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Patient-Specific Detection of Atrial 
Fibrillation in Segments of ECG Signals 
using Deep Neural Networks
Jeyson A. Castilloa ■ Yenny C. Granadosb ■ Carlos A. Fajardoc

Abstract: Atrial Fibrillation (AF) is the most common cardiac arrhythmia worldwide. It is associated 
with reduced quality of life and increases the risk of stroke and myocardial infarction. Unfortunately, 
many cases of AF are asymptomatic and undiagnosed, which increases the risk for the patients. Due 
to its paroxysmal nature, the detection of AF requires the evaluation, by a cardiologist, of long-term 
ECG signals. In Colombia, it is difficult to have access to an early AF diagnosis because of the costs as-
sociated to detection and the geographical distribution of cardiologists. This work is part of a macro 
project that aims at developing a specific-patient portable device for AF detection. This device will be 
based on a Convolutional Neural Network (CNN). We intend to find a suitable CNN model that could 
be later implemented in hardware. Diverse techniques were applied to improve the answer regarding 
accuracy, sensitivity, specificity, and precision. The final model achieves an accuracy of , a specificity 
of , a sensitivity of  and a precision of . During the development of the model, the computational cost 
and memory resources were considered in order to obtain an efficient hardware model in a future 
implementation of the device.

Keywords: atrial Fibrillation; automatic detection; convolutional neural networks; deep neural 
networks; ECG.
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Detección de fibrilación auricular en señales ECG usando redes 
neuronales para pacientes específicos

Resumen: La fibrilación auricular (FA) es la arritmia cardíaca más común en todo el mundo. Se asocia 
con una reducción de la calidad de vida y aumenta el riesgo de accidente cerebrovascular e infarto de 
miocardio. Desafortunadamente muchos casos de FA son asintomáticos, lo cual aumenta el riesgo 
para los pacientes. Debido a su naturaleza paroxística, la detección de la FA requiere la evaluación, 
por parte de un cardiólogo, de señales ECG de larga duración. En Colombia, es difícil tener diagnósti-
co temprano de la FA debido a los costos asociados a la detección de la FA y la distribución geográfica 
de los cardiólogos. Este trabajo es parte de un proyecto macro que tiene como objetivo desarrollar 
un dispositivo portátil para pacientes específicos que permita detectar la FA, el cual estará basado en 
una red neuronal convolucional (CNN). Nuestro objetivo es encontrar un modelo CNN adecuado, que 
luego se pueda implementar en hardware. Se aplicaron diversas técnicas para mejorar la respuesta 
con respecto a la exactitud, la sensibilidad, la especificidad y la precisión. El modelo final alcanza 
una exactitud del 97,44%, una especificidad del 97,76%, una sensibilidad del 96,97% y una precisión 
del 96,80%. Durante el desarrollo del modelo, el costo computacional y los recursos de memoria se 
tuvieron en cuenta para obtener un modelo de hardware eficiente en una futura implementación del 
dispositivo.

Palabras clave: detección automática; ECG; fibrilación auricular; redes neuronales convolucionales; 
redes neuronales profundas
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Introduction
Atrial Fibrillation (AF) is the most common car-
diac arrhythmia in clinical practice. Its global pre-
valence is around 2% in the community, around 
5% in patients older than 60 years and 10% in peo-
ple over 80 years old. AF is associated with reduced 
quality of life and also increases the risk of stroke 
and myocardial infarction. In Colombia, some 
studies show that the incidence and mortality of 
AF has increased especially in people over the age 
of 70 [1], [2].

AF is caused by various health complications. 
During an episode of AF, the contraction of the 
atria is asynchronous because of the fast firing of 
electrical impulses. The main characteristics of an 
AF episode are: The absence of a sinus P wave, irre-
gular and fast ventricular contraction, presence of 
an abnormal and variable RR interval, atrial heart 
rate oscillates from  to  beats per minute (bpm) and 
narrow QRS complexes (< 120milliseconds) [1].

