenta una propuesta para la compensación de la ganancia no uniforme 
de los amplificadores ópticos de fibra dopada con Erbio (edfa) en sistemas multiplexados por longi-
tud de onda (wdm) usando redes de difracción de Bragg (fbg). En esta propuesta las redes neuronales 
artificiales tipo perceptrón multicapa con propagación hacia atrás (feed-forward backpropagation) se 
entrenaron bajo el método de la secante (one-step secant) y se seleccionaron según error cuadrático 
medio. La propuesta optimiza los parámetros del fbg, como la frecuencia central, el nivel de rechazo 
y la longitud para determinar una respuesta de filtrado basada en un número reducido de fbg que se 
utilizarán para aplanar la respuesta no lineal de la ganancia del amplificador y evitar el tratamiento 
por portadora de un filtro de aplanamiento estándar. Mientras que una red neuronal artificial con 
una estructura de 7-10-6 demostró la viabilidad de igualar la ganancia de un edfa utilizando tan solo 
tres fbg, una estructura de 25-18-12 mejoró los resultados cuando la configuración consistió en un 
arreglo de seis fbg que proporcionaron resultados similares a los que ofrece el filtro estándar de 
aplanamiento de ganancia. La propuesta se evaluó en un sistema wdm amplificado de ocho portadoras 
ópticas ubicados entre 195 THz y 196,4 THz.

Palabras-clave: red neuronal artificial; edfa; filtro de aplanamiento; red de difracción de Bragg; 
multiplexación por división de longitud de onda.



27
Design of a Flattening Filter Using Fiber Bragg Gratings for edfa Gain Equalization: 
An Artificial Neural Network Application

Revista Ciencia e Ingenieria Neogranadina  ■  Vol. 29(2) 

Introduction
Data transport has experienced a significant in-
crease in its capacity due to the use of optical fiber 
as the underlying physical layer platform in cur-
rent transport network deployments. The charac-
teristics of the optical fiber allow having greater 
bandwidth and lower attenuation as compared 
to traditional copper-based transmission lines. In 
the context of a transport network, one of the key 
elements needed and widely used is the Erbium 
Doped Fiber Amplifier (edfa) [1-3].

The edfa compensates the attenuation imposed 
by the fiber. One of the main particularities of the 
edfa is the non-uniform gain spectrum, which re-
sults in distortions of the signal and penalties to the 
signal-to-noise ratio that restricts the usable trans-
mission bandwidth [4-5]. To correct the non-uni-
form gain of the edfa amplifier, a gain flattening 
filter is normally used. To date, different approaches 
to flatten the non-uniform gain of an edfa have 
been proposed. Companies such as Lumentum 
and Iridian provide solutions mainly based on 
the use of thin-film filters in order to equalize the 
non-uniform gain of the edfa [6-7]. Related works 
have also included the use of a model that employs 
a hybrid optical amplifier consisting of an edfa 
and a Raman amplifier proposed for a 20×50 Gbps 
wdm system [8]. In this context, Fiber Bragg Grat-
ings (fbg) have also drawn attention as a filtering 
method to flatten the edfa gain because of its low 
losses, wide bandwidth, low group delay, insensi-
bility to Polarization Mode Dispersion (pdl) and 
direct compatibility with the optical fiber. Thus, a 
system with Two Long-Period Fiber Gratings (lp-
fgs) equipped with divided coil heaters controlled 
individually to maintain optimum gain-flatness 
for different edfa operation condition was pro-
posed in [9]. However, one of the facts that prevent 
the popularization of this kind of filter lies in the 
use of a dedicated fbg per wavelength channel. 
This paper explores the feasibility and impact of 
using a reduced number of fbg for a given number 
of optical carriers on the link. 

