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A Hardware Accelerator for The Inference 
of a Convolutional Neural Network
Edwin Gonzáleza ■ Walter D. Villamizar Lunab ■ Carlos Augusto Fajardo Arizac

Abstract: Convolutional Neural Networks (CNNs) are becoming increasingly popular in deep learning 
applications, e.g. image classification, speech recognition, medicine, to name a few. However, CNN 
inference is computationally intensive and demands a large number of memory resources. This work 
proposes a CNN inference hardware accelerator, which was implemented in a co-processing scheme. 
The aim is to reduce hardware resources and achieve the best possible throughput. The design is 
implemented in the Digilent Arty Z7-20 development board, which is based on the Xilinx Zynq-7000 
System on Chip (SoC). Our implementation achieved a  of accuracy for the MNIST database using only 
a 12-bits fixed-point format. Results show that the co-processing scheme operating at a conserva-
tive speed of 100 MHz can identify around 441 images per second, which is about 17 % times faster 
than a 650 MHz - software implementation. It is difficult to compare our results against other Field-
Programmable Gate Array (FPGA)-based implementations because they are not exactly like ours. 
However, some comparisons, regarding logical resources used and accuracy, suggest that our work 
could be better than previous ones. Besides, the proposed scheme is compared with a hardware 
implementation in terms of power consumption and throughput.
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Acelerador en hardware para la inferencia de una red neuronal 
convolucional

Resumen: las redes neuronales convolucionales cada vez son más populares en aplicaciones de 
aprendizaje profundo, como por ejemplo en clasificación de imágenes, reconocimiento de voz, me-
dicina, entre otras. Sin embargo, estas redes son computacionalmente costosas y requieren altos 
recursos de memoria. En este trabajo se propone un acelerador en hardware para el proceso de 
inferencia de la red Lenet-5, un esquema de coprocesamiento hardware/software. El objetivo de la 
implementación es reducir el uso de recursos de hardware y obtener el mejor rendimiento computa-
cional posible durante el proceso de inferencia. El diseño fue implementado en la tarjeta de desarro-
llo Digilent Arty Z7-20, la cual está basada en el System on Chip (SoC) Zynq-7000 de Xilinx. Nuestra 
implementación logró una precisión del 97,59 % para la base de datos MNIST utilizando tan solo 12 
bits en el formato de punto fijo. Los resultados muestran que el esquema de co-procesamiento, el 
cual opera a una velocidad de 100 MHz, puede identificar aproximadamente 441 imágenes por se-
gundo, que equivale aproximadamente a un 17 % más rápido que una implementación de software a 
650 MHz. Es difícil comparar nuestra implementación con otras implementaciones similares, porque 
las implementaciones encontradas en la literatura no son exactamente como la que realizó en este 
trabajo. Sin embargo, algunas comparaciones, en relación con el uso de recursos lógicos y la preci-
sión, sugieren que nuestro trabajo supera a trabajos previos.

Palabras clave: CNN; FPGA; acelerador en hardware; MNIST, Zynq
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1 Introduction
Image classification has been widely used in many 
areas of the industry. Convolutional neural net-
works (CNNs) have achieved high accuracy and 
robustness for image classification (e.g. Lenet-5 [1], 
GoogLenet [2]). CNNs have numerous potential 
applications in object recognition [3, 4], face detec-
tion [5], and medical applications [6], among oth-
ers. In contrast, modern models of CNNs demand 
a high computational cost and large memory 
resources. This high demand is due to the multiple 
arithmetic operations to be solved and the huge 
amount of parameters to be saved. Thus, large 
computing systems and high energy dissipation 
are required.

Therefore, several hardware accelerators have 
been proposed in recent years to achieve low 
power usage and high performance [7-10]. In [11] 
an FPGA-based accelerator is proposed, which 
is implemented in Xilinx Zynq-7020 FPGA. They 
implement three different architectures: 32-bit 
floating, 20-bits fixed point format and a binarized 
(one bit) version, which achieved an accuracy of 
96.33 %, 94.67 %, and 88 %, respectively. In [12] an 
automated design methodology was proposed to 
perform a different subset of CNN convolutional 
layers into multiple processors by partitioning 
available FPGA resources. Results achieved a 3.8x, 
2.2x and 2.0x higher throughput than previous 
works in AlexNet, SqueezeNet, GoogLenet, respec-
tively. In [13] a CNN for a low-power embedded 
system was proposed. Results achieved 2x energy 
efficiency compared with GPU implementation. In 
[14] some methods are proposed to optimize CNNs 
regarding energy efficiency and high through-
put. In this work, an FPGA-based CNN for Lenet-5 
was implemented on the Zynq-7000 platform. It 
achieved a 37 % higher throughput and 93.7 % less 
energy dissipation than GPU implementation, and 
the same error rate of 0.99 % in software imple-
mentation. In [15] a six-layer accelerator is imple-
mented for MNIST digit recognition, which uses 25 
bits and achieves an accuracy of 98.62 %. In [16] a 
5-layer accelerator is implemented for MNIST digit 
recognition, which uses 11 bits and achieves an 
accuracy of 96.8 %.

