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Abstract: LiDAR sensors capture three-dimensional point clouds with high accuracy and density; 
since they are regularly obtained, interpolation methods are required to generate a regular grid. 
Given the large size of its files, processing becomes a challenge for researchers with not very pow-
erful computer stations. This work aims to balance the sampling density and the volume of data, 
preserving the sensitivity of representation of complex topographic shapes as a function of three 
surface descriptors: slope, curvature, and roughness. This study explores the effect of the density 
of LiDAR data on the accuracy of the Digital Elevation Model (dem), using a ground point cloud of 
32 million measurements obtained from a LiDAR flight over a complex topographic area of 156 ha. 
Digital elevation models with different relative densities to the total point dataset were produced 
(100, 75, 50, 25, 10, and 1 % and at different grid sizes 23, 27, 33, 46, 73, and 230 cm). Accuracy was 
evaluated using the Inverse Distance Weighted and Kriging interpolation algorithms, obtaining 72 
surfaces from which their error statistics were calculated: root mean square error, mean absolute er-
ror, mean square error, and prediction effectiveness index; these were used to evaluate the quality of 
the results in contrast with validation data corresponding to 10 % of the original sample. The results 
indicated that Kriging was the most efficient algorithm, reducing data to 1 % without statistically sig-
nificant differences with the original dataset, and curvature was the morphometric parameter with 
the most significant negative impact on interpolation accuracy.
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Cuantificación del efecto de la densidad de datos de LiDAR en la calidad del dem
Resumen: los sensores LiDAR capturan nubes de puntos tridimensionales con alta precisión y densidad; dado la 
regularidad, se requieren métodos de interpolación para generar una cuadrícula regular. Debido al gran tamaño de 
sus archivos, el procesamiento es un desafío para las estaciones informáticas poco potentes. Este trabajo se propone 
equilibrar la densidad de muestreo y el volumen de datos preservando la sensibilidad de representación de formas 
topográficas complejas en función de tres descriptores de superficie: pendiente, curvatura y rugosidad. Se explora 
el efecto de la densidad de los datos de LiDAR sobre la precisión del Modelo Digital de Elevación (DEM) mediante 
una nube de puntos terrestres de 32 millones de mediciones obtenidas de un vuelo LiDAR sobre un área topográfica 
compleja de 156 ha. Se produjeron modelos digitales de elevación con diferentes densidades relativas al conjunto de 
datos de puntos totales. La precisión se evaluó mediante algoritmos de interpolación de distancia inversa ponderada 
y Kriging, con lo que se obtuvo 72 superficies y se calcularon las estadísticas de error: error cuadrático medio, error 
medio absoluto, error cuadrático medio e índice de efectividad de predicción. Con esto se evaluó la calidad de los 
resultados en contraste con los datos de validación correspondientes al 10 % de la muestra original. Los resultados 
indicaron que Kriging fue el algoritmo más eficiente reduciendo los datos al 1 % sin diferencias estadísticamente 
significativas con el conjunto de datos original, y la curvatura fue el parámetro morfométrico con el impacto negativo 
más significativo en la precisión de la interpolación.

Palabras clave: reducción de datos; tamaño de la cuadrícula; precisión de interpolación; complejidad de las formas 
topográficas
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Introduction
The concept of modeling terrestrial surfaces has 
been the object of topography study and has been 
continuously investigated and advanced during 
the last years [1]–[3].  LiDAR technology is a remote 
sensing system used to model topographic surfaces 
through multiple returns of laser pulses combined 
with GNSS location data. It provides a great densi-
ty of terrain points and surface characteristics, like 
vegetation, water, and artificial structures. LiDAR 
has been used in various areas, such as hydrolog-
ical modeling [4], [5], glacier monitoring [6],[7], 
forest characterization [8], and urban modeling 
[9], [10]; however, this technology focuses primar-
ily on the characterization of complex traits of the 
terrestrial surface [11]. LiDAR offers a precise way 
of producing digital elevation models (dem) for  
high-accuracy mapping applications through 
point clouds with levels of detail that other survey-
ing technologies have not been able to equal.

