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Autonomously Navigate on Urban 
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Vision and a Mobile Robot*
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Abstract: The design of efficient autonomous navigation systems for mobile robots or autonomous 
vehicles is fundamental to perform the programmed tasks. Basically, two kind of sensors are used 
in urban road following: LIDAR and cameras. LIDAR sensors are highly accurate but expensive and 
extra work is needed for human understanding of the point cloud scenes; however, visual content 
is understood better by human beings, which should be used to develop human-robot interfaces. 
In this work, a computer vision-based urban road following software tool called AutoNavi3AT for 
mobile robots and autonomous vehicles is presented. The urban road following scheme proposed 
in AutoNavi3AT uses vanishing point estimation and tracking on panoramic images to control the 
mobile robot heading on the urban road. To do that, Gabor filters, region growing, and particle filters 
were used. In addition, laser range data are also employed for local obstacle avoidance. Quantitative 
results were achieved using two kind of tests, one uses datasets acquired at the Universidad del Valle 
campus, and field tests using a Pioneer 3AT mobile robot. As a result, important improvements in 
the vanishing point estimation of 68.26 % and 61.46 % in average were achieved, which is useful for 
mobile robots and autonomous vehicles when they are moving on urban roads.
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Interfaz de software Autonavi3at para navegar de forma 
autónoma en vías urbanas mediante visión omnidireccional  
y un robot móvil

Resumen: El diseño de sistemas de navegación autónomos eficientes para robots móviles o vehícu-
los autónomos es fundamental para realizar las tareas programadas. Básicamente, se utilizan dos 
tipos de sensores en el seguimiento de vías urbanas: LIDAR y cámaras. Los sensores LIDAR son muy 
precisos, pero costosos y se necesita trabajo adicional para la comprensión humana de las escenas 
de nubes de puntos; sin embargo, los seres humanos entienden mejor el contenido visual, lo que de-
bería usarse para desarrollar interfaces humano-robot. En este trabajo, se presenta una herramienta 
de software de seguimiento de carreteras urbanas basada en visión artificial llamada AutoNavi3AT 
para robots móviles y vehículos autónomos. El esquema de seguimiento de vías urbanas propuesto 
en AutoNavi3AT utiliza la estimación del punto de fuga y el seguimiento de imágenes panorámicas 
para controlar el avance del robot móvil en la vía urbana. Para ello se utilizaron filtros Gabor, creci-
miento de regiones y filtros de partículas. Además, los datos de alcance del láser también se emplean 
para evitar obstáculos locales. Los resultados cuantitativos se lograron utilizando dos tipos de prue-
bas, una utiliza conjuntos de datos adquiridos en el campus de la Universidad del Valle y pruebas de 
campo utilizando un robot móvil Pioneer 3AT. Como resultado, se lograron mejoras importantes en 
la estimación del punto de fuga de 68.26% y 61.46% en promedio, lo cual es útil para robots móviles 
y vehículos autónomos cuando se desplazan por vías urbanas.

Palabras clave: visión omnidireccional; puntos de fuga; Filtro de partículas; vehículos autónomos
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vision. The omnidirectional vision was selected 
since it presents better field of view and has a high 
feature lifetime. AutoNavi3At detects vps in the 
panoramic images using Gabor filters and region 
growing. However, these estimations are unstable 
since they depend on the illumination conditions; 
for this reason, a particle filter was implemented 
to track the vps to then use this vp as heading re-
ference of the mobile robot motion when naviga-
ting the road. The contributions of this work are 
as follows:

 ◾ Reliable and accurate vp estimation to guide 
the mobile robot on an urban road.

 ◾ Implementation of a real time guidance system 
on a mobile robot base on vp estimation and 
particle filters.

 ◾ From operational point of view, AutoNavi3AT 
is a friendly mobile application to configu-
re and control the vp estimation, and robot 
navigation.

The rest of this work is structured as follows: 
related works, the urban road-following methodo-
logy, the design and implementation of AutoNa-
vi3AT, tests and results, and conclusions.