It is important to note that most of the works 
mentioned above have used High-Level Syn-
thesis (HLS) software. This tool allows creating a 
software accelerator directly, without the need to 
manually create a Register Transfer Level (RTL). 
However, HLS software generally causes higher 
hardware resource utilization, which explains why 
our implementation required less logical resources 
than previous works.

In this work, we implemented an RTL architec-
ture for Lenet-5 inference, which was described by 
using directly Hardware Description Language 
(HDL) (eg. Verilog). It aims to achieve low hard-
ware resource utilization and high throughput. 
We have designed a Software/Hardware (SW/HW) 
co-processing to reduce hardware resources. The 
work established the number of bits in a fixed-
point representation that achieves the best ratio 
between accuracy/number of bits. The implemen-
tation was done using 12-bits fixed-point on the 
Zynq platform. Our results show that there is not a 
significant decrease in accuracy besides low hard-
ware resource usage. 

This paper is organized as follows: Section 2 
describes CNNs; Section 3 explains the proposed 
scheme; Section 4 presents details of the implemen-
tation and the results of our work; Section 5 dis-
cusses results and some ideas for further research; 
And finally, Section 6 concludes this paper.

2 Convolutional neural networks 
CNNs allow the extraction of features from input 
data to classify them into a set of pre-established 
categories. To classify data CNNs should be trained. 
The training process aims at fitting the parameters 
to classify data with the desired accuracy. During 
the training process, many input data are pre-
sented to the CNN with the respective labels. Then 
a gradient-based learning algorithm is executed to 
minimize a loss function by updating CNN param-
eters (weights and biases) [1]. The loss function 
evaluates the inconsistency between the predicted 
label and the current label.

A CNN consists of a series of layers that run 
sequentially. The output of a specific layer is the 
input of the subsequent layer. The CNN typically 
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uses three types of layers: convolutional, sub-sam-
pling and fully connected layers. Convolutional 
layers extract features from the input image. 
Sub-sampling layers reduce both spatial size and 
computational complexity. Finally, fully connected 
layers classify data.

2.1 Lenet-5 architecture
The Lenet-5 architecture [2] includes seven layers 
(Figure 1): three convolutional layers (C1, C3, and 
C5), two sub-sampling layers, (S2 and S4) and two 
fully connected layers (F6 and OUTPUT).

In our implementation, the size of the input 
image is 28×28 pixels. Table 1 shows the dimen-
sions of inputs, feature maps, weights, and biases 
for each layer.

Convolutional layers consist of kernels (matrix 
of weights), biases and an activation function (eg. 

Rectifier Linear Unit (ReLu), Sigmoid). The con-
volutional layer takes the feature maps in the pre-
vious layer with  depth and convolves them with  
kernels of the same depth. Then, the bias is added 
to the convolution output and this result passes 
through an activation function, in this case, ReLu 
[17]. Kernels shift into the input with a stride of one 
to obtain an output feature map. Convolutional 
layers have  feature maps of n-k+1×n-k+1 pixels.

Note that weights and bias parameters are 
not found in the S2 and S4 layers. The output of a 
sub-sampling layer is obtained by taking the max-
imum value from a batch of the feature map in the 
preceding layer. A fully connected layer has  fea-
ture maps. Each feature map results from the dot 
product between the input vector of the layer and 
the weight vector. The input and weight vectors 
have  elements.

Table 1. Dimensions of CNN layers

Layer
Size

Input n×n×p Weight k×k×p×d Bias d Feature Map m×m×d

C1 28×28×1 5×5×1×6 6 24×24×6

S2 24×24×6 N/A N/A 12×12×6

C3 12×12×6 5×5×6×16 16 8×8×16

S4 8×8×16 N/A NA 4×4×16

C5 4×4×16 4×4×16×120 120 1×1×120

F6 1×1×120 1×1×120×84 84 1×1×84

Output 1×1×84 1×1×84×10 10 1×1×10

Source: The authors.