The search for an increasingly detailed represen-
tation of the attributes of the terrain converges on 
high-density LiDAR data sets and, therefore, on the 
complications of excessive consumption of process-
ing, storage, and information manipulation time, 
leading to thinking about a reduction in the size of 
the sets; in that sense, it is necessary to select the 
lowest number of points that preserve the elements 
of topographic description. Given that there is no 
selection of the sampling density for different areas 
during a data collection mission, some terrains can 
be oversampled [12]. Diverse strategies have been 
proposed to treat large data sets without compro-
mising their accuracy. Duan et al. [13] proposed 
an adaptive clustering method based on principal 

component analysis (pca) to filter LiDAR point 
clouds. Hodgson and Bresnahan [14] indicated 
that the primary objective of specifying parame-
ters to collect LiDAR data is to achieve high spatial 
density. Anderson et al. [15] evaluated the Kriging 
and idw interpolation techniques and the effect of 
the LiDAR data density on the statistical valida-
tion of linear interpolators, finding that Kriging 
yields slightly better results than idw; however, idw 
interpolation is computationally lighter and pro-
vides rapid interpolation of the topographic sur-
face. Hodgson et al. [16] found that the sampling 
density for the LiDAR terrain returns varied in the 
categories of soil coverage; the results indicated a 
significant increase of the error in the coverage of 
bushes and shrubs. Furthermore, they found that 
only the elevations covered by low grasslands in-
creased the error as a slope function. Later, Ander-
son et al. [15] evaluated the data reduction capacity 
generating dem for five sampling subsets, using 
the ANUDEM interpolator and three grid sizes. 
They found that when producing 30-m dem, Li-
DAR datasets could be reduced to 10 % of their 
original data density without statistically altering 
the dem produced.

Given that models are an approximate de-
scription of reality and are constructed by apply-
ing assumptions, they are never exact and, hence, 
susceptible to containing errors of random, sys-
tematic nature, or both. These errors must be 
evaluated to minimize their effects or correct 
them when understanding their origin. Sources 
can be diverse: insufficiency of points, incorrect 
distribution in their location, poor selection of 
interpolation algorithms, terrain complexity, or 
spatial resolution [17].



152 J. Garzón Barrero ■ C. E. Cubides Burbano  ■ G. Jiménez-Cleves

Revista Ciencia e Ingeniería Neogranadina  ■  Vol. 31(2) 

The grid size selection depends on two factors: 
the object of study-which is frequently measured 
as the quality of the results required as a function 
of the resolution-and the attributes of the source of 
data collection: accuracy, density, and distribution. 
According to Hengl [18], the resolution of the grid 
size can be related to the geometric disposition of 
the points due to the spatial trend pattern, through 
which the average spacing of points between the 
sampling data identifies the adequate grid size. 
Various criteria exist to define grid size; however, 
this work evaluated the models proposed by Hu, 
Tobler, and Hengl [18], [19], [20], which will be 
presented in the following section.

This research project used Kriging and idw 
interpolators, both local types, based on Tobler’s 
law [21]. idw has demonstrated reliable results at 
different resolutions and relief characteristics; the 
results are ideal in high-density data with the reg-
ular spatial distribution. Kriging is widely used be-
cause it allows knowing the optimal search radius 
of neighbors from the variation among the data 
elevation as a function of its separation (semivar-
iogram), provides unbiased estimation and mini-
mum variance, and calculates the associated error 
for each estimated value. It does not use a simple 
mathematical function to represent the smoothed 
surface; in contrast, it recurs to a statistical func-
tion. It is ideal for dispersing data or data with 
irregular spatial distribution [22], [23]. Kriging is 
driven by Gaussian processes and estimates the 
mean value of the phenomenon, which means 
that the normal distribution is an assumption that 
must be fulfilled before its application [24].

This study, besides focusing on the effect of 
data reduction in the search for the density-vol-
ume ratio-which various authors cited have al-
ready proposed-seeks to conserve the sensitivity 
of the representation of the terrain in the func-
tion of three surface topographic descriptors: 
slope, curvature, and roughness, to improve the 
effectiveness of data processing in storage terms, 

and to achieve this objective, production is pro-
posed using multiple dems with the division of 
original data in proportions of 100, 75, 50, 25, 
10, and 1 % to apply the Kriging and idw inter-
polators and measure their representation error 
with the cross-validation technique. This paper 
is organized as follows. In the first section, we 
describe the different datasets used to develop 
the project. Then, the modeling approach is ex-
plained. The second section presents the results of 
the experiments. Finally, discussion conclusions 
and recommendation research are given.