In this context, taking advantage of the ability 
of neural networks to emulate systems, an artificial 

neural network (ann) is proposed in order to de-
termine the best possible response of a flattening 
filter based on fbg in a wdm link that transports 
eight C-band carriers. A related work about the use 
of artificial neural networks in the context of ed-
fas and wdm transport is described in [10]. This 
proposal is based on the fact that an ann allows 
emulating systems that do not have an identifiable 
model, provided that a basic set of input and out-
put data of such system is available. Thus, with a 
sufficiently large database of inputs and outputs of 
the optical system, an approximation to its behavior 
can be modeled and a regression analysis can be 
performed. This will allow emulating the outputs 
of the system from known inputs and define the 
necessary inputs for a desired output.

This work aims to demonstrate the capacity of 
an artificial neural network to assist the design of a 
cost effective optical wdm system by reducing the 
optical components required to get a flatten gain, 
while assuring suitable performance in terms of 
transported signal quality. 

Materials and Methods

Fiber Bragg Grating
Fbgs arose from the discovery of the photosensi-
tivity property of optical fibers. These devices are 
able to perform filtering functions with low atten-
uation and low differential group delay. In its most 
generic form, an fbg consists of periodic modulation 
of the core refractive index of an optical fiber. In a 
uniform fbg, the refractive index of the fiber core 
varies periodically along the length of the fiber as 
seen in Fig. 1.

Fig. 1. Fiber Bragg Grating structure. 
Adapted from [11].
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The Bragg wavelength is defined as:

λB=2n_eff Λ              (1)

Where neff is the effective refraction index of the 
grating and Λ is the grating period. Thus, a wave-
length that matches the Bragg wavelength is reflec-
ted while the rest of optical spectra are transmitted 
along the grating. In this context, the fbg features 
a band-reject filtering profile that can be exploi-
ted in order to shape a tailored band-stop profile 
by cascading different fbgs operating at different 
Bragg wavelengths.

Artificial Neural Network
An ann is a system that emulates the configura-
tion of biological neural networks, which consist 
of many simple processors (neurons) connected 
together by layers, each producing a sequence of 
activations of a real value [12-14]. anns see any sys-
tem as a black box, where current inputs determine 
the outputs of the system. For a single neuron, its 
output is given by:

f (u + w1 x1 + w2 x2 + w3 x3 + w4 x4 + .... +wn xn)  (2)

Where u is a bias level, f is the activation func-
tion of the neural network, x are the inputs and 
w are the weights for each one of the inputs. In 
the case of a neural network, inputs can act as the 
output of another neuron. For the particular case 
of a neural network with two inputs, two neurons 
in the input layer and a neuron in the output layer 
is defined as: 

f1 [u31+w32*f2 (u11+w12 x1+w13 x2 )+w33*f2 

(u21+w22 x1+w23 x2)]  (3)

In order to train the neural network, the acti-
vation function that governs the operation of the 
network must be linear and easily derivable. In this 
context, three different activation functions have 
been defined, namely, direct relationship (purelin), 
sigmoid hyperbolic tangent (tangsig), and loga-
rithmic sigmoid (logsig) [15]. As our system only 
manage positive values in both inputs and outputs, 

the logsig function will be used in all layers. The 
logarithmic sigmoid function logsig is defined as:

           (4)

With its derivative defined as:

f ' (x)=f(x)*(1-f(x))           (5)

Because the logsig function is defined between 
0 and 1, it is necessary to normalize the values of 
inputs using the equation:

           (6)

Where Vn is the normalized value, Vmin is the 
minimum value of the input and Vmax is the maxi-
mum value of such input. outputs of the neural 
network will also be defined between 1 and 0, thus 
it is necessary to denormalize outputs, using the 
inverse of eq. (6) as:

 V=Vn (Vmax-Vmin)+Vmin         (7)