By using electrodes placed on the skin is pos-
sible to record the heart’s electrical activity. A 
voltage vs time graph is known as an electrocar-
diogram (ECG signal). These electrical changes are 
a consequence of cardiac muscle depolarization 
followed by repolarization during each cardiac 
cycle (heartbeat). The ECG morphology contains 
important information about the conditions of 
the heart. Thus, the ECG signals are used to detect 
abnormalities in heart activity [3].

The ECG signals are interpreted manually by 
cardiologists in order to detect cardiac abnorma-
lities. The detection of AF demands to analyze 
long recordings because of its paroxysmal nature. 
These analyses are time-consuming, expensive, 
and sometimes could be subjective. Figure 1 shows 
typical ECG signals. The blue representation is a 
normal ECG signal and the other (red) representa-
tion is an Atrial Fibrillation ECG. 

Note that the abnormal activity of the atria 
produces variations in heart rate and a faster 
ventricular response, although there is also the 
opposite case, where the ventricular response 
becomes slower.

The AF is generally asymptomatic or shows 
nonspecific symptoms [5]. However, several 
medical reports call attention to the importance 
of early diagnosis in order to start an early treat-
ment [6], [7]. However, these early diagnostics are 
quite difficult to do in countries like Colombia, 
where there is an irregular distribution of cardio-
logists around the country. For example, more 
than 80% of cardiologists are localized only in 
seven of the main cities in Colombia [8]. Thus, the 
intermediate cities, small towns, and rural zones 
do not have the possibility to access an early car-
diology service.

Convolution Neural Networks (CNN) have 
been used to detect cardiac arrhythmias. In [9] 
a 1-D CNN approach is used, which classifies the 
ECG signal for the detection of ventricular ectopic 

Fig. 1 : Signals from MIT BIH AF Database. Normal ECG , Atrial Fibrillation ECG. [4]
Source: Self-made.
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beats and supraventricular ectopic beats with a 
very high accuracy.

The [10] Georgia Institute of Technology, in 
Atlanta has developed a CNN approach to detect 
AF. In this work, the cardiac signals are recorded 
by a Pulsatile photoplethysmographic sensor. The 
approach uses a Wavelet Transform before feeding 
the CNN. Finally, a multinomial regression is used 
to establish the presence or absence of an episode 
of AF. This approach obtained  of accuracy. In [11] 
signal quality index SQI technique was combined 
with CNN followed by a post-processing featu-
re-based approach to classify AF. The accuracy for 
the PhysioNet/CinC database was .

This work is part of a macro project that seeks 
to develop a medical device, which is based on a 
CNN. The macro project aims at offering an alter-
native for diagnosis in areas where there is no car-
diology service.

The aim is to find a suitable CNN model that 
could be later implemented in hardware. We apply 
diverse techniques regarding batch, learning rate, 
and optimizer function in order to improve the 
accuracy, sensitivity, specificity, and precision of 
the network. Our proposed model achieves an 
accuracy of , a specificity of , a sensitivity of  and a 
precision of  for specific patients. We used the MIT 
BIH Atrial Fibrillation Database [4]. Moreover, the 
proposed model performs the best sensitivity at a 
lower computational cost.

The rest of this paper is organized as follows: 
Section 2 shows a description of the database. 
Section 3 introduces the convolutional neural 

networks. In Section 4, we develop the training 
methodology and the tests done for different topo-
logies regarding optimization techniques. The 
results are summarized in Section 5. Finally, the 
conclusions close the article. 

Database
We use ECG signals from a free public arrhythmia 
database called MIT BIH Atrial Fibrillation Data-
base [4]. This database includes 25 long-term ECG 
recordings, which were sampled at 250 samples per 
second with a 12 bits resolution in a range of . The 
recordings were made at Beth Israel Hospital in 
Boston, among people with atrial fibrillation (AF), 
which include more than 300 episodes of AF. The 
database has non-numerical annotations, which 
are given according to a convention. An  indica-
tes an AF episode and a  indicates a normal epi-
sode. The annotations were taken when there was a 
change of state, either from  to  or vice versa.