Materials and Methods
Study Area and Data
Schruns is a town in the city of Bludenz in the fed-
eral state of Vorarlberg. The geodetic coordinates 
of the city center are 47.08 ° N and 9.92 ° E. The ter-
rain has a moderate inclination and steep slopes; 
the elevation variations range from 677 to 1218 m. 
The average slope of the area is 21.7 .̊ Land use/
land cover classes include forest (42 %), grasslands 
(39 %), and buildings (19 %).

The Trimble Harrier 56 system acquired Li-
DAR raw data with a pulse repetition frequency of 
160 kHz, maximum scan angle of 30 °, and average 
point density of 24 echos/m². The data collection 
mission was conducted in August 2013 in Schruns. 
The study area was covered by six flight strips, each 
covering an area about 190 m across. The size of 
this dataset was 1.4 gb. The dataset contains a 
cloud of more than 55 million points and an area 
of 156 ha. The average spacing was 0.17 m. The in-
formation corresponding to the ground data indi-
cates a separation average of 0.21 m and a volume 
of more than 32 million points. For visualization 
purposes, the input data was converted with the 
extension.LAS to.xyz using LAStools freely avail-
able at https://rapidlasso.com/lastools/. The LiDAR 
point cloud was generated using ArcGIS® (https://
esri.com/), as shown in Fig. 1.

https://rapidlasso.com/lastools/
https://esri.com/
https://esri.com/
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Method
This Section is focused on the extraction of the pa-
rameters considered most relevant for modeling the 
effect of the density of LiDAR data without com-
promising the altimetric quality of the topographic 
representation. First, the 55 million measurement 
LiDAR dataset was filtered with LAStools, obtain-
ing 32 million ground points. Then, they were ran-
domly divided into two sets, the first with 90 % to 
build dems at different densities and grid sizes, the 

second with 10 % for validation. The grid size of the 
dems was defined by evaluating the Hu, Tobler, and 
Hengl models. Subsequently, Kriging and idw in-
terpolators were applied to obtain 72 surfaces from 
which the interpolation errors were derived. Final-
ly, the errors were analyzed by multiple linear re-
gression (mlr) and multifactor ANOVA to identify 
the influence of slope, curvature, and roughness on 
them (Fig. 2).

Fig. 1. Location of the study area of Schruns, Vorarlberg.
Source: Own elaboration
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Exploratory Data Analysis
Descriptive, qualitative, and quantitative statisti-
cal analysis was performed to describe the trend 
of data distribution and its degree of dispersion to 
remove the presence of outliers, defining variables 
such as median, mode, quartiles, range, variation 
coefficient, histogram elaboration, and box and 
whisker diagrams.

Classification of Training Groups
When using ground points, a division was made 
into two subsets by random selection. In the first 
subset (calibration), 90 % of the data was obtained 
with which dems were produced at different relative 
densities in the following proportions: 100, 75, 50, 
25, 10, and 1 %. The second subset corresponded to 

10 % of the original data used as checkpoints to val-
idate the information generated by the dem created 
with the training data. For this purpose, cross-val-
idation was used. The technique removes elevation 
values (temporarily), executes the interpolation  
algorithm, and estimates the values interpolated  
in the temporary withdrawal positions.

Analysis of Grid Size
When converting vector structures to raster to 
produce a dem, interpolation techniques must be 
used to define the central value of each grid. In 
that sense, it is necessary to define the spatial reso-
lution, which, as already exposed, affects the final 
quality of the dem. To define the grid size, three 
models of different authors referred to in eq. (1), 
Hu, Tobler, and Hengl, were evaluated:

Fig. 2. Methodological flowchart.
Source: Own elaboration
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the range and morphology of the terrain proposed 
by igac [29]. Curvature calculation used the model 
proposed by Dikau [30] based on the combination 
of convex, straight, and concave profiles. Roughness 
was calculated using the Riley, DeGloria, and Elliot 
model [31].

