

https://doi.org/10.19053/01217488.v12.n1.2021.11283

Conjuntos Pre regular *pc-I*-abiertos vía ideales sobre espacios topológicos

Pre Regular pc-I-Open Sets in Ideal Topological Spaces

Carlos Granados

Resumen

En este artículo, se introduce y estudia la noción de conjunto pre regular pc-I-abierto sobre un espacio topológico dotado de un ideal. Además, se muestran algunas de sus propiedades. Por otro lado, se definen nuevas variantes de continuidad y contra-continuidad, en efecto se muestran algunas caracterizaciones y se prueban algunos resultados sobre espacios pre regular pc-I-conexo, pre regular pc-I- T_1 , pre regular pc-I- T_2 y pre regular pc-I-normal.

Palabras clave: conjunto pre regular pc-I-abierto, función pre regular pc-I-continua, función contra pre regular pc-I-continua, espacio pre regular pc-I-conexo, espacio pre regular pc-I- T_1 , espacio pre regular pc-I-normal

Abstract

In this paper, we introduce and study the notion of pre regular pc-I-open set on an ideal topological space. Besides, we show some of its properties. On the other hand, we define new variants of continuity and contra-continuity, indeed we show some characterizations and we prove some results on pre regular pc-I-connected, pre regular pc-I-T1, pre regular pc-T1, and pre regular pc-T1-normal spaces.

Recepción: 26-jun-2020 Aceptación: 22-oct-2020

1 Introducción

En 1933, Kuratowski [12] utilizó la teoría de ideales sobre espacios topológicos para introducir una generalización de la clausura de un conjunto, denominada la función local de un conjunto con respecto a un ideal y a una topología. Dado un espacio topológico (X, τ) e I un ideal topológico sobre X, para cada subconjunto A de X se define la función local de A con respecto a I y τ , como el conjunto $A^* = \{x \in X : U \cap A \notin I \text{ para cada } U \in A \text{ para cada } U \text{ para$ τ tal que $x \in U$ }. Esta generalización fue de gran utilidad para definir el concpeto de operador clausura de Kuratowski Cl^* , el cual induce una topología τ^* que es más fina que la topología τ . En 1992, Jankovic y Hamlett [9], introducen la noción de conjunto \mathscr{I} -abierto vía función local $A \to A^*$, la cual es independiente de la noción de conjunto abierto y es una generalización del concepto de conjunto pre-abierto dado por Mashhour et al. [15]. El estudio de conjuntos abiertos o cerrados mediante la noción de espacios topológicos dotado de ideales es un tema que los topologistas han estudiado y todavia siguen estudiando sobre diferentes campos de la topología general. En el 2019, Granados [5] estudió una variante de continuidad a través de los conjuntos Λ_{AI} -abiertos en espacios topológicos dotado de ideales. En el año 2020, se estudiaron e introducieron nuevos conjuntos y conceptos sobre espacios topológicos dotados de ideales, Nestor Pachon [17] introducieron las nociones de espacios P- Hausdorff, P-regular y P-normal sobre espacios de idales. Por otro lado, Premkumar y Rameshpandi [18], definen nuevos conjuntos generalizados sobre espacios nano topológicos ideales.

Por otro lado, el estudio de conjuntos pre regulares inició en el 2018 cuando Jeyanthi y Nalayini [11] definieron en su artículo el conjunto pre regular *sp*-abierto, donde posteriormente en el 2020, Granados [4] introduce y estudia las nociones de conjuntos pre regular *pc*-abiertos. En este artículo, se define una nueva noción de conjuntos pre regulares sobre espacios topológicos dotados de ideales, los cuales se llamarán conjuntos pre regular *pc-I*-abiertos. Además, se muestran algunas de sus propieades y relaciones existentes entre algunos conjuntos ya conocidos en la literatura. Adicionalmente, se

definen nuevas variantes de continuidad y contracontinuidad, y se prueban algunas caracterizaciones sobre espacios pre regular *pc-I*-conexos, pre regular *pc-I-T*₁, pre regular *pc-I-T*₂ y pre regular *pc-I*normal.