Fig. 1. Lenet-5 architecture.
Source: Adapted from [1].
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3 Software/hardware co-
processing scheme
Fig. 2 presents the proposed SW/HW co-process-
ing scheme to perform the Lenet-5 inference on 
Zynq-7000 SoC. It consists of two main parts: an 
Advanced RISC Machine (ARM) processor and 
an FPGA, which are connected by the Advanced 
eXtensible Interface 4 (AXI4) bus [18]. A C applica-
tion runs into the ARM processor, which is respon-
sible for the data transfer between software and 
hardware. Furthermore, a hardware accelerator is 
implemented on the FPGA. This accelerator con-
sists of a custom computational architecture that 
performs the CNN inference process.

3.1 Hardware accelerator
Fig. 3 shows the hardware accelerator that devel-
ops the inference process of CNN. The FSM con-
trols the hardware resources into the accelerator. 
REGISTER_BANK contains the dimensions of the 
entire architecture (Table 1). MEMORY_SYSTEM 
consists of four Block RAMs (BRAMs). The first one 
stores weights, and the second one stores biases. 
RAM_3 and RAM_4 store the intermediate values 
of the process. These memories are overwritten in 
each layer. All four memories are addressed by the 
ADDRESS_RAM module.

MATH_ENGINE is the mainstream module in 
our design because it performs all the necessary 
arithmetic operations in the three types of layers 
mentioned in Section 2. All feature maps of the 
layers are calculated by reusing this module. It 
is necessary to highlight the saving of hardware 
resources with the implementation of this module.

This module is used to: 
 ◾ Perform a convolution process in a parallel 

fashion 

 ◾ Calculate a dot product between vectors 

 ◾ Add bias 

 ◾ Evaluate the ReLu activation function 

 ◾ Perform the sub-sampling process 

AX
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Fig. 3. Hardware accelerator scheme.
Source: The authors.
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Fig. 2. General software/hardware co-processing 
scheme.
Source: The authors. 
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To perform all the processes mentioned 
above, the module MATH_ENGINE is composed of 
CONV_DOT, BIAS_&_ReLu, and SUB_SAMPLING. 
The overall architecture of the MATH_ENGINE is 
shown in Fig. 4.

CONV_DOT consists of six blocks. Each block 
performs either a 5×5 convolution or a dot product 
between vectors with a length of 25. The BIAS_&_
ReLu submodule adds a bias to the output of the 
CONV_DOT submodule and performs the ReLU 
function. The SUB_SAMPLING submodule per-
forms a max-pooling process (layers S2 and S4).

3.2 Description of the SW/HW 
scheme process 
Before the accelerator classifies an image, it is nec-
essary to store all the required parameters (weights, 
biases, and dimensions of CNN layers). The proces-
sor sends the input image and the parameters to 
the MEMORY_SYSTEM and the BANK_REGISTER, 
respectively. Initially, RAM3 stores the image. 
Then, the processor sets the start signal of FSM, 
which initiates the inference process. The FSM 
configures MATH_ENGINE, ADDRESS_RAM, and 
MEMORY_SYSTEM according to the data in the 
BANK_REGISTER. 

As mentioned, for convolutional and fully 
connected layers, the CONV_DOT submodule per-
forms the convolution and dot product operations, 
respectively. The Bias_&_ReLu submodule adds 
the bias and performs the ReLu activation func-
tion. Moreover, for subsampling layers, the input 
is passed through the SUB_SAMPLING submodule. 

According to the current layer, the MATH_ENGINE 
output could be either the result of Bias_&_ReLu 
or SUB_SAMPLING. 

To reduce the amount of memory required, 
we implemented a re-use memory strategy. The 
strategy is based on the use of just two memories, 
which are switched to store the input and output of 
each layer. For example, in Layer_i input is taken 
from RAM3 and output is stored into RAM4. Then, 
in Layer_(i+1) input is taken from RAM4 and out-
put is stored into RAM3 and so on.  

Lenet-5 has ten outputs, one for each digit. 
Image classification is the digit represented by the 
output that has the maximum value. The inference 
process is carried out by executing all the layers. 
Once this process is finished, the FSM sends an 
interruption to the ARM processor, which enables 
the transfer of the result from the hardware accel-
erator to the processor.