Statistical Processing of Data
To check the significance of the results produced, 
multifactor ANOVA was applied, relating the 
calculation of interpolation error by Kriging and 
idw to the different resolutions proposed and the 
topographic descriptors slope, curvature, and 
roughness. mlr was used to identify the variabil-
ity contribution introduced by one variable over 
another. Autocorrelation was measured through 
the Moran and Getis indices to characterize the 
behavior of elevations over the surface.

Results and Discussion
Univariate analysis was used to detect the statis-
tical properties of the points. As inferred from 
Fig. 3, there is no data symmetry since the mean, 
median, and mode do not coincide in their values. 
The median and mode values are to the left of the 
mean; this distribution is assumed to have positive 
asymmetry, that is, the small data are abundant. 
Although the symmetry or lack of it does not guar-
antee normality, a pointing coefficient close to zero 
of mesokurtic type is; however, the kurtosis coeffi-
cient identifies the distribution as platykurtic type. 
A trend of data bias is evident toward the right, 
and the presence of atypical values is discarded.

where, A, n, hij, and s,  are area, sampling 
data, average spacing of points, and grid size, 
respectively.

Interpolation with Probabilistic and 
Deterministic Algorithms
Of the interpolation dataset, each sampling (100, 
75, 50, 25, 10, and 1 %) was applied with the Krig-
ing interpolator, minimizing the error variability 
through the fit of the experimental semivario-
gram to the theoretical models disposed of in the 
Geostatistical Analyst module by ArcGIS (spher-
ical, linear exponential, or Gaussian). Interpola-
tion was also conducted with idw at different grid 
sizes in each sampling level to analyze the range 
of data variation and confront its results with the 
original data.

Calculation of the Interpolation Error
Comparison of predictions obtained from pro-
posed interpolators was made using statistics; 
root-mean-square error (rmse), mean absolute 
error (mae), mean square error (mse), and predic-
tion effectiveness index (e). Analytical expressions 
of these indices can be found in Voltz and Webster 
[25] and Gotway et al. [26].

Topographic Descriptors
The slope, curvature, and roughness were calcu-
lated. The rationale for selecting these parameters 
is as follows: First, given its importance in anthro-
pogenic processes such as earthwork calculations. 
Second, due to its usefulness in soil erosion and hy-
drological response, the processes define convexity, 
concavity, or superficial plain [27]. Third, because 
it points to the complexity of the terrain in terms 
of its undulation, indicating importance in biolog-
ical and geological sciences [28]. Morphometric 
parameters were calculated with SAGA software, 
freely available at http://www.saga-gis.org/en/in-
dex.html. The slope was reclassified according to 

Fig. 3. Box and Whisker Plot elevation values.
Source: Own elaboration

http://www.saga-gis.org/en/index.html
http://www.saga-gis.org/en/index.html
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Chi-squared and Kolmogorov-Smirnov tests 
were carried out to detect if the data adjusted to 
the usual trend, logistic or log-normal, given that 
these last two are positively biased functions with a 
high source of variability quite close to the Gauss-
ian distribution. In both models, the probability, 
adjusting the data for any of these distributions 
was < 0.01.

Spatial autocorrelation was measured using the 
Moran index; its value was 0.96, indicating spatial 
grouping; this means that data within the sample 
share similar information in contiguous locations 
radiating through many spatial geographic units 
suggesting redundant information. 

The Getis Ord index was calculated to identi-
fy the grouping level, which produced a value of 
0.000061; the Z value of 25.98 shows positioning 
toward the right against the G observed, discard-
ing the distribution randomness and ensuring that 
the data are highly grouped. During LiDAR data 
collection missions, scanning flight lines generally 
overlap, producing duplicity of points distributed 
irregularly. Besides, the plant coverage and the 
objects with which the sensor interacts generate 
unique optical properties, which is why soil cover-
age plays an important role, given that the points 
obtained are of high density and are configured in 
space almost uniformly. However, not every point 
helps produce the dem; bodies of water, artificial 
objects, and the very structures of nature generate 
a different response when they interact with light 
rays, permitting to obtain too much or too little 
information on occasions.