2 Conceptos preliminares

En esta sección, se muestran algunas definiciones, proposiciones, lemas y/o teoremas, necesarios para el desarrollo de este artículo, es por esto que las demostraciones de estos mismos seran obviados ya que pueden ser encontradas en las referencias citadas.

Definición 2.1. ([12]) Un ideal I sobre un espacio topológico (X,τ) es una colecció no vacía de subconjuntos de X que sastisface las siguientes propiedades:

- 1. Si $A \in I$ y $B \subset A$, entonces $B \in I$. (Propiedad hereditaria).
- 2. $Si A \in I y B \in I$, entonces $A \cup B \in I$. (Propiedad aditiva).

Observación 1. Observe que si I es un ideal, entonces $\emptyset \in I$, puesto que $\emptyset \subset A$ para cualquier $A \in I$.

Ejemplo 2.1. *Sea X un conjunto no vacío. Las siguientes colecciones son ideales sobre X:*

- 1. La colección de todos los subconjuntos finitos de X, denotada por F.
- 2. La colección de todos los subconjuntos contables de X, denotada por \mathscr{C} , donde $\mathscr{C} = \mathscr{F} \cup \{A : A \text{ es enumerable}\}.$
- 3. La colección de todos los subconjuntos nunca densos de X, denotada por \mathcal{N} .
- 4. La colección de todos los subconjuntos cerrados y discretos de X, denotada por & D.
- La colección de todos los subconjuntos magros (o de primera categoría) de X, denotada por M.

Observación 2. La terna (X, τ, I) dotado por un ideal I, lo llamaremos espacio topológico ideal o espacio topológico dotado de un ideal.

Definición 2.2. ([12]) Un espacio topológico ideal (X, τ, I) es llamado espacio Hayashi samuels (E.H.S.) si $\tau \cap I = \{\emptyset\}$.

Definición 2.3. ([12]) Sea (X, τ, I) un espacio topológico ideal. Para cada subconjunto A de X, se define la función local de A con respecto al ideal I y τ de la siguiente manera:

$$A^*(I,\tau) = \{x \in X : U \cap A \notin I, para cada U \in \tau(x)\},\$$

donde $\tau(x) = \{U \in \tau : x \in U\}$

Observación 3. En el desarrollo de este artículo, escribiremos A^* en vez de $A^*(I, \tau)$.

Definición 2.4. ([10]) Sea (X, τ, I) un espacio topológico ideal. Para cada subconjunto A de X, se define $Cl^*(A)$ como la unión de A con A^* , es decir $Cl^*(A) = A \cup A^*$.

Teorema 2.1. ([10]) Cl^* es un operador clausura de Kuratowski.

Observación 4. En virtud del teorema 2.1, si (X, τ, I) es un espacio topológico ideal, denotamos por τ^* a la topología generada por Cl^* , esto es, $\tau^* = \{U \subset X : Cl^*(X - U) = X - U\}$. Los elementos de τ^* son llamados τ^* -abiertos y el complemento de un τ^* -abierto es llamado τ^* -cerrado.

Además, todo conjunto abierto en τ es un conjunto τ^* -abierto, pero lo contrario no se cumple siempre.

Teorema 2.2. ([10]) Sea (X, τ, I) un espacio topológico ideal $y A \subset X$, donde $I = \{\emptyset\}$, entonces $Cl^*(A) = Cl(A)$.

Definición 2.5. Sea A un subconjunto del espacio topológico (X, τ) , entonces A es:

- 1. Semi-abierto [13], si $A \subseteq Cl(Int(A))$.
- 2. *Semi-I-abierto* [8], $si A \subseteq Cl^*(Int(A))$.
- 3. b-abierto [3], si $A \subseteq Cl(Int(A)) \cup Int(Cl(A))$.
- 4. b-I-abierto [6], si $A \subseteq Cl^*(Int(A)) \cup Int(Cl^*(A))$.
- 5. β -abierto [14], si $A \subseteq Cl(Int(Cl(A)))$.
- 6. β -I-abierto [7], si $A \subseteq Cl(Int(Cl^*(A)))$.