A pre-label function was created to label 
500-sample segments. Then, each segment was 
normalized from 0 to 1. Finally, the normalized 
segments were randomized to guarantee the per-
formance of the algorithm. The distributions of 
database were made by the following terms:

 ◾ 20 patients for training equivalent to 358287 seg-
ments (86.93%) 

 ▶ 286593 segments for training (80%) 

 ▶ 71694 segments for training (20%) 

 ◾ 3 patients for test equivalent to 53865 segments 
(13.06%) 

Fig. 2: Database Distribution.
Source: Self-made.
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Convolutional Neural Networks 
(CNN)
To the best of our knowledge, Japanese scientist 
Kunihiko Fukushima published the first CNN 
model in 1980 [12]. Then, the French scientist 
Yann LeCun improved this first model in 1988 
[13]. LeCun’s model uses three types of layers: 
Convolutional, sub-sampling and fully connected 
layers. Convolutional layers extract features from 
the input image. Sub-sampling layers reduce both 
spatial size and computational complexity. Finally, 
the Fully connected layers classify the data. CNN 
has been implemented in various applications 
such as: object recognition [14], [15], handwriting 

classification [16], [17] and image classification [3], 
[18], [19], to name a few.

Recently some works have used the CNNs as a 
diagnostic tool of diseases such as heart attacks 
[20], colon cancer [18], melanoma [21], Alzheimer 
[22], cardiac arrhythmia’s [3] and hemorrhage 
detection [19].

Figure 3 shows the basic configuration of a 
convolutional neural network, which is the com-
bination of three basic ideas. First the Convolu-
tion Layers, which extract features of the data and 
reduce the number of weights. Second, the pooling 
layers (also known as subsampling layers), which 
reduce the number of connections. Finally, the 
fully connected layers, which develop the classifi-
cation process. Note that every layer of convolu-
tion is coupled with a subsampling layer and an 
activation function, before reaching the fully con-
nected layers.

Selecting the CNN architecture:  
A hardware point of view.
As mentioned before, several computational CNN 
architectures have been developed [3], [10], [11], 
[20]; they focus on achieving higher accuracy. 
However, these works do not take into account 
issues regarding hardware and power consump-
tion. We are interested in the development of a 
computational CNN architecture that achieves the 
highest accuracy using the least number of para-
meters possible. Reducing the number of parame-
ters allows the reduction of power consumption.

The possible models for the solution of problem 
are:

 ◾ Dense Neural Network model (Multilayer 
Perceptron)

 ◾ Convolutional Neural Network model

 ▶ 1D (Deep Learning)

 ▶ 2D (Machine Learning): FFT / SFT / Wavelet

The kind of architecture selected is the Con-
volutional Neural Network in 1 dimension (CNN 
1D) because the documentation available pro-
ves that it offers excellent efficiency for the time 
series [9]. Due to the fact that the heartbeat can 

Fig. 3: Basic configuration of CNN
Source: Self-made.
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be interpreted as a time series, it’s more feasible to 
obtain good results. For the architecture selection, 
we tried three different topologies, therefore, a test 
was made in a preliminary stage, using a part of 
the database and the same parameters for the opti-
mization process and regularization techniques in 
the three proposals, to determine the most efficient 
in terms of accuracy. In brief, the advantages of the 
1D CNN model are:

 ◾ They perform extraction and reduction of 
characteristics.

 ◾ They allow reducing the bidimensionality of the 
problems.

 ◾ Decrease in pre-processing requirements.

 ◾ The particular signal to be treated for the problem 
in its natural form is a linear sequence of data.

It represents fewer parameters and reduces the 
number of operations compared to a 2D network, 
which is advantageous to reduce the computa-
tional cost, memory and energy of the project in 
future implementations in FPGA.

We developed three CNN architectures that 
were implemented from low complexity to high 
complexity, in order to establish better results with 

the lowest complexity and lowest number of para-
meters possible.

Figure 4 shows architecture 1 that consists of 9 
layers distributed as follows:  

 ◾ Convolutional layer, with 3 kernels of size 4. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 2 kernels of size 4. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 1 kernel of size 4. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Fully-connected flatten layer 

 ◾ Fully-connected layer with 10 neurons 

 ◾ Fully-connected layer with 1 neuron 

 ◾ RELU activation function, used for the convolu-
tional layers and middle fully-connected layer. 