4 Results 
This section describes the performance of the SW/
HW co-processing scheme implementation. The 
implementation was carried out into a Digilent 
Arty Z7-20 development board using two comple-
ment fixed-points. This board is designed around 
the Zynq-7000 SoC with 512 MB DDR3 memory. 
The SoC integrates a dual-core ARM Cortex-A9 
processor with Xilinx Artix-7 FPGA. The ARM pro-
cessor runs at 650 MHz and the FPGA is clocked at 
100 MHz. The project was synthesized using Xilinx 
Vivado Design Suite 2018.4 software.

Fig. 4. Math engine.
Source: The authors.
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4.1 CNN training and validation
CNN was trained and validated on a set of hand-
written digits images from the MNIST database [1]. 
The MNIST database contains handwritten dig-
its from 0 to 9. The digits are centered on a 28 x 
28-pixel grayscale image. Each pixel is represented 
by 8 bits, obtaining values in a range from 0 to 
255, where 0 means white background, and 255 
means black foreground. The MNIST database has 
a training set of 60,000 images and a validation 
set of 10m000 images. API Keras with TensorFlow 
backend was used to train and validate the CNN in 
python. Python was set up to use a floating-point 
representation to achieve high precision.

Furthermore, the inference process was iter-
ated eight times on the proposed scheme by 
changing word length and fractional length. CNN 
parameters and the validation set were quantized 
in second’s complement fixed-point format using 
MATLAB. Table 2 shows the percent of accuracy 
obtained by each validation.

Table 2. Accuracy for different data representations

Word Length 
[bits]

Integer, 
Fraction Accuracy %

Floating Point 32 N/A 98.85

Fixed Point

17 «7,10» 98.85

15 6,9 98.70

16 8,8 98.70

15 7,8 98.70

14 6,8 98.68

12 6,6 97.59

11 6,5 91.46

16 5,11 61.31

Source: The authors.

The  W, F  notation indicates integer length (W) 
and fractional length (F). A starting point was set 
by finding the number of bits that represents the 
maximum value in the integer part.

4.2 Execution time
The number of clock cycles spent in data transfer 
between software and hardware is counted by a 
global timer. A counter was implemented on the 
FPGA, which counts the number of clock cycles 
required by the hardware accelerator to perform 
the inference process. Table 3 shows the execution 
time of the implementation.

Table 3. Execution times per image 

Process Time [ms]

Load parameters 7.559*

Load image input 0.122

Inference process 2.143

Extract output data 0.002

Total Time 2.268

Source: The authors. 

The parameters are sent to the hardware only 
once when the accelerator is configured by the pro-
cessor. Therefore, the time to upload the param-
eters* was not considered in the total execution 
time.

The execution time per image is 2,268 ms. 
Thus, our implementation achieves a throughput 
of 440,917 images per second.

4.3 Hardware resource utilization
Table 4 shows hardware resource utilization for 
different word lengths. As the MATH ENGINE per-
forms 150 multiplications in parallel, the amount 
of Digital Signal Processors (DSPs) used in all cases 
is constant. In this case, 150 DSPs in the MATH 
ENGINE and 3 DSPs are used in the rest of the 
design. 

Note that a shorter word length reduces hard-
ware resources. However, it is important to con-
sider how accuracy will be affected by the integer 
and fractional lengths (Table 2).
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4.4 Power estimation
The power estimation for the proposed scheme 
was made by using Xilinx Vivado software (Fig. 5). 
This estimation only reports the consumption of 
Zynq-7000 SoC (a DDR3 RAM is considered part of 
the ARM processor). 

The FPGA consumes power in the software 
implementation due to the architecture of the 
Zynq-7000 platform. Note that the ARM processor 
consumes most of the total power even when the 
hardware accelerator performs the inference pro-
cess, which takes most of the execution time.

on the Zynq-7000 platform: software-only and 
hardware-only solutions. In the software-only 
solution, the input image and CNN parameters are 
taken to the DDR3 RAM. The hardware-only solu-
tion uses a serial communication (Universal Asyn-
chronous Receiver-Transmitter (UART)) module to 
replace the ARM processor in the co-processing 
scheme.

Table 5 shows the results of the three implemen-
tations on the Arty Z7 board. Although the pro-
posed scheme implementation uses less than twice 
the word length of the software-only solution, the 
accuracy only fell by 1.27 %. Also, our co-process-
ing scheme achieved the highest throughput. The 
hardware-only implementation is a low power ver-
sion of the proposed scheme. Future research will 
focus on improving the performance of the hard-
ware-only solution. Note that the hardware-only 
implementation has the lowest throughput because 
of the bottleneck imposed by the UART (to trans-
fer the input image, CNN parameters are stored in 
BRAMs). However, this implementation could be 
the best option for applications in which power 
consumption is critical and not throughput.