- 7. Almost I-abierto [1], si $A \subseteq Cl(Int(A^*))$.
- 8. $pclA = A \cup Cl(Int(A))$ [2].
- 9. $spintA = A \cap Cl(Int(Cl(A)))$ [2].
- 10. $pcl(spintA) = (A \cup Cl(Int(A))) \cap Cl(Int(Cl(A)))$ [2].

Proposición 2.1. Para cualquier espacio topológico ideal (X, τ, I) , los siguientes enunciados siempre son verdaderos:

- 1. [8] Todo conjunto semi-I-abierto es semi-abierto.
- 2. [7] Todo conjunto β -I-abierto es β -abierto.
- 3. [3] Todo conjunto semi-abierto es b-abierto.
- 4. [6] Todo conjunto semi-I-abierto es b-I-abierto.

Definición 2.6. [4] Sea A un subconjunto del espacio topológico (X,τ) , A es pre regular pcabierto si $A = pcl(spintA) = (A \cup Cl(Int(A))) \cap Cl(Int(Cl(A)))$. El complemento de un conjunto pre regular pc-abierto es un conjunto pre regular pc-cerrado.

La colección de todos los conjuntos pre regular peabiertos y pre regular pe-cerrados de (X,τ) son denotados por $PCO(X,\tau)$ y $PCC(X,\tau)$, respectivamente.

3 Conjuntos pre regular pc-I-abiertos

En esta sección, definimos y probaremos algunas propiedades de los conjuntos pre regular *pc-I*-abiertos, además se muestran algunas relaciones entre los conjuntos definidos en la seccón anterior.

Definición 3.1. Sea (X, τ, I) un espacio topológico ideal $y \in A \subset X$, A es un conjunto pre regular pc-I-abierto, si $A = pcl^*(spintA) = (A \cup Cl^*(Int(A))) \cap Cl^*(Int(Cl^*(A)))$. El complemento de un conjunto pre regular pc-I-abierto es un conjunto pre regular pc-I-cerrado.

La colección de todos los conjuntos pre regular pc-Iabiertos y pre regular pc-I-cerrados son denotados por $PCIO(X, \tau, I)$ y $PCIC(X, \tau, I)$. El siguiente ejemplo muestra que las nociones de conjuntos pre regular *pc*-abiertos y pre regular *pc-I*-abiertos son independientes:

Ejemplo 3.1. Sea $X = \{a,b,c\}$ con la topología $\tau = \{\emptyset, X, \{b,c\}, \{a,c\}, \{c\}\}$ y el ideal $I = \{\emptyset, \{b\}\}$, entonces la colección de conjuntos pre regular pcabiertos son $PCO(X,\tau) = \{\emptyset, X, \{b,c\}, \{a,c\}\}$ y la colección de conjuntos pre regular pc-I-abiertos son $PCIO(X,\tau,I) = \{\emptyset, X, \{b\}, \{a,c\}\}$. Entonces, podemos observar que el conjunto $\{b\}$ es un conjunto pre regular pc-I-abierto, pero no es un conjunto pre regular pc-abierto y el conjunto $\{b,c\}$ es un conjunto pre regular pc-abierto, pero no es un conjunto pre regular pc-I-abierto.

Para que los conjuntos pre regular *pc*-abiertos y pre regular *pc-I*-abiertos se encuentren relacionados, debe de cumplirse la siguiente condición:

Teorema 3.1. Sea (X, τ, I) un espaco topológico ideal. Si $I = \{\emptyset\}$, entonces si A es un conjunto pre regular pc-I-abiert, si y solo si, A es un conjunto pre regular pc-abierto.

Proof. Sea A un subconjunto del espacio topológico ideal (X, τ, I) tal que $I = \{\emptyset\}$, entonces por el teorema 2.2, $Cl^*(A) = Cl(A)$, esto implica que si A es un conjunto pre regular pc-abierto, entonces $A = (A \cup Cl(Int(A))) \cap Cl(Int(Cl(A))) = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A)))$, así tenemos que A también sera un conjunto pre regular pc-I-abierto.