 ◾ Sigmoid activation function used for the output 
layer. 

Architecture 2 consists of 9 layers in total, 
which are distributed as follows:  

 ◾ Convolutional layer, with 3 kernels of size 15. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 5 kernels of size 10. 

Fig. 4: Architecture 1
Source: Self-made.
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 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 10 kernels of size 10. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Fully-connected flatten layer 

 ◾ Fully-connected layer with 10 neurons 

 ◾ Fully-connected layer with 1 neuron 

 ◾ RELU activation function used for the convolu-
tional layers and middle fully-connected layer. 

 ◾ Sigmoid activation function used for the output 
layer. 

Architecture 3 consists of 11 layers in total, 
which are distributed as follows: 

 ◾ Convolutional layer, with 3 kernels of size 27. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 10 kernels of size 14. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 10 kernels of size 3. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Convolutional layer, with 10 kernels of size 4. 

 ◾ Max-pooling layers of with stride = 2 

 ◾ Fully-connected flatten layer 

 ◾ Fully-connected layer with 30 neurons 

 ◾ Fully-connected layer with 10 neurons 

 ◾ Fully-connected layer with 1 neuron 

 ◾ RELU activation function used for the convolu-
tional layers and the two middle fully-connected 
layers. 

 ◾ Sigmoid activation function used for the output 
layer. 

Table 1 summarizes the composition of layers 
and their trainable parameters. This table indicates 
the size of the output feature maps of each layer. 
Note that, Max-pooling (sub-sampling) layers do 
not have trainable parameters.

Training the architectures
We trained architecture 1 with the following 
algorithm:  

 ◾ Optimization method: SGD 

 ◾ Loss evaluation method: Binary cross entropy 

 ◾ Activation function of the middle layers: relu 

 ◾ Activation function of the final layer: Sigmoid 

 ◾ Epochs: 40 

Table 1. Architecture comparison

Architecture 1 Architecture 2 Architecture 3

Layer type Output 
shape

#  
parameters Layer type Output 

shape
# 

parameters Layer type Output 
shape

#  
parameters

in (500,1) 0 in (500,1) 0 in (500,1) 0

convolutional (497,3) 15 convolutional (486,3) 48 convolutional (474,3) 84

max pooling (248,3) 0 max pooling (243,3) 0 max pooling (273,3) 0

convolutional (245,2) 26 convolutional (234,5) 155 convolutional (224,10) 430

max pooling (122,2) 0 max pooling (117,5) 0 max pooling (112,10) 0

convolutional (119,1) 9 convolutional (108,10) 510 convolutional (110,10) 310

max pooling (59,1) 0 max pooling (54,10) 0 max pooling (55,10) 0

flatten* 59 0 flatten* 540 0 convolutional (52,10) 410

dense 10 600 dense 10 5410 max pooling (26,10) 0

dense 1 11 dense 1 11 flatten* 260 0

dense 30 7830

dense 10 310

dense 1 11

Source: Self-made.
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Figure 5 shows the accuracy results for training 
(orange line) and validation (blue) processes of the 
architectures 1, 2 and 3 respectively.

Architecture 1 does not increase accuracy 
during the training process. The constant beha-
vior of the accuracy is due to the few amounts of 
parameters. Besides, there is a high bias and high 
variance. On the other hand, architecture 2 achie-
ves better accuracy than architecture 1. However, 
during the validation process, a high variance and 
noise validation are observed. Finally, architecture 
3 achieves better accuracy levels. However, there 
is still a high variance in this architecture, which 
demands to apply additional techniques to reduce 
this variance. Table 2 summarizes accuracy results 
for the three architectures. Besides, this table also 
shows the number of trainable parameters, which 
are related to the amount of memory required 
during the inference process.

Table 2. Architecture’s trainable parameters VS Train 
Accuracy

Architecture

1 2 3

trainable parameters 661 6134 9385

train accuracy 61.58% 80.58% 83.01%

Source: Self-made.