RELATED WORKS
Table 1 shows the works most relevant to this pa-
per. It compares the reviewed work considering 
their application, sensors used, the method pro-
posed for road segmentation, and features used to 
estimate the road direction. 

INTRODUCTION
Autonomous navigation is essential in service ro-
botic applications such as automated agriculture, 
self-driving cars, driver assistance, monitoring 
and security, and search and rescue. In these fields, 
computing precise local maps of the surroundings 
is an important task, where the autonomous vehi-
cle can locate itself and achieve the intended goal. 
Common sensors for this are LIDAR, gps, cameras, 
and a combination of these sensors. LIDAR sensors 
are highly precise, but they are expensive; gps sen-
sors do not work in all outdoors environments and 
their sample time is low; cameras are cheaper, cap-
ture near 3D information, can be part of any mobile 
platform and offer visual information which is also 
useful to enrich Human-Robot interfaces.

An important task in autonomous navigation 
is road-following and tracking. In this context, 
scientific literature divides road-following and 
tracking methods in two groups top-down and 
bottom-up. The former uses whole the image in-
formation to estimate the road heading; the latter 
uses features such as color, texture, edges be-
tween others to estimate the road heading. This 
work uses the bottom-up approach, particularly 
the detection and estimation of vanishing points 
(vp), since this feature improves the robustness 
and effectiveness of road heading in many types 
of roads [1]. 

This paper presents the software tool AutoNa-
vi3AT [2], which is a software tool capable of confi-
guring and controlling a Pioneer 3AT mobile robot 
to follow an urban road using omnidirectional 

Table 1. Related work.

Ref. Application Sensors Method Features

[3] DARPA challenge Monocular OLDOM vp

[4] Non-urban navigation Monocular Gabor filters Road texture

[5] Non-urban navigation Monocular Gabor filters Road texture

[6] Non-urban navigation Monocular MPGA vp

[1] Non-urban navigation Monocular Gabor filter Road texture

[7] Non-urban navigation Monocular Optical flow foe, vp

[8] Urban, non-urban nav. Monocular Morf. Oper. Texture, edges
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Ref. Application Sensors Method Features

[9] Urban navigation Monocular ICNet, VP Texture

[10] Urban navigation Omnidirectional 3-line Ransac Lines, vp

[11] SLAM Omnidirectional EKF KLT

[12] Urban navigation Omnidirectional DBSCAN vp, edges

[13] Non-urban navigation Stereo M. Gaussian vp, edges

[14] Urban navigation Lidar Otsu Line marks

[15] Urban navigation Camera, laser Adaboost, vp Texture, edges

Source: Own elaboration

As seen in Table 1, these works can be classi-
fied in three groups considering the sensor used: 
monocular camera [1], [3]-[9]; omnidirectional 
camera [10]-[12], and other sensors such as ste-
reo cameras [13], LIDAR [14] and a combination 
of monocular and Lidar sensors [15]. Monocular 
cameras are cheaper and easier to mount in auto-
nomous vehicles, but their field of view is limited. 
LIDAR sensors are highly precise, their field of 
view is wide, but they are very expensive in com-
parison with the vehicle’s cost. Stereo cameras are 
now more common, and their biggest advantage 
is depth perception; however, as with the omnidi-
rectional camera, they are least studied despite the 
fact they offer a larger field of view, which increase 
the feature lifecycle for tracking purposes. 

Most road-following applications include ur-
ban and non-urban vehicle navigation. In urban 
navigation, works such as [8]-[10], [12], [14] and 
[15] exploit the fact that autonomous vehicles are 
driven in marked lanes with visible lane border to 
segment the road using morphological operators 
[8], deep learning approaches [9], robust RANSAC 
estimators [10], clustering edges using DBSCAN 
[12], thresholding [14], and Adaboost classifiers 
[15]. Non-urban navigation is more challenging, 
since it assumes there are no lane markers, and it is 
difficult to distinguish the road from surrounding 
vegetation. In this context, works such as [1], [3]-[5] 
use Gabor filters to segment the road using textu-
re, [6] uses a genetic algorithm (MPGA) to classi-
fy road super-pixels, [7] uses the relative position 
of the focus of expansion and the road vp to get 
the road direction using optical flow, and [13] uses 
multivariate Gaussian approaches to extract vps.