Observación 5. Teniendo en cuenta el teorema anterior, es importante que $I = \{\emptyset\}$ para que los conjuntos pre regular pc-abiertos y pre regular pc-Iabiertos este relacionados, de lo contrario ocurrirá lo propuesto en el ejemplo 3.1.

Teorema 3.2. Sea (X, τ, I) un espaco topológico ideal, entonces los siguientes enunciados son ciertos:

- 1. Todo pre regular pc-I-abierto es β-I-abierto.
- 2. Todo pre regular pc-I-abierto es β -abierto.

Proof. 1. Sea A un conjunto pre regular pc-I-abierto en (X, τ) , esto implica que

- $A = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))) \subset Cl(Int(Cl^*(A)))$, esto prueba que A es un conjunto β -I-abierto.
- 2. Dado que todo conjunto β -*I*-abierto es β -abierto y por la parte (1) de este teorema, tenemos que todo conjunto pre regular *pc-I*-abierto es β -abierto.

El reciporco del teorema anterior no siempre es verdadero, a continuación podemos ver un ejemplo.

Ejemplo 3.2. Sea $X = \{a,b,c\}$, con la topología $\tau = \{\emptyset, X, \{a\}\}$ y el ideal $I = \{\emptyset\}$, entonces $\{a,b\}$ es un conjunto β -I-abierto y consecuentemente es β -abierto, pero no es un conjunto pre regular pc-I-abierto.

Teorema 3.3. Si A es un conjunto pre regular pc-I-abierto del espacio topológico ideal (X, τ, I) , tal que $Int(A) = \emptyset$ y $Cl^*(A) = A$, entonces A es un conjunto semi-abierto.

Proof. Sea A un conjunto pre reular pc-I-abierto, tal que $Int(A) = \emptyset$ y $Cl^*(A) = A$, entonces tenemos que $A = (A \cup \emptyset) \cap Cl(Int(A)) = A \cap Cl(Int(A)) \subset Cl(Int(A))$, por lo tanto A es un conjunto semi-abierto.

Proposición 3.1. Si A es un conjunto pre regular pc-I-abierto del espacio topológico ideal (X, τ, I) , tal que $Int(A) = \emptyset$ y $Cl^*(A) = A$, entonces A es un conjunto b-abierto.

Proof. Dado que todo conjunto semi-abierto es b-abierto, y por el teorema 3.3, A es un conjunto semi-abierto, esto implica que A es un conjunto b-abierto.

Teorema 3.4. Si A es un conjunto pre regular pc-I-abierto del espacio topológico ideal (X, τ, I) , tal que $A \subset A^*$, entonces A es un conjunto almost I-abierto.

Proof. Sea A un conjunto pre regular pc-I-abierto, entonces $A = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))) = (A \cup Cl^*(Int(A))) \cap Cl(Int(A \cup A^*))$, dado que $A \subset A^*$, tenemos que $A = (A \cup Cl^*(Int(A))) \cap I$

 $Cl(Int(A^*)) \subset Cl(Int(A^*))$, por lo tanto esto implica que A es un conjunto almost I-abierto.

Teorema 3.5. Sea A un conjunto abierto y pre regular pc-I-abierto del espacio topológico ideal (X,τ) , entonces A es un conjunto semi-I-abierto.

Proof. Dado que A es un conjunto prer regular pc-I-abierto, tenemos que $A = (A \cup Cl^*(Int(A))) \cap$ $Cl(Int(Cl^*(A))) \subset A \cup Cl^*(Int(A))$, como A es un conjunto abierto, entonces $A \subseteq Cl^*(Int(A))$, por lo tanto $A \cup Cl^*(Int(A)) = Cl^*(Int(A))$, y así $A \subset$ $Cl^{\star}(Int(A))$, esto prueba que A es un conjunto semi-*I*-abierto.