As mentioned, it is difficult to compare our 
results against other FPGA-based implementations 
because they are not exactly like ours. However, 
some comparisons can be made regarding the use 
of logical resources and accuracy. Table 6 presents 
a comparison with some predecessors.

Table 4. Comparison of hardware resource utilization for different word lengths

Precision Word Length 
[bits]

Hardware resources Max. 
accuracy %LUTs FFs BRAM [KB]

Fixed point

17 4738 2922 173.25 98.85

16 4634 2892 164.25 98.70

15 4549 2862 155.25 98.70

14 4443 2832 146.25 98.68

12 4254 2772 119.25 97.59

11 4151 2742 114.75 91.46

Source: The authors.

Fig. 5. Power estimation for the proposed scheme.
Source: The authors.

5 Discussion
We compared the implementation of our co-pro-
cessing scheme with two different implementations 

Sw/Hw scheme

Power:
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6 Conclusion
In this paper, an SW/HW co-processing scheme for 
Lenet-5 inference was proposed and implemented 
on a Digilent Arty Z7-20 board. Results show an 
accuracy of 97.59 % using a 12-bit fixed-point for-
mat. The implementation of the proposed scheme 
achieved a  higher throughput than a software 
implementation on the Zynq-7000 platform. Our 
results suggest that the usage of a fixed-point data 
format allows the reduction of hardware resources 
without compromising accuracy. Furthermore, the 
co-processing scheme makes it possible to improve 
the inference processing time. This encourages 
future advances in energy efficiency on embedded 
devices for deep learning applications.

References
[1] Y. LeCun et al., “Gradient-based learning applied 

to document recognition,” Proceedings of the IEEE, 
vol. 86, no. 11, pp. 2278-2324, 1998. https://doi.
org/10.1109/5.726791

[2] C. Szegedy et al., “Going deeper with convolutions,” in 
2015 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2015. pp. 1-9. https://
doi.org/10.1109/CVPR.2015.7298594

[3] A. Dundar, J. Jin, B. Martini, and E. Culurciello, “Embed-
ded streaming deep neural networks accelerator with 
applications,” IEEE Transactions on Neural Networks 
and Learning Systems, vol. 28, no. 7, pp. 1572-1583, July 
2017. https://doi.org/10.1109/TNNLS.2016.2545298

[4] B. Ahn, “Real-time video object recognition using con-
volutional neural network,” in 2015 International Joint 

Table 5. Power estimation for different implementations

Co-processing scheme Hardware-only Software-only

Data format 12-bit fixed-point 12-bit fixed-point 32-bit floating-point 

Frequency (MHz) 100 100 650

Accuracy (%) 97.59 97.59 98.85

Throughput (images/second) 441 7 365

Power estimated (W) 1.719 0.123 1.403

Source: The authors.

Table 6. Comparison with some predecessors

Metric Our Design [11] [17] [18]

Model
3 Conv

2 Pooling
2 FC

2 Conv
2 Pooling

1 FC

2 Conv
2 Pooling

2 FC

2 Conv
2 Pooling

Fixed Point 12 bits 20 bits 25 bits 11 bits

Operation Frequency 100 MHz 100 MHz 100 MHz 150 MHz

BRAM 45 3 27 0

DSP48E 158 9 20 83

FF 2 772 40 534 54 075 40 140

LUT 4 254 38 899 14 832 80 175

Accuracy 97.59 % 94.67% 98.62 % 96.8 %

Source: The authors.

Note that our design uses less Look-Up Tables (LUTs) and Flip-Flops (FFs) than these previous works. Only [15] achieves better accuracy 
because this implementation uses more bits; however, this number of bits increases the number of logical resources. 