Testing different batch values
We performed a test with different batch values for 
architecture 3, which achieved better accuracy in 
the previous test. This test is made to determine a 
value that improves the accuracy level for the tra-
ining and validation process. Small batch values 
imply more operations in the calculus of gradient, 
but high values cause higher error, regarding the 
validation rate. The batch values used were 10, 15, 
20, 25, 50, 100 and 200. Training and testing pro-
cesses were performed for each batch value with 
the following parameters:

 ◾ Optimization method: SGD 

 ◾ Loss evaluation method: binary cross entropy 
 ◾ Activation function of the middle layers: RELU 
 ◾ Activation function of the final layer: Sigmoid 
 ◾ Epochs: 40 

Figure 6 shows the results for the training 
accuracy of different batch values. Notice for 
values over 50, the learning process is stable. 
Due exist multiple values that improve the tra-
ining process, criteria for the selection of value 
is the tendency of the process with less variance. 
Table 3 shows the result of the analysis of variance 
in each test. herefore, regarding the lowest variance, 
the batch value selected for the next test is 100.

Fig. 5. Training and validation process for a) Architecture 1 b) Architecture 2 c) Architecture 3
Source: Self-made.
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Table 3. Statistical variance VS Batch size

Batch 10 25 50 100 200

Variance 0.7498e-03 0.3783e-03 0.2919e-03 0.2213e-03 0.4404e-03

Source: Self-made.
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Fig. 7. Accuracy for a batch = 100.
Source: Self-made.
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Figure 7 shows the results of training and vali-
dation accuracy for a batch value of 100. Note that 
there is an improvement in the training process, 
however, the validation process stops the generali-
zation from epoch 10.

Testing different learning  
rate values
For improving the response regarding learning 
rate values, a test was performed using SGD opti-
mizer, and batch value for previous test. A test 
was performed using SGD optimizer to improve 
the response regarding learning rate values, and 
the obtained batch value from the previous test. 

Several learning rate values were used during the 
testing process, but this section summarizes just 
the range of the best results. The training and tes-
ting parameters used were:

 ◾ Optimization method: SGD 

 ◾ Loss evaluation method: binary cross entropy 
 ◾ Activation function of the middle layers: relu 
 ◾ Activation function of the final layer: Sigmoid 
 ◾ Epochs: 100 

Figure 8 shows the training and validation 
processes for learning rate values of 0.1, 0.2 and 
0.3. Note that for values 0.1 and 0.2 the learning 
process takes more epochs but evidences a lower 
variance. On the other hand, for a learning rate of 
0.3, the training process takes fewer epochs but a 
higher variance. Thus, a learning rate value of 0.1 
was selected.

A new test was performed with the learning 
rate value selected. This test was performed with 
the calculated parameters from the previous tests. 
In this case, we change the learning rate epoch 
by epoch with a constant decay factor. Figure 9 
summarizes the results of this test. Note that the 
accuracy reached is similar to the previous test, 
but it takes a few numbers of epochs. However, the 
variance is increased when the number of epochs 
is over 60. 
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Fig. 9: Accuracy for constant Decay Learning rate.
Source: Self-made.

Testing different optimizers
We tested 3 different optimizers. The tests keep 
the learning rate and batch values calculated in the 

previous test. Figure 10 shows the training process 
using three optimizers, a) SGD, b) RMSPROP and c) 
ADAM. For SGD optimizer, note that the training 
process takes a lot of epochs to begin the learning 
process, which means more computational cost. 
Figure 10 b) shows the training process using a 
RMSPROP Optimizer. In this case, the training 
process takes fewer epochs, and reaches stability 
at 10 epochs, with low variance (less than 0.36%). 
In spite of the similarity of the SGD and RMSPROP 
algorithms, figure 10 b) shows the advantages of 
the RMSPROP regarding the modification of the 
velocity function produced by the hyperparameter 
. Figure 10 c) shows the training using ADAM Opti-
mizer. The training process increases faster than in 
SGD and RMSPROP, and the accuracy that is achie-
ved is similar to RMSPROP. Besides, the trends for 
both RMSPROP and ADAM optimizers are similar.