Proposición 3.2. Sea A un conjunto abierto y pre regular pc-I-abierto del espacio topológico ideal (X,τ) , entonces A es un conjunto b-I-abierto.

Proof. Por el teorema 3.5 tenemos que A es un conjunto semi-I-abierto, por la proposición 2.1, parte (4), tenemos que A es un conjunto b-I-abierto.

Definición 3.2. Sea A un subconjunto del espacio topológico ideal. Entonces A es un conjunto:

- 1. $pcl^*A = A \cup Cl^*(Int(A))$.
- 2. $(spintA)^* = A \cap Cl(Int(Cl^*(A))).$

Teorema 3.6. Para cualquier subconjunto A del espacio topológico ideal (X, τ) , los siguientes enunciados son equivalentes:

- 1. A es pre regular pc-I-abierto.
- 2. $A = pcl^*A \cap Cl(Int(Cl^*(A)))$.
- 3. $A = (spintA)^* \cup Cl^*(Int(A))$.

Proof. $(1) \Longrightarrow (2)$: Sea un conjunto regular *pc-I*-abierto, entonces $(A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))),$ por la definición 3.2, parte (1), tenemos que $pcl^*A = A \cup Cl^*(Int(A)),$ por tanto $A = pcl^*A \cap Cl(Int(Cl^*(A))).$

(2)
$$\Longrightarrow$$
(3): Sea $A = pcl^*A \cap Cl(Int(Cl^*(A))) = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))) = (A \cap Cl(Int(Cl^*(A)))) \cup (Cl(Int(Cl^*(A)))) \cap$

 $Cl^*(Int(A)))$, por la parte (2) de la dfini- $(spintA)^* = A \cap Cl(Int(Cl^*(A))).$ Además, $Cl^*(Int(A)) \subseteq Cl(Int(Cl^*(A)))$, esto implica que $Cl(Int(Cl^*(A))) \cap Cl^*(Int(A)) =$ $Cl^*(Int(A))$, en consecuncia esto prueba que $A = (spintA)^* \cup Cl^*(Int(A)).$

(3) \Longrightarrow (1): Sea $A = (spintA)^* \cup Cl^*(Int(A)) =$ $(A \cap Cl(Int(Cl^*(A)))) \cup Cl^*(Int(A)) = (A \cup$ $Cl^{\star}(Int(A))) \cap (Cl^{\star}(Int(A)) \cup Cl(Int(Cl^{\star}(A)))),$ pero $Cl^*(Int(A)) \subseteq Cl(Int(Cl^*(A)))$, esto implica que $Cl(Int(Cl^*(A))) \cup Cl^*(Int(A)) =$ $Cl(IntCl^{\star}(A))),$ en efecto tenemos $A = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))),$ por lo tanto A es un conjunto pre regular pc-I-abierto

A continuación mostraremos algunos resultados hallados de los conjuntos pre regular *pc-I*-abiertos.

Iniciaremos mostrando un contraejemplo donde podemos ver que todo conjunto abierto no es necesariamente un conjunto pre regular *pc-I*-abierto.

Ejemplo 3.3. Sea $X = \{a,b,c\}$, con el ideal I = $\{\emptyset, \{c\}\}\$ con la topología $\tau = \{\emptyset, X, \{a\}, \{a,b\}\}.$ Entonces la colección de todos los conjuntos pre regular pc-I-abiertos son $PCIO(X, \tau, I) = \{\emptyset, X\},\$ podemos ver que los conjuntos $\{a\}$ y $\{a,b\}$ no son pre regular pc-I-abiertos.

Ahora mostraremos dos contraejemplos que muestran que la unión, la intersección y la diferencia arbitraria de dos conjuntos pre regular pc-I-abiertos no es un conjunto pre regular pc-I-abierto.