116 ■ E. González ■ W. D. Villamizar Luna ■ C. A. Fajardo Ariza

Revista Ciencia e Ingeniería Neogranadina  ■  Vol. 30(1) 

Conference on Neural Networks (IJCNN), July 2015, 
pp. 1-7. https://doi.org/10.1109/IJCNN.2015.7280718

[5] B. Yu, Y. Tsao, S. Yang, Y. Chen, and S. Chien, “Archi-
tecture design of convolutional neural networks for 
face detection on an fpga platform,” in 2018 IEEE In-
ternational Workshop on Signal Processing Systems 
(SiPS), Oct. 2018, pp. 88-93. https://doi.org/10.1109/
SiPS.2018.8598428

[6] Z. Xiong, M. K. Stiles, and J. Zhao, “Robust ecg signal 
classification for detection of atrial fibrillation using a 
novel neural network,” in 2017 Computing in Cardiol-
ogy (CinC), Sep. 2017, pp. 1-4. https://doi.org/10.22489/
CinC.2017.066-138

[7] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, 
Y. Wang, and H. Yang, “Angel-eye: A complete design 
flow for mapping cnn onto embedded fpga,” IEEE 
Transactions on Computer-Aided Design of Integrated 
Circuits and Systems, vol. 37, no. 1, pp. 35-47, Jan 2018. 
https://doi.org/10.1109/TCAD.2017.2705069

[8] N. Suda et al., “Throughput-optimized opencl-based 
fpga accelerator for large-scale convolutional neural 
networks,” in Proceedings of the 2016 ACM/SIGDA In-
ternational Symposium on Field-Programmable Gate 
Arrays, ser. FPGA ‘16. New York, NY, USA: ACM, 2016, 
pp. 16-25. http://doi.acm.org/10.1145/2847263.2847276

[9] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, 
“Optimizing fpga-based accelerator design for deep 
convolutional neural networks,” in Proceedings of 
the 2015 ACM/SIGDA International Symposium on 
Field-Programmable Gate Arrays, ser. FPGA ‘15. New 
York, NY, USA: ACM, 2015, pp. 161-170. https://doi.
org/10.1145/2684746.2689060

[10] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers, K. 
Strauss, and E. S. Chung, “Accelerating deep convo-
lutional neural networks using specialized hardware,” 
Microsoft Research Whitepaper, vol. 2, no. 11, pp. 1-4, 
2015.

[11] T. Tsai, Y. Ho, and M. Sheu, “Implementation of fp-
ga-based accelerator for deep neural networks,” 
in 2019 IEEE 22nd International Symposium on 

Design and Diagnostics of Electronic Circuits Systems 
(DDECS), April 2019, pp. 1-4. https://doi.org/10.1109/
DDECS.2019.8724665

[12] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn 
accelerator efficiency through resource partitioning,” 
in 2017 ACM/IEEE 44th Annual International Sym-
posium on Computer Architecture (ISCA), June 2017, 
pp. 535-547. https://doi.org/10.1145/3140659.3080221

[13] Y. Wang et al., “Low power convolutional neural net-
works on a chip,” in 2016 IEEE International Sympo-
sium on Circuits and Systems (ISCAS), May 2016pp. 
129-132,. https://doi.org/10.1109/ISCAS.2016.7527187

[14] G. Feng, Z. Hu, S. Chen, and F. Wu, “Energy-efficient 
and high-throughput fpga-based accelerator for con-
volutional neural networks,” in 2016 13th IEEE In-
ternational Conference on Solid-State and Integrated 
Circuit Technology (ICSICT), Oct. 2016, pp. 624-626. 
https://doi.org/10.1109/ICSICT.2016.7998996

[15] S. Ghaffari and S. Sharifian, “FPGA-based convolu-
tional neural network accelerator design using high 
level synthesize,” in Proceedings - 2016 2nd Interna-
tional Conference of Signal Processing and Intelli-
gent Systems, ICSPIS 2016, 2016, pp. 1-6. https://doi.
org/10.1109/ICSPIS.2016.7869873

[16] Y. Zhou and J. Jiang, “An FPGA-based accelerator im-
plementation for deep convolutional neural networks,” 
in Proceedings of 2015 4th International Confer-
ence on Computer Science and Network Technology, 
ICCSNT 2015, 2015, vol. 01, no. Iccsnt, pp. 829-832. 
https://doi.org/10.1109/ICCSNT.2015.7490869

[17] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted Boltzman machines,” in Proceedings 
of the 27th International Conference on International 
Conference on Machine Learning, ser. ICML’10. USA: 
Omnipress, 2010, pp. 807-814. [Online]. http://dl.acm.
org/citation.cfm?id=3104322.3104425

[18] Xilinx. Axi reference guide. [Online]. Available: 
https://www.xilinx.com/support/documentation/ip_
documentation/axi_ref_guide/latest/ug1037-vivado-
axi-reference-guide.pdf

https://doi.org/10.1109/ICCSNT.2015.7490869

	_Ref11357069
	_Ref11357062
	_Ref11357688
	_GoBack