Fig. 8. Training and validation accuracy for different learning rate value tests.
Source: Self-made.
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Fig. 10: Training and validation process for different optimizers a) SGD b) RMSPROP c) ADAM
Source: Self-made.
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Table 4. Train and Validation Accuracy Vs Learning Rate

LR 0.1 0.2 0.3

train 83.91% 83.19% 83.59%

validation 83.39% 82.35% 82.24%

Source: Self-made.

Table 5 summarizes the accuracy achieved 
by each optimizer, for both train and validation 
processes. Note that both RMSPROP and ADAM 
optimizers achieve similar accuracy in training 
processes. Regarding the lower computational cost 
in the training process, RMSPROP shows better effi-
cacy, considering that the calculus of sensitivity is 
less complex.

Table 5. Comparison between the three optimizers

optimizer

SGD RMSPROP ADAM

train accuracy 72.97% 97.58% 97.57%

validation 
accuracy 69.33% 97.22% 97.43%

Source: Self-made

Results
For the training process, we use an Intel Core 
i5 with 2.9 GHz, and 8 Gb of RAM memory. The 
description language used was Python 3.5 in the 
Jupyter notebook application. Python environ-
ment was created using Anaconda Navigator 
with Tensor Flow Back-end and the Keras libra-
ries for AI.

Figure 11 shows the confusion matrix for the 
RMSPROP-based learning algorithm for a specific 
patient. This matrix shows: the normal signal well 
and wrongly classified, fibrillated signals well and 
wrongly classified, the accuracy, the specificity, 
the sensitivity, true positives, true negatives, false 
positives, false negatives and precision.

In this case, the sensitivity is measured when 
all the input signals are fibrillated (positive condi-
tion). The value of sensitivity is the rate between 
the number of fibrillated signals well classified 
over the total of input signals. The specificity is as 

the sensitivity case but for normal signals (negative 
condition).

The Positive Predicted Values (PPV) are the rate 
between the true positives (True Fibrillated sig-
nals), and the number of values predicted as posi-
tive. The Negative Predicted Values (NPV) are the 
rate similar to PPV, but with the negative signals 
(Normal signals). The False Positives Value are the 
rate between the false positive (Normal signals 
predicted as Fibrillated) and the number of con-
dition negative signals (True normal signals). The 
false Negative Value is the rate between the false 
negative signals (Fibrillated predicted as normal) 
and the total of true positive conditions.

Fig. 11: Confusion matrix for the RMSPROP-based lear-
ning algorithm for specific patient.
Source: Self-made

We developed two tests, one for a specific patient 
and another one for a general group, both using 
k-fold validation, 7 random selection of patients in 
the dev-set group. Table 6 summarizes the main 
results for the confusion matrix for the three opti-
mizers used. Note that the ADAM reaches the best 
specificity (negative condition - normal signals). 
On the other hand, the RMSPROP achieves the best 
values for accuracy, sensitivity, and precision. It is 
important to note that in the case of disease diag-
nosis, one of the most important statistical values 
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is the sensitivity (positive condition - fibrillated 
signals).  

Table 6. Matrix of predictive parameters  

Positive and negative predictive values

Parameter SGD RMSPROP ADAM

Accuracy 66.33% 97.44% 97.22%

Specificity 64.69% 97.76% 98.13%

Sensitivity 68.69% 96.97% 95.92%

Precision 74.73% 97.88% 97.18%

Source: Self-made.

Conclusions
We have developed a CNN model to automatically 
identify AF from 2-second ECG signals (500 sam-
ples). We tested several batches and learning rate 
values and three different optimizers. Our results 
suggest that a batch and learning rate of 100 and 
0.1, respectively, improve the validation accuracy. 
On the other hand, the RMSPROP is the best opti-
mizer in this case, because of its matrix confusion 
results and its low computational cost. We aim to 
use this model in future work, which will focus 
on the implementation of a CNN-based portable 
device for automatic detection of AF in Colombia. 
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