Ejemplo 3.4. Sea $X = \{a,b,c\}$, con el ideal I = $\{\emptyset, \{a\}\}\$ y la topología $\tau = \{\emptyset, X, \{a\}, \{b\}, \{a,b\}\}.$ Entonces, la colección de todos los conjuntos pre regular pc-I-abierto son $PCIO(X, \tau, I) =$ $\{\emptyset, X, \{a\}, \{b\}\}\$, podemos ver que $\{a\}$ y $\{b\}$ son conjuntos pre regular pc-I-abiertos, pero $\{a\} \cup \{b\} = \{a,b\}$ no es un conjunto pre regular pc-I-abierto.

Ejemplo 3.5. *Sea* $X = \{a,b,c\},$ ideal $I = \{\emptyset, \{a\}, \{c\}, \{a,c\}\}\}$ y la topología $\tau = \{\emptyset, X, \{c\}, \{b, c\}, \{a, c\}\}\}$. Entonces, la colección de todos los conjuntos pre regular pc-I-abierto son $PCIO(X, \tau, I) = \{\emptyset, X, \{b, c\}, \{a, c\}\}\}$, podemos ver que $\{b,c\}$ y $\{a,c\}$ son conjuntos pre regular pc-I-abiertos, pero $\{a,c\} \cup \{b,c\} = \{c\}$ no es un conjunto pre regular pc-I-abierto.

Por otro lado, podemos ver que $\{b,c\} - \{a,c\} = \{c\}$, por el enunciado anterior, concluimos que $\{c\}$ no es un conjunto pre regular pc-I-abierto.

Teorema 3.7. Sea (X, τ, I) un espacio topológico ideal y $A \subset X$. Si A es un conjunto pre regular pc-I abierto donde $I = \{\emptyset\}$, entonces el conjunto vacío es el único conjunto que es nunca denso y pre regular pc-I-abierto.

Proof.

Sea A un conjunto pre regular pc-I-abierto, como $I = \{\emptyset\}$ esto implica que $Cl^*(A) = Cl(A)$, y tenemos que, $A = (A \cup Cl^*(Int(A))) \cap Cl(Int(Cl^*(A))) = (A \cup Cl(Int(A))) \cap Cl(Int(Cl(A))) = \emptyset$, si y solo si, $A = \emptyset$.

4 Continuidad vía conjuntos pre regular *pc-I*-abiertos

En esta sección, se introducen y estudian algunas variantes de continuidad sobre los conjuntos pre regular pc-I-abiertos, además se muestran algunas carectizaciones. En esta sección, τ , σ y ω denotaran espacios topológicos. Además, I, J y K denotaran ideales.

Definición 4.1. Una función $f:(X,\tau) \to (Y,\sigma,J)$ es pre regular pc-I-continua, si $f^{-1}(V)$ es un conjunto pre regular pc-I-abierto en (X,τ,I) para cada conjunto V abierto en (Y,σ,J) .

Definición 4.2. Una función $f:(X,\tau,I) \to (Y,\sigma,J)$ y X es sweca-pre regular pc-I-continua si $f^{-1}(V)$ es un conjunto pre regular pc-I-abierto en (X,τ,I) para cada conjunto V σ^* -abierto en (Y,σ,J) .

Teorema 4.1. *Toda función sweca-pre regular pc-I-continua es pre regular pc-I-continua.*

Proof. Sea A un conjunto abierto en (Y, σ, J) , entonces A es un conjunto σ^* -abierto en (Y, σ, J) , dado que f es una funcióm sweca-pre regular pc-I-continua, entonces $f^{-1}(A)$ es un conjunto pre

regular pc-I-abierto en (X, τ, I) , por lo tanto f es una función pre regular pc-I-continua.

Observación 6. El reciproco del teorema anterior no se cumple de forma general, pues todo conjunto σ^* -abierto no es necesariamente un conjunto abierto, entonces podra existir un conjunto σ^* -abierto en (Y, σ, J) que no sea pre regular pc-I-abierto en (X, τ, I) .

Teorema 4.2. Sea $f:(X,\tau,I) \to (Y,\sigma,J)$ y $g:(Y,\sigma,J) \to (Z,\omega,K)$ dos funciones, con τ,σ y ω espacios topológicos e I,J y K ideales, entonces los siguientes enunciados son verdaderos:

- 1. $g \circ f$ es pre regular pc-I-continua, si f es pre regular pc-I-continua g es continua.
- 2. $g \circ f$ es sweca-pre regular pc-I-continua, si f es sweca-pre regular pc-I-continua y g continua.