Normality Conditions of Data Prior 
to Kriging Interpolation
Given that data were not normally distributed, 
data grouping was performed on the higher den-
sity training set (100 %). Initially, sampling was 
used with 5-m grid cells, extracting the value 
from the center. A subset of 62,500 points was ob-
tained; then, the sample mean estimator was used, 
through which these were grouped into subsets of 
200 data. The average value of each group was cal-
culated, generating a final set of 313 data distribut-
ed normally. However, it made no sense to use this 

small dataset, considering that LiDAR is charac-
terized by data with a large density of information 
and highly accurate results. 

Subsequently, different types of transformation 
were tested: linear (standardization, punctual esti-
mation) or nonlinear  which seeks 
to reduce the erratic behavior of the variogram 
models and make the continuity structure more 
evident [32]. The linear method produced a result 
not associated with normality; then, for the non-
linear transformation, considered ideal when the 
original variable has positive asymmetry, the re-
sults of the Chi-squared and Kolmogorov-Smirn-
ov tests also did not indicate normality. Although 
the nonlinear transformations are helpful to force 
the sets into being more symmetrical, care must 
be taken, given that the retransformation of the 
data to the original variable tends to exaggerate 
any associated error with the interpolation, which 
is why after a transformation process, the charac-
teristic to minimize the Kriging variance is lost. 
Application of the central limit concept would be 
very feasible and would guarantee data normality 
whenever the variable had a random spatial con-
figuration, which would allow inferring that if the 
1 % training set behaves normally with mean   
and variance all the other sets behave nor-
mally or asymptotically normal as n tends towards 
infinite.

According to Babish [32], when we have data 
with non-standard trends, Kriging may be used as 
an interpolator. However, it does not necessarily 
behave as the best unbiased linear estimator, which 
is why we must bear in mind that the application 
of this algorithm to a biased dataset will yield es-
timates whose distribution tends to normality, in 
other words, the distribution of the predictions 
will not coincide with that of the original data. A 
prior interpolation was performed to validate this 
condition on the 1 % training set. The T-Student 
and F-Snedecor tests were performed to compare 
means and standard deviations between elevation 
values and prediction. Probability values of 0.999 
and 0.970 in both tests guarantee no differences 
between these datasets, which allows us to infer 
that the similarity is higher with the other training 
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sets since the interpolator represents a better sur-
face than the data density increases.

Grid Size Evaluation Models
The models proposed by Hu, Tobler, and Hen-
gl were evaluated in eq. (1) on the 1 % training 

dataset. As noted in eq. (1), the production times 
of the resulting models were not significantly dif-
ferent between Hu and Tobler, but the Hengl model 
significantly increased the processing times. The 
Hu model was adopted because it was more efficient 
than the Hengl model in terms of time (Fig. 4). 

Fig. 4. Comparative processing times of the 1 % training group on the logarithmic scale. H: Hu; T: Tobler; H2: Hengl.
Source: Own elaboration

Kriging Structural Analysis
The dem was produced with 100 % of the training 
group. A grid size of 23 cm was considered the ref-
erence model for both interpolators. When using 
the Kriging interpolator, it is necessary to set the 
theoretical semivariogram model of the best fit 
to the experimental dataset. Fig. 5 was obtained 
with the ArcGIS Geostatistical Analyst module 
that optimizes the theoretical function that best 
represents the behavior of the empirical variable, 
which is based on the calibration of the plateau 
coefficients and the range that best conforms to a 

specific function. The lag size was chosen accord-
ing to the minimum spacing of the points of the 
input dataset. Anisotropy was measured between 
the sample points regarding their distance and di-
rection to determine the spatial correlation. The 
relation among the sampling points is not invari-
ant as a function of the analysis angle. The amount 
of data associated with each direction has a differ-
ent number of samples; in other words, the empir-
ical semivariogram is influenced by the analysis 
direction.
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Fig. 6. Spatial variation of interpolation errors.
Source: Own elaboration

Heterogeneity exists, noting a greater variation 
in the correlation of the variable in the west-east 
direction (XZ plane) and a lower influence over 
the variogram on the south-north direction (YZ 
plane) with a slight inclination toward the east.