Simulation Setup
Training a neural network requires a database that 
must be as large as possible in order to emulate the 
system and avoid problems due to bias in data. For 
such purpose two tests were carried out in Op-
tisystem, the general layout is shown in Fig. 2. A 
wdm transmitter generating eight channels that 
transport 10 Gbps Non-Return-to-Zero (nrz) en-
coded data launches the optical carriers to the fiber 
link. The optical power of each carrier is 1 mW. 
An edfa amplifies the signals and subsequently a 
fbg filter-based flattening filter is used to equalize 
the non-uniform gain of the edfa. The dual port 
wdm analyzer collects and stores the optical power 
of the eight carriers measured before and after 
propagation through the fbgs. While in the first 
test the flattening filter for the eight carriers uses 
three fbgs as seen in Fig. 2, in the second test the 
flattening gain system uses six fbgs. For the first 
test, the database was completed after 948 running 
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simulations in which the optical power of the eight 
carriers is collected based on the configuration 
of two relevant parameters, namely, fbg central 
frequency and its physical length. In this test, the 
operating frequency of three fbgs was evaluated 
between 192.5-196.1 THz and the fbg filtering 
response based on its length was evaluated from 
values ranging between 1-40 mm. The second test 
includes the assessment of a system based on six 
fbgs evaluated between 189-197,783 THz and a 
physical length between 1-40 mm, whose database 
is defined through 1920 simulations.

In this context, ann inputs are the central 
frequency of the eight optical carriers defining a 
band of 1.4 THz located between 195-196.4 THz 
with a frequency spacing of 200 GHz between car-
riers. These inputs have a direct relation with the 
technical considerations of the fbg design, as their 
resonances must be allocated into the 1.4 THz 
band; however, the central frequency of an fbg 
resonance is not necessarily the central frequen-
cy of an optical carrier. In fact, this represents the 
main motivation of this work since it deals with 
the definition of physical parameters for a number 
of filters fewer than that of optical carriers in order 
to optimize the resources that make up a flattening 
filter response.

Data Processing
After having completed the database, a Matlab code 
is implemented and executed in order to define 
the best internal structure of the neural network. 
The code performs the following procedures:

 ◾ The database is loaded into the program where 
each element of the database consists of 14 
values: 8 inputs (8 optical carriers) and 6 out-
puts (length and central frequency for the 
three-fbgs-based flattening filter). 

 ◾ The loaded data is normalized.

 ◾ Database elements are randomly divided into 
70 % for training and 30 % for validation in 
order to avoid overtraining.

 ◾ Inputs and their respective outputs are separated 
for both training and validation data elements.

 ◾ Different neural networks with an m-n-6 struc-
ture are created, where n varies between 6 and 
20, and m varies between 6 and 30.

 ◾ Each of the neural networks created is trained. 
The training of the neural network begins with 
a random synaptic weight where the neural net-
work is simulated with the eight inputs of the 
first database element. Then, the generated out-
puts are compared with the expected ones and 
the derivative of the error is found with respect 
to each weight. Then, each weight is corrected 
with respect to its own error derivative according 
to eq. (4) and eq. (5), respectively. Subsequently, 
an iterative set of simulations with the rest of 
the database elements is performed. It is worth 
to point out that the creation of the ann was 
adjusted to 3,500 iterations to avoid overtrain-
ing. Also, bias is an input of each neuron that is 
used as a constant value for the function of the 
neuron. It has its own weight that multiplies 

Fig. 2. wdm system layout implemented in Optisystem.
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it and therefore its error derivative is also cal-
culated. Finally, the bias is also modified in 
each iteration.

 ◾ The total error validation for each ann is per-
formed using the Mean Square Error (mse) as 
follows:

            (8)

Where Errto is the total error of the neural net-
work, So is the output “o” of the neural network, 
and Yo is the correct output. There are six outputs 
for each of the 288 validation data whose expected 
outputs were already known.

 ◾ The total validation error and neural networks 
are stored.

 ◾ As the error function is overly complex due to 
the nature of the ann, it might get stuck in a 
local minimum in the training stage. For this 
reason, it is necessary to train several neural 
networks in order to try to find the global mini-
mum of the error function.

Results
After executing the code, the data are organized 
and analyzed by averaging the results in which the 

lowest mse was found. Fig. 3 shows the contour 
graph that represents the mse measured based on 
the number of neurons in both the input and in-
termediate layers. The results show that the lowest 
mse corresponds to the ann structure 7-10-6, i.e. 7 
neurons in the input layer, 10 neurons in the inter-
mediate layer and 6 neurons in the output layer as 
described above. 