Proof. 1. Sea V un conjunto abierto en Z, como g es una función continua, entonces $g^{-1}(V)$ es un conjunto abierto en Y, dado que f es una función pre regular pc-I-continua, tenemos que $f^{-1}(g^{-1}(V))$ es un conjunto pre regular pc-I-abierto en X, pero $(g \circ f)^{-1}(V) = f^{-1}(g^{-1}(V))$, esto muestra que $g \circ f$ es una función pre regular pc-I-continua.

La demostración del punto (2), se realiza de manera similar al punto (1). □

Teorema 4.3. Para cualquier función $f:(X,\tau,I) \rightarrow (Y,\sigma,J)$, tal que la unión arbitraria de conjuntos pre regular pc-I-abiertos en X es un conjunto pre regular pc-I-abierto, entonces los siguientes enunciados son equivalentes:

- 1. f es pre regular pc-I-continua.
- 2. $f^{-1}(B)$ es un conjunto pre regular pc-I-cerrado en X para cada conjunto cerrado B en Y.
- 3. Para cada $x \in X$ y cada conjunto V abierto en Y conteniendo a f(x) existe un conjunto pre regular pc-I-abierto U en X conteniendo a x y $f(U) \subset V$.

Proof. (1) \Rightarrow (2): Sea B cualquier subconjunto cerrado en Y, entonces V = Y - B es un conjunto abierto en Y y dado que f es una función pre regular pc-I-continua, $f^{-1}(V)$ es un conjunto pre regular pc-I-abierto de X, pero $f^{-1}(V) = f^{-1}(Y - B) = f^{-1}(Y) - f^{-1}(B) = X - f^{-1}(B)$, por lo tanto $f^{-1}(B)$ es un conjunto pre regular pc-I-cerrado de X.

 $(2) \Rightarrow (1)$: Sea V cualquier conjunto abierto en Y, then B = Y - V es un conjunto cerrado en Y y por hipótesis, tenemos que $f^{-1}(B)$ es un conjunto pre regular pc-I-cerrado de X, pero $f^{-1}(B) = f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$, por lo tanto $f^{-1}(V)$ es un conjunto pre regular pc-I-abierto de X. Esto muestra que f es una función pre regular pc-I-continua.

(1) \Rightarrow (3): Sea $x \in X$ y B un conjunto abierto en Y tal que $f(x) \in B$, entonces $x \in f^{-1}(B)$ y dado que f es una función pre regular pc-I-continua, $f^{-1}(B)$ es un conjunto pre regular pc-I-abierto en X. Si $U = f^{-1}(B)$, entonces U es un conjunto pre regular pc-I-abierto de X tal que $x \in U$ y $f(U) = f(f^{-1}(B)) \subset B$. (3) \Rightarrow (1): Sea B cualquier conjunto abierto en Y y $x \in f^{-1}(B)$, entonces $f(x) \in B$ y por la parte (3) de este teorema, existe un conjunto pre regular pc-I-abierto U_x de X tal que $x \in U_x$ y $f(U_x) \subset B$. por lo tanto, $x \in U_x \subset f^{-1}(f(U)) \subset f^{-1}(F)$, en consecuencia $f^{-1}(B) = \bigcup \{U_x : x \in f^{-1}(B)\}$. En conclusión tenemos que $f^{-1}(B)$ es un conjunto pre regular pc-I-abierto de X.

Teorema 4.4. Para cualquier función $f:(X,\tau,I) \rightarrow (Y,\sigma,J)$, tal que la unión arbitraria de conjuntos pre regular pc-I-abiertos en X es un conjunto pre regular pc-I-abierto, entonces los siguientes enunciados son equivalentes:

- 1. f es sweca-pre regular pc-I-continua.
- 2. $f^{-1}(B)$ es un conjunto pre regular pc-I-cerrado en X para cada conjunto σ^* -cerrado B en Y.
- 3. Para cada $x \in X$ y cada conjunto V σ^* -abierto en Y conteniendo a f(x) existe un conjunto pre regular pc-I-abierto U en X conteniendo a x y $f(U) \subset V$.