Fig. 6 shows the behavior of the interpolation er-
ror where the maximum values appear in the areas 
with the lowest coverage of ground points; this is 
justifiable since the interpolation error is associated 
with the density of the points. These results are in 
line with those obtained by Liu et al. [33].

Fig. 5. Semivariogram density: 100 % grid size: 23 cm.
Source: Own elaboration
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Idw Structural Analysis
Contrary to what happens with Kriging, idw does 
not make explicit assumptions about the statistical 
properties of the data, and this algorithm is quite 
frequent when the data do not fulfill the statistical 
assumptions. Using cross-validation, the Geosta-
tistical Analyst module optimized the power to 
which the search distance was raised through the 
iterative search for the lowest rmse of prediction. 
A minimum number of two neighbors and a max-
imum of eight were used for the weighting. When 
the structural parameters of the idw interpolator 
were fixed, the algorithm was executed.

Interpolation Errors
After producing the dem, the cross-validation tech-
nique was applied to obtain the magnitude of the 
prediction errors for each training set, as shown 

in Table 1. Mesa-Mingorance and Ariza-López 
[34]conducted a critical review of the accuracy as-
sessment of dems, arguing that dems lack specific 
guidelines for their evaluation and are considered a 
challenge for the geospatial community. However, 
rmse has been widely used as a quality measure-
ment parameter. Although the rmse is a widely 
used measurement, it does not guarantee the ab-
solute quality of the predictions by Zhou et al. [35]. 
Due to this, this research recurred using mae, mse, 
and e statistics to measure prediction quality. The 
comparison was carried out using the mean values 
of the residuals, and this yielded results very close 
to zero, suggesting that the difference between the 
rmse and the standard deviation is not significant, 
with no presence of systematic errors; however, the 
overestimation is shown as a generalized tendency 
for Kriging. The contrary effect is shown by idw, 
which mostly underestimated the density eleva-
tion and resolution of the evaluated sets.

Table 1. Kriging and idw prediction errors obtained by cross-validation in centimeters

Kriging idw

Density
 (%)

Points Average 
point 
spacing

Mean rmse Standard 
error

Mean rmse

100 29,385,299 22.50 0.00 5.00 2.20 -0.01 5.30

75 22,038,974 25.90 0.00 5.10 2.30 -0.02 6.10

50 14,692,650 31.50 0.00 5.30 2.80 -0.03 6.10

25 7,346,325 43.80 0.00 5.90 3.70 -0.04 7.30

10 2,938,530 67.60 0.00 7.20 5.60 -0.06 9.70

1 293,853 231.00 -0.15 15.50 13.90 0.19 26.90

Source: Own elaboration
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Fig. 8. Comparative mae. K: Kriging; I: idw.
Source: Own elaboration

Then, the rmse, mae, mse, and e statistics were 
calculated to evaluate the precision of the eleva-
tions estimated concerning the set with original 

data destined for validation. The results are ex-
pressed in Figs. 7, 8, 9, and 10.

Fig. 7. Comparative rmse. K: Kriging; I: idw.
Source: Own elaboration
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Fig. 9. Comparative mse. K: Kriging; I: idw.
Source: Own elaboration

Fig. 10. E Comparative. K: Kriging; I: idw.
Source: Own elaboration
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To define the volume and minimum data den-
sity, the Paired T Student Test was applied. The re-
sults in Tables 2 and 3 indicate that the means of 
the residuals at different resolutions (except 100 %) 
are statistically equal to the mean of the training 

subsets (P-Value > 0.05), which is sufficient to en-
sure that a higher density setting can be replaced 
by a lower density set without altering its altimet-
ric quality.