Once the structure is chosen, 50 anns with 
the structure (7-10-6) were generated and trained. 
Each one of them creates a different equation 
to simulate the system. Thus, there will be some 
anns that simulate the system better than others. 
Due to the amount of time it takes to build each 
ann, it was considered that 50 were an amount 
large enough to obtain an ann that would proper-
ly simulate the system. Subsequently, the 50 anns 
are assessed to find out the one that had the lowest 
validation error. Once the ann that best simulates 
the three fbgs system is found, the gain for each 
one of the eight optical carriers is introduced. In our 
approach we defined a flat gain of 26 dB for the op-
tical carriers. Finally, the outputs provided by the 
code are both the physical length of the fbg and 
the operation frequency that the three fbgs must 
have in order to assure the targeted gain. 

Once the characteristics of the fbg are ob-
tained, these values   are introduced in Optisystem, 
where the values   are used as a base and are slightly 

Fig. 3. Total error as a function of the number of neurons.
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modified in order to obtain a better response in 
gain. The best response is considered taking into 
account three parameters: mean square error, 
standard deviation and average deviation with 
respect to the desired value of 26 dB for all of the 
eight carriers. Table 1 presents the results for the syn-
thesis of the flattening filter based on three fbgs. 
The results show that frequency spacing between 
the resonances of the first and second fbg is 200 
GHz and between the second and the third fbg 
is 370 GHz. Table 2 shows the measured mse fea-
tured by the non-equalized system, i.e. the edfa 
gain, the flattening filter based on three fbgs and 
the conventional flattening filter with respect to a 

target constant gain of 26 dB. The improvement 
factor is defined as the fraction between mse per-
formed by the system without equalization and the 
mse featured by the flattening filter techniques. 

Notice that while the approach based on three 
fbgs improves the gain response of the edfa by 
a factor of 18.5, the standard flattening filter im-
proves it by a factor of 272. This behavior can be 
observed in Fig. 4 where the gain response for a 
system without equalization is depicted along with 
the response of a standard flattening filter and the 
approach based on three fbgs, all of them con-
trasted against the targeted flatten gain of 26 dB 
within the evaluated frequency band.

Table 1. Characteristics found for the flattening filter based on three fbgs.

fbg 1 fbg 2 fbg 3

Frequency (THz) Length (mm) Frequency (THz) Length (mm) Frequency (THz) Length (mm)

195.59 14 195.79 13 195.42 33

Table 2. Mean square error for the flattening filter based on three fbgs

Mean Square Error (mse) Improvement factor*

Without equalization 90.06606394

Flattening filter based on three fbgs 4.865838017 18.50987715

Standard flattening filter 0.33108696 272.031

*With respect to the edfa gain without equalization

Fig. 4. Gain as function of frequency for a system without equalization (dashed line), with a standard flattening 
filter (thin solid line), flattening filter based on three fbgs (dotted line), and the target gain at 26 dB (bold solid line).
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In the second test, the flattening filter is re-
placed with the approach based on six fbgs evalu-
ated between 189-197,783 THz and physical length 
between 1-40 mm. Subsequently, the optical power 
of each one of the eight carriers was registered. Ob-
taining the data requires a large amount of time 
since it requires a simulation and transcription 
process, for this reason the data was collected until 
the amount was considered adequate for the ann 
to simulate the system. For this test, 1,920 simula-
tions were performed in order to obtain the data-
base. Then, after following a similar procedure as 
that performed for the system based on three fbgs, 
the data were organized and represented in Fig. 5. 
Results show that a suitable value of mse is given 

by a 25-18-12 ann structure; that is, 25 neurons for 
the input layer, 18 neurons for the intermediate lay-
er and 12 neurons for the output layer (length and 
central frequency for the system based on six fbgs).

Table 3 shows the results for the synthesis of the 
flattening filter based on six fbgs

Table 4 and Fig. 6 show the measured mse for the 
flattening gain filter based on six fbgs and the con-
ventional technique. As can be seen, the approach 
based on six fbgs results in an improvement factor 
of 149.8, i.e. it represents a closer approximation to 
the target gain of 26 dB as compared to the results 
given by the system based on three fbgs. This be-
havior is observed in Fig. 6; notice that from 195.2 
and 196.2 THz the obtained gain is equalized.