Finally, Table 1 shows that the main goal of 
most methods is obtaining the scene vps. It does 
not matter if the autonomous vehicle is driving 
in urban or non-urban roads since vps detection 
is robust in all types of roads [1]. For this rea-
son, in this work accurate estimation of vps is 
an important task which is detailed in the next 
section.

URBAN ROAD-FOLLOWING 
USING OMNIDIRECTIONAL 
VISION
The urban road-following task implemented in 
this work is inspired by [13], but it was adapted to 
process omnidirectional images, which has impact 
in different stages of the algorithm such as Gabor 
filtering, region growing and the voting schema to 
predict the VP. Basically, the pipeline of the main 
algorithm implemented in the mobile robot is des-
cribed as follows:
1) The omnidirectional image is captured and  

then converted to a panoramic image using the 
calibration parameters.

2) The predicted vp is computed using Gabor fil-
ters, dominant orientation calculation, and filte-
red region growing.

3) The most likely vp is estimated using a particle 
filter.

4) Finally, the robot final heading is calculated 
based on three components: the estimated road 
direction, the heading computed by the obsta-
cle avoidance task and the user entry.
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and a line segment is inscribed within a rectangle. 
Experiments show that the height of this rectan-
gle should be twice width. Additional constraints 
are needed to obtain better line segments candi-
dates and avoid situations such as line segments 
pointing to outer image regions (left, right, up and 
below the image). In (5) the second constraint is 
applied to the line segments.

= , > 0 (5)

Where, Ci,x is the line segment mean x coordi-
nate, Cxmean is the average of all x coordinates line 
segment, and Ki are the line segment slopes. The 
resulting line segments are used to predict the vp 
in a weighted voting schema defined by (6).

, = ∑ �− , , �
, ,

 (6)

Where, Li,l and Lj,l are the length of a pair of line  
segments Li and Lj; Ll is the total length of all  
line segments, and di,j,k is the distance from a line 
segment Lk to the intersection point of line seg-
ments Li, and Lj. Then, the vp selected pvp(xi,j, yi,j) 
corresponds to the minimum weighted vote Di,j.

Despite the above filtering process, the vp de-
tected is noisy due changes in the illumination and 
obstacles in the road. A more robust estimation 
is needed since this vp will be used to define the 
mobile robot heading direction. For this reason, in 
this work a particle filter was implemented to be-
tter estimate the vp. Three major components are 
needed to do so: a particle set, the transition mo-
del and the measurement model. The particle set 
is composed by a sample of vps {sm

t, m = 1, … , M}, 
and M corresponding weights {wm

t, m = 1, … , M} 
[18], where si

t = (xi
t, yi

t) is a vp hypothesis in image 
coordinates. 

The M vp samples of the particle set are obtai-
ned using a two-dimensional Gaussian distribu-
tion with µ = (0, 0) centered in the predicted vp, 
and Σ with two diagonal elements equal to (σxmean, 
σymean) corresponding to the standard deviation 
values of the line segment center coordinates, see 
(5). Then, the transition model depicted in (7) is 
applied to the particle set to obtain the next state 
probability distribution.

The captured omnidirectional image is conver-
ted to a panoramic image using (1) [16].

� � =  �
�

2
�

�
2
�
� + � � (1)

Where, u and v are the panoramic image coor-
dinates, ri and θi are the radial distance and angle 
of the i-th pixel in the omnidirectional image, and 
cx and cy are the center coordinates of the omnidi-
rectional image. Using this panoramic image, a set 
of Gabor filters are applied using (2).