Table 2. Comparative average Kriging residuals 

23 cm 27 cm 33 cm

Density
 (%)

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

100 -0.0000 0.0000 0.0000

75 0.0000 0.217 0.0000 0.246 0.0000 0.286

50 0.0000 0.482 0.0000 0.439 0.0000 0.677

25 0.0000 0.149 0.0000 0.178 0.0000 0.353

10 0.0000 0.551 0.0000 0.651 0.0000 0.765

1 -0.0001 0.257 -0.0001 0.183 -0.0001 0.132

46 cm 73 cm 230 cm

Density
 (%)

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

100 0.0000 0.0001 0.0018

75 0.0000 0.513 0.0001 0.780 0.0018 0.889

50 0.0000 0.933 0.0001 0.708 0.0016 0.487

25 0.0000 0.867 0.0000 0.363 0.0012 0.028

10 -0.0000 0.629 -0.0000 0.069 0.0006 0.000

1 -0.0001 0.070 -0.0002 0.002 0.0001 0.000
Source: Own elaboration
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Table 3. Comparative average idw residuals

23 cm 27 cm 33 cm

Density
 (%)

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

100 -0.0002   -0.0001   -0.0002  

75 -0.0002 0.553 -0.0002 0.312 -0.0002 0.330

50 -0.0003 0.006 -0.0003 0.003 -0.0003 0.007

25 -0.0005 0.000 -0.0004 0.000 -0.0005 0.000

10 -0.0006 0.000 -0.0006 0.000 -0.0006 0.000

1 -0.0019 0.000 -0.0018 0.000 -0.0019 0.000

46 cm 73 cm 230 cm

Density
 (%)

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

Mean 
residuals

P-
Value

100 -0.0002   -0.0002   0.0008  

75 -0.0003 0.326 -0.0002 0.574 0.0009 0.802

50 -0.0004 0.030 -0.0003 0.143 0.0006 0.467

25 -0.0005 0.000 -0.0005 0.000 0.0003 0.064

10 -0.0007 0.000 0.0000 0.000 -0.0000 0.000

1 -0.0019 0.000 -0.0019 0.000 -0.0016 0.000

Source: Own elaboration

In the case of Kriging, the grid sizes 23, 27, 
33, and 46 cm did not present statistically signif-
icant differences between the estimates and the 
reference dem, indicating that for these grid siz-
es, a dem can be generated using 1 % of the data 
without altering the sensitivity of the elevation 

representations. In the case of idw, the data re-
duction could only apply from 100 to 75 % with 
grid sizes of 23, 27, 33, and 46 cm. In their work, 
Liu et al. [12] were able to reduce 50 % of data the 
quality of data without altering the dem using the 
idw interpolator.
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Morphometric Parameters
The morphometric descriptors slope, curvature, 
and roughness were calculated for the six grid 
sizes proposed in each training set, producing 36 
surfaces associated with each topographic index. 
Using the mlr technique and setting the residual 
errors as the dependent variable and the morpho-
metric parameters as independent, the analysis 
showed curvature and slope were the variables 
with the most significant influence on the model. 
These variables were highly correlated, suggesting 
that both explain the same thing. They were ana-
lyzed individually to leave only one in the model, 
identifying the one with the highest R² and the 
lowest variance. Godone and Garnero [36] studied 
the influence of morphometric parameters on dif-
ferent interpolators, and their findings pointed to 

curvature and slope as the main factors that affect 
interpolation precision. These results are not pre-
cisely in line with those found here, given that in 
their study, they did not use a regression model to 
detect the correlation between the descriptors.

The linear regression models in Kriging showed 
that the most influential factor was curvature in 
all the grid sizes and densities evaluated. For idw, 
curvature was also the most influential at 100, 75, 
and 50 % densities. The roughness indicated an 
alteration in the prediction in the remaining sets, 
suggesting that the lack of points produced defi-
ciencies due to the relief complexity.

Multifactor ANOVA was also applied to quan-
tify the residuals’ variability by decomposition 
into slope, curvature, and roughness in each of the 
associated ranges.

Table 4. Analysis of Variance

Source Sum of 
squares

df Mean square F-Ratio Reference P-Value

Slope 0.096 7 0.014 3.67 2.010 0.001

Curvature 227.814 8 28.477 7656.32 1.940 0.000

Roughness 29.906 6 4.984 1340.08 2.100 0.000

Residual 12143.8 3265011 0.004

Total (corrected) 12401.8 3265032

Source: Own elaboration

 In all cases, the estimated F-Ratio values were 
to the reference values, right of the reference as 
shown in Table 4, which indicates that all sources 
contributed to the representation error of the dem. 
After that, multiple range tests were applied to de-
tect which classifications had greater significance 
within the groups.