Fig. 5. Total error as a function of the number of neurons.

Table 3. Characteristics found for the flattening filter based on three fbgs

fbg 1 fbg 2 fbg 3

Frequency (THz) Length (mm) Frequency (THz) Length (mm) Frequency (THz) Length (mm)

195.2 3.55 195.4 5.31 195.6 6.1

fbg 4 fbg 5 fbg 6

Frequency (THz) Length (mm) Frequency (THz) Length (mm) Frequency (THz) Length (mm)

195.8 5.98 196 4.98 196.1855 28.4
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The results summarized in Table 2 and Ta-
ble 4 show that a mse lower than that provided 
by the standard flattening filter was not achieved by 
the system based on fbgs, as it performed an im-
provement factor of 14.6 times better when com-
pared to the system based on three fbgs and just 
1.8 times better than the flattening filter based on 
six fbgs.

In order to evaluate the impact of having a flat-
tening filter, the quality of signal based on the bit 
error rate (ber) and q factor measurement was per-
formed over the eight optical carriers. The trans-
ported signals per carrier consisted of a 10 Gbps 
nrz encoded and an optical power of 0 dBm. The 
link consisted of a standard single mode fiber spam 
of 100 km. Table 5 shows the signal quality found 

for the flattening filter based on three and six fbgs 
respectively. The table contrasts the results for the 
quality obtained with a standard flattening filter.

As seen, both the Q factor and ber are degraded 
in the system based on three fbgs. It means that 
the filtering response featured by only three fbgs, 
as shown in Fig. 6, is not suitable to assure a flat 
gain over the spectra used by the eight optical car-
riers. In contrast, the quality of signal found with 
the system based on six fbgs is similar to that pre-
sented by the standard flattening filter. It means 
that, while the equalization system based on fbgs 
approaches the results provided by the conven-
tional system used to equalize the optical power, 
it requires less components to perform with the 
same quality features.

Table 4. Mean square error for the flattening filter based on three fbgs

Mean Square Error (mse) Improvement factor*

Without equalization 90,0660639

Flattening filter based on six fbgs 0,600990184 149,862787

Standard flattening filter 0,33108696 272,031

*With respect to the edfa gain without equalization

Fig. 6. Gain as function of frequency for a system without equalization (dashed line), with a standard flattening filter 
(thin solid line), flattening filter based on six fbgs (dotted line), and the target gain at 26 dB (bold continuous trace).
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Conclusion
This paper demonstrated the use of artificial neural 
networks in order to synthesize the filtering profile 
of a Fiber Bragg Grating array with a fewer number 
of resonances compared to the number of trans-
mitted channels. The proposal aims at equalizing 
the gain of an Erbium Doped Fiber Amplifier for 
a flattened amplification of a Wavelength Division 
Multiplexed signal. We found a 7-10-6 structure 
for the artificial neural network that demonstrat-
ed the feasibility of equalizing the gain of an edfa 
using as few as three fbgs. Improved results were 
obtained when the configuration consisted of an 
fbg array of six resonances derived from an ar-
tificial neural network with a 25-18-12 structure. 
While the system based on three fbgs featured 
an improvement factor of 18.51 compared to the 
system without equalization, an improved fac-
tor of roughly 149 was achieved with the system 
based on six fbgs. It is worth to point out that the 
per-carrier treatment of the standard flattening 
filter makes it perform better than the approach 
based on fbgs in terms of mse measurement. How-
ever, this fact is barely appreciated in the quality of 
signal measurement as the approach based on six 
fbgs provided similar results to that featured by 
the standard gain-flattening filter for eight optical 
carriers. Thus, the use of artificial neural networks 
enables the synthesis of a flattening filter based on 
fbgs with a reduced number of optical devices. In 

this work, we demonstrated that six fbgs equalize 
the edfa gain for a wdm comb of eight channels 
keeping a similar performance provided by a stan-
dard flattening filter that requires a dedicated filter 
resonance per optical channel.
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