( , ; , , , , ) = �− ′2 2 ′2
2 � � ′ � (2)

Where, λ is the wavelength of the sinusoidal 
factor, θ is the filter orientation, ψ is the filter pha-
se offset, σ is the standard deviation of the filter 
Gaussian, and γ is the spatial aspect. In this work, 
filter parameters such as λ, σ and kernel size were 
tuned using [17]. The number of Gabor filters for 
this work was 8, each at 22.5° uniformly distri-
buted between 0° and 180°. This set of filters is 
applied to the panoramic image, but their energy 
response in terms of magnitude and orientation 
are computed. These responses are then sorted in 
descendent order and (3) is used to compute their 
confidence level [17], and then to obtain the domi-
nant orientations.

( ) = 100 �1 − 1
−3
∑ ( )

1( )
−2 � (3)

Where, p is a pixel in the panoramic image, theta  
is the number of Gabor filter orientations, and Ei is 
the sorted energy response of each filter. All pixels 
less than a confidence threshold are discarded. In 
our experiments, this threshold was set to 30. The 
next step is region growing; to do that, a robust 
number of pixels in the region (nreg) is computed 
using (4) [17].

<
− log�11( )

5
2�

log�180�
 (4)

Where, Xm and Ym are the image dimensions, 
and θth is the Gabor filter orientation resolution. 
Next, all pixels corresponding to a dominant 
orientation are used to fit a region around them, 
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and sent to the mobile robot. The normalization 
procedure is needed in case the obstacle avoidance 
or user input headings are not available.

DEVELOPMENT OF 
AUTONAVI3AT
This section describes the design and implemen-
tation of AutoNavi3AT. AutoNavi3AT was de-
veloped using the rup methodology [20]; this 
methodology includes the following deliverables: 
functional and non-functional requirements, con-
ceptual diagram, use cases, sequence diagrams, 
class diagrams, source code, and tests reports. Due 
to space reasons, this section describes functional 
and non-functional requirements, ros node dia-
gram and gui description.

DESIGN OF AUTONAVI3AT
Considering the related works analysis perfor-
med above the functional and non-functional 
requirements of AutoNavi3AT are described as 
follows:

 ◾ Functional requirements: A friendly gui in a 
portable device to configure parameters of the 
Gabor filters, laser sensor, and obstacle avoidan-
ce, as well as operate the mobile robot; capture 
omnidirectional images and obtain the corres-
ponding panoramic image; compute the esti-
mated road heading using Gabor and particle 
filters; avoid obstacles in the road using a laser 
sensor; gather user inputs when the robot faces 
cross street intersections; and, navigate the mo-
bile robot in urban roads. 

 ◾ Non-functional requirements: The development 
environment is ros Indigo; the mobile robot 
platform is a Pioneer3AT; the portable device 
Android SO minimum version is 6.0; the vision 
sensor includes a Prosilica camera GT1290C 
and an omnidirectional optics GoPano Plus.

Fig. 1 shows the conceptual diagram of Au-
toNavi3AT. Here, the operator or user accesses 
the AutoNavi3AT functionalities through the  
Android-based gui. Using this gui, users can mo-
dify the robot and algorithm parameters, then 

= │ , � = + (1 ) ∗  (7)

Where, st
i is the i-th vp hypothesis sample at 

time t, p(st
i│VPt, si

t-1) is the Gaussian probability 
distribution function applied to the predicted vp 
(VPt), which depends on the previous state (si

t-1) 
and the constant a is defined in (8).

= ‖ − ‖ − ‖⁄ ‖ (8)

Where, a is the norm of a unit vector computed  
between the difference of the i-th predicted vp  
at time t (VPt), and the i-th vp hypothesis sample at  
time t-1 (si

t-1).
In particle filters, the measurement model is 

used to compute the particle weights. The rela-
tionship between the particle weights and the me-
asurement model is shown in (9).

│ � = � = , Σ = �
0

0 ��  (9)

Where, wi
t is the i-th weight corresponding to 

the i-th vp hypothesis, and p(zt│st
i) is the proba-

bilistic measurement model which uses a normal 
distribution with mean equal to the predicted vp 
(VPt) and covariance matrix Σ. Then, after the re-
sampling process, the estimated vp selected is the 
hypothesis with the greater weight. 