Fig. 11 indicates the mean of the levels in which 
each factor was grouped. Case (a) represents the 

influence of the types of slopes over the residu-
als, detecting no significant differences between 
any of the slope levels. Case (b) shows the behav-
ior of curvature classification and their associated  
errors, the plane/plane curvature (Group 4) ob-
tained the highest representation error. Among the 
rest of the groups, no significant differences were 
present. Case (c) only presents significance with 
values associated with high roughness (Group 6).
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Fig. 11. Multifactorial ANOVA of means.
Source: Own elaboration

Spatial Autocorrelation
According to Aguilar et al. [37], when data valida-
tion sets are used to evaluate the quality of mod-
els and their residues present spatial dependence 
among themselves, it means that the data valida-
tion set must be lower than that currently used, 
and therefore, a new validation data set must be 
sought so that it satisfies the following condition: 
“The spacing between two points must be greater 
than the maximum distance at which the range is 
presented”; if this is so, it is said that the residu-
als of the new set are not autocorrelated having a 
random spatial configuration; therefore, the error 
propagation will be independent of location, that 
is, systematic propagation will not exist within 
the dem or its derivative attributes. Supported by 

this concept, the data validation set was reduced 
to density levels: 10, 1, 0.5, 0.1, 0.025, and 0.01 %, 
where only the set of 0.01 % of the original vali-
dation information allowed the normality in the 
residues to be found through the Chi-squared and 
Shapiro-Wilk tests. 

The semivariogram of Fig. 12 was calculat-
ed for this last dataset, and a range of 3.99 m was 
obtained, which compared to the lower spacing 
between the two checkpoints, which was 7 m, 
managed to demonstrate thus that the set of resid-
uals is not spatially autocorrelated. Finally, Tables 
5 and 6 indicate the maximum data reduction lev-
els without statistically affecting the quality of the 
dem and its associated errors.
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Fig. 12. Semivariogram. Residual: 0.01 %. Grid size: 23 cm.
Source: Own elaboration

Table 5. Data reduction by Kriging and summary of errors. Units: centimeters

Set Grid 
size

rmse e mae mse Red. e mae mse mse

100% 23 6.2 100.00 4.1 0.4 99 % 16.0 99.99 8.5 2.6

27 6.5 100.00 4.4 0.4 99 % 16.2 99.99 8.7 2.6

33 7.2 100.00 4.9 0.5 99 % 16.4 99.99 9.0 2.7

46 8.7 100.00 06.1 0.8 99 % 17.1 99.99 9.9 2.9

73 12.4 99.99 8.8 1.5 90 % 13.3 99.99 12.0 3.7

230 36.0 99.99 25.8 13.0 50 % 35.9 99.99 27.4 14.5
Source: Own elaboration

Table 6. idw data reduction and summary of errors. Units: centimeters

Set Grid 
size

rmse e mae mse Red. e mae mse mse

100% 23 6.4 100.00 4.3 0.4 25 % 7.2 100.0 4.8 0.5

27 6.8 100.00 4.6 0.5 25 % 7.5 100.0 5.0 0.6

33 7.4 100.00 5.0 0.5 25 % 8.1 100.0 5.5 0.7

46 8.9 100.00 6.2 0.8 25 % 9.6 100.0 6.6 0.9

73 2.5 99.99 8.8 1.6 50 % 12.8 99.99 9.0 1.6

230 35.7 99.99 25.7 12.7 75 % 35.7 99.99 25.8 12.8
Source: Own elaboration
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Conclusions
This research demonstrated that the reduction ca-
pacity of the data volume was affected by factors 
such as the interpolation algorithm, sampling den-
sity, grid size, and terrain curvature. For complex 
terrain, the LiDAR dataset with an average spacing 
of 7 m can be reduced to 1 % of its original data 
density without affecting the quality of the dem 
using the Kriging algorithm. This procedure re-
duces the file size and the processing time for dem 
production without compromising the quality of 
topographic representation. 

However, the research results are expected to 
be improved by analyzing factors such as auto-
matic filtering since it can affect the magnitude 
of the errors by including erroneous points in the 
interpolation.
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