Finally, the fourth stage needs three heading 
components. At this moment, the estimated road 
direction is now available (sq

t). Another compo-
nent comes from the obstacle avoidance node, 
which uses potential fields [19] to compute a hea-
ding free of obstacles (PF qt). The third component 
comes from user inputs (U qt), which are summari-
zed as follows: go forward, turn left, turn right, and 
perform a U-turn. These user inputs are used only 
in the moment that the mobile robot faces a cross 
street intersection. Otherwise, the mobile robot 
motion responds to the final heading computed in 
this fourth stage. Then, the final robot heading is 
computed as depicted in (10).

ℎ = + +  (10)

Where, k, l and m are constants to merge the 
three headings expressed in quaternions. In this 
work, k = 0.2, l = 0.3 and m = 0.8 After computing 
(10) the final heading quaternion hq

t is normalized 
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both cases, default parameters always are available 
in case of user error. Then, returning to the main 
activity, users can execute the ros application in 
the mobile robot and send commands to it such 
as turn left, turn right, go forward, and perform 
U-turns. In the execution activity, the mobile ro-
bot sends the current omnidirectional image pro-
cessed which shows the predicted and estimated 
vps.

Fig. 2. gui navigation diagram.

The second part of AutoNavi3AT is an ros 
application which runs in the on-board compu-
ter of the Pioneer 3AT. This kind of application is 
represented as a map of nodes. Fig. 3 shows this 
representation for the AutoNavi3AT software tool. 
Here, the following nodes can be identified: 

 ◾ The beige nodes /mono_camera_node and /
imcapturer correspond to the omnidirectional 
image acquisition.

 ◾ The cyan node /vpnode implements the vp pre-
diction detailed above.

 ◾ The purple nodes /partfiltermode, /vpviewer, /
vpdimode and /web_video_server implement 
the estimation of the vp using particle filters 
and its visualization.

execute the autonomous navigation algorithm on 
urban roads. This algorithm computes the vps of 
the panoramic scene; since vps are sensitive to 
illumination changes, the particle filter tracks and 
estimates the most likely vp. Users also can com-
mand the mobile robot when it faces a cross street 
intersection. The experimental platform is a Pio-
neer 3AT mobile robot, which is equipped with an 
on-board Linux Ubuntu 16.04 computer, a laser 
range finder Hokuyo UTM-30LX, and a Prosilica 
GT1290C camera with a parabolic omnidirectio-
nal catadioptric optic.

Fig. 1. Conceptual diagram of AutoNavi3AT.

IMPLEMENTATION OF 
AUTONAVI3AT
As depicted in Fig. 1, AutoNavi3AT was imple-
mented in two main parts: first, the gui in the An-
droid device, and second the ros application in the 
mobile robot Pioneer 3AT. The gui in the Android 
device responds to a navigation diagram shown in 
Fig. 2. The P3AT Navigation activity includes ac-
cess to the Robot Settings, Application Parameters 
and Execution activities. Users can modify robot 
settings such as robot speed, laser range finder in-
terest region, and the omnidirectional calibration 
parameters. The latter were calibrated using [20]. 

Also, users can modify application parameters, 
such as the number of particles and the Gabor fil-
ter parameters. Once robot and application para-
meters are set, users send these parameters to the 
mobile robot and return to the main activity. In 
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 ◾ The green nodes /hokuyo_node, /laser_filtering 
and /detectnode implement the obstacle avoi-
dance process using potential fields. 

 ◾ The grey node /usemode captures the user 
inputs in case the robot faces cross street 
intersections.

 ◾ The yellow node /finaldestination implements 
the final heading calculation using (10).

 ◾ The pink nodes /RosAria and /rosbridge_web-
socket are ros utilities used to command the 
Pioneer 3AT mobile robot and access its in-
ternal sensors and to communicate with the 
Android application. This communication is 
done by JSON objects, which include informa-
tion such as the robot settings, ros application 
parameters, user inputs, and visual feedback 
of the current omnidirectional image with the 
predicted and estimated vps on it.

Fig. 3. Map of nodes of AutoNavi3AT

RESULTS AND DISCUSSION
In this section, the experimental setup is described 
as well as the tests and results achieved after va-
lidating the functionalities of AutoNavi3AT. An 
example of the operation of AutoNavi3AT can be 
found in https://www.youtube.com/watch?v=DXl-
gjERggMU, which shows how the software tool is 
used on the internal roads of the Universidad del 
Valle, close to the School of Electrical and Electro-
nic Engineering (eiee, for its initials in Spanish).

EXPERIMENTAL SETUP
Fig. 4 shows the Pioneer 3AT robot base with the fo-
llowing sensor setup: a Prosilica GT1290C camera, 
a GoPano Plus omnidirectional optics, and a Hoku-
yo UTM-30LX laser range finder. The Pioneer 3AT 
robot also has a WiFi router as the remote commu-
nication interface, two incremental encoders of 500 
ticks/rev, eight frontal sonar sensors, one on-board 
Kingdel computer running Ubuntu 14.04 and ros 
Indigo, and three battery pack of 12V / 7Ah.

https://www.youtube.com/watch?v=DXlgjERggMU
https://www.youtube.com/watch?v=DXlgjERggMU
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Fig. 4. Experimental setup with the Pioneer 3AT robot.

TESTS AND RESULTS
To validate the functionalities of AutoNavi3AT, two 
different experiments were performed: a dataset-ba-
sed test and a field test. The goal of the dataset-based  
test is to check that all functional requirements 

described above can be satisfied and that those with 
issues can be improved. Once these issues are co-
rrected, the goal of field tests is to validate the func-
tionality of AutoNavi3AT in real world conditions. 
In both tests, accuracy of the vp estimation is mea-
sured quantitatively over several runs.

DATASET-BASED TESTS

Fig. 5. Datasets. a) Route No. 1 (426m). b) Route No. 2 (800m). c) Route No. 3 (1.02Km). d) Route No. 4/5 (317m / 120m)



108 J. E. Caicedo Martínez ■ B. Bacca Cortes

Revista Ciencia e Ingenieria Neogranadina  ■  Vol. 32(1) 

To perform the dataset-based tests, a dataset was 
acquired for the internal roads of the Universidad 
del Valle, close to the ¿eiee. This dataset includes 
five routes as depicted in Fig. 5 and includes the 
following data: omnidirectional images, laser scan 
data and odometry information. The datasets are 
stored as rosbag compatible files. The datasets were 
acquired in real environmental conditions, with 
changing illumination and obstacles and rubbish in 
the road. 

In all routes shown in Fig. 5, the amount of 
data logged in the rosbag files ranges from 850 
data points to 2500 data points. Since these experi-
ments were performed at different dates and time, 
they are independent of each other; a Gaussian 

distribution for error analysis can be assumed. The 
goal of the error analysis in this work is to show 
an improvement with respect to [13], since, in this 
work a particle filter is used to improve the vp 
estimation.

Using these datasets, the proposed method 
described above was tested. The results obtained 
include the XY coordinates of the predicted and 
estimated vp over the whole route. Fig. 5 shows the 
graphs for all five routes, at each figure the predic-
ted and estimated XY coordinates are shown, as 
well as a sample panoramic image. The predicted 
vp is shown in magenta, and the estimated vp is 
shown in blue. Same color code applies to the vps 
shown in the panoramic image.

Fig. 6. Predicted (magenta) and estimated (blue) X-Y vanishing point coordinates, as well as sample of panoramic 
image. a) Route No. 1. b) Route No. 2. c) Route No. 3. d) Route No. 4. e) Route No. 5

a)

b)
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c)

d)

e)

Observing Fig. 6, predicted vps have large va-
riations over the route, which mainly is due to 
changing illumination and rubbish on the road 
which affect the road segmentation. These experi-
mental data justify filtering the vp location data. 
In this work, a particle filter was implemented to 
better estimate the vp location as described in abo-
ve. Observing the blue traces in Fig. 6, a noticeable 
improvement is obtained using the particle filter 
proposed in this work. 

Table 2 shows the quantitative results for all 
five routes, where the mean of XY vp coordinates 
(predicted and estimated) including 1σ standard 
deviation over the whole route is shown. The data 
variation of Table 2 shows high improvements ran-
ging from 2.5 to 8 times for the X coordinate, and 
from 1.6 to 7 times for the Y coordinate. The last 
rows of Table 2 show the mean improvement per-
centage considering the uncertainty measures and 
computed for each route using (11).
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[%] = 1 ⁄  (11)

Where σEst is the standard deviation of the esti-
mated vp, and σPred is the standard deviation of the 

predicted vp. Observing these results, the estima-
tion of the vp X coordinate can be improved by up 
to 77.3% in average; and up to 59.2% for the vp Y 
coordinate. 

Table 2. Quantitative results of dataset-based tests.

State Coord. R. 1 R. 2 R. 3 R. 4 R. 5

Predicted X 824.5 ± 73.04 790.69 ± 109.34 816.09 ± 99.85 883.83 ± 112.95 793.81 ± 104.19

Y 59.35± 18.32 70.58 ± 16.55 70.55 ± 16.01 77.19 ± 17.94 68.66 ± 17.32

Estimated X 807.83 ± 14.91 807.78 ± 42.87 808.09 ± 25.06 858.28 ± 14.11 807.64 ± 17.0

Y 72.72 ± 10.98 77.64 ± 6.19 77.52 ± 5.8 78.79 ± 5.89 76.64 ± 6.48

Improvement in X 79.59% 60.79% 74.9% 87.51% 83.68%

Improvement in Y 40.06% 62.6% 63.77% 67.17% 62.59%

FIELD TESTS

Three additional field tests were performed using 
the Pioneer 3AT mobile robot. First, a straight-line  
route of 30 m; second, a turn right route of 15 m; 
and third, an obstacle avoidance test of 20 m. Fig. 7 
shows the results of these tests, where the XY predic-
ted (magenta) and estimated (blue) vp coordinates 
are shown, a snapshot of the mobile robot moving 
over the route, and the robot orientation perceived 
by the robot sensors. These results show a behavior 

similar to those depicted in Fig. 6, where the particle 
filter proposed in this work helps to improve the un-
certainty in the vp estimation. In addition, the robot 
orientation graph for all three routes shows the re-
sults expected, namely a soft robot heading of 0 rads, 
a turn to the right at approximately 70 s of the test, 
and an obstacle avoidance at t = 30s and recovering 
the road orientation at 45 s. Even though the road 
had rubbish on it, shadows and changing illumina-
tion, the robot heading behaves smoothly, a desired 
behavior for autonomous vehicles. 

a)
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b)

c)

As in Table 2, Table 3 summarizes the quan-
titative results obtained, showing improvements 
in the uncertainty ranges from 1.8 to 5.5 times in 
the X coordinate, and from 1.9 to 3.3 times for the 

Y coordinate. Applying (11) to the experimental 
data shown in Table 3, on average the vp X coor-
dinate improved by 67%, and the vp Y coordinate 
by 55%. 

Fig. 7. Predicted (magenta) and estimated (blue) X-Y vanishing point coordinates, an image sample of the test and 
the robot orientation. a) Test No. 1. b) Test No. 2. c) Test No. 3.
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the VP X coordinate was improved up to 67%  
and the VP Y coordinate up to 55%. These results 
show that the proposed method in this work is a 
good option for autonomous navigation in mobile 
robots, filtering changing illumination of omnidi-
rectional images, challenging road segmentation, 
merging heading references with local planning 
(obstacle avoidance) constraints and, if required, 
user inputs at specific moments in the robot navi-
gation task.
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