Proof. La demostración de este teorema se realiza de manera similar al teorema 4.3. □

Definición 4.3. Un espacio topológico ideal (X, τ, I) es pre regular pc-I-I1 si para cada par de puntos $x, y con x \neq y$, exite al menos un conjunto pre regular pc-I-abierto que contiene a x o y, pero no a ambos.

Definición 4.4. Una función $f:(X,\tau) \to (Y,\sigma,J)$ es pre regular pc-I-irresoluta, si $f^{-1}(V)$ es un conjunto pre regular pc-I-abierto en (X,τ,I) para cada conjunto V pre regular pc-I-abierto en (Y,σ,J) .

Teorema 4.5. Sea $f:(X,\tau,I) \to (Y,\sigma,J)$ una función pre regular pc-I-irresoluta, con X un espacio pre regular pc-I- T_1 , entonces Y es un espacio pre regular pc-I- T_1

Proof. Supongamos que Y no es un espacio pre regular $pc ext{-}I ext{-}T_1$. Si para cada par de puntos x,y con $x \neq y$ tal que U y V son conjuntos pre regular $pc ext{-}I$ -abiertos con $U \cap V \neq \emptyset$ con $x \in U$ y $y \in V$, dado que f es una función pre regular $pc ext{-}I$ -irresoluta, $f^{-1}(U \cap V) \neq \emptyset$ en X y esto contradice que X es un espacio pre regular $pc ext{-}I ext{-}1$.

Definición 4.5. Un espacio topológico ideal (X, τ, I) es pre regular pc-I- T_2 , si para cada par de puntos diferentes $x, y \in X$, existen conjuntos pre regular pc-I-abiertos U y V de X tal que $x \in U$, $y \in V$, $U \cap V = \emptyset$.

Teorema 4.6. Si $f:(X,\tau,I) \to (Y,\sigma,J)$ es una función abierta, inyectiva y pc-I-continua, donde (Y,σ) es un espacio pre regular pc-I- T_2 , entoncs (X,τ,I) es un espacio pre regular pc-I- T_2

Proof. Sea *A* y *B* dos conjuntos abiertos diferentes en *X*. Como *f* es una función abierta e inyectiva, entonces f(A) y f(B) son conjuntos abiertos disyuntos en *Y* y como (Y, σ, J) es un espacio pre regular pc-I-T₂, existen dos conjuntos abiertos G y H de Y tales que $f(A) \subset G$, $f(B) \subset H$ y $G \cap H = \emptyset$. Ahora, dado que f es una función pre regular pc-I-continua, $f^{-1}(G)$ y $f^{-1}(H)$ son conjuntos pre regular p-I-abiertos de X, aunque $A \subset f^{-1}(f(A)) \subset f^{-1}(G)$, $B \subset f^{-1}(f(B)) \subset f^{-1}(H)$ y $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$. Esto prueba que (X, τ, I) es un espacio pc-I-T₂. \square

Definición 4.6. *Un espacio topológico ideal* (X, τ, I) *es pre regular pc-I-conexo, si* X *no puede escribirse*

como una unión disyunta de dos conjuntos pc-Iabiertos diferentes de vacío.

Teorema 4.7. Para un espacio topológico ideal (X, τ, I) , los siguientes enunciados son equivalentes:

- 1. (X, τ, I) es pre regular pc-I-conexo.
- 2. Ø y X son los únicos conjuntos de X que son al mismo tiempo pre regular pc-I-abiertos y pre regular pc-I-cerrados.
- 3. Cada función pre regular pc-I-continua de X es un espacio discreto en Y con al menos dos puntos, es un función constante.

Proof. (1) \Longrightarrow (2): Sea B un conjunto de X que es pre regular pc-I-abierto y pre regular pc-I-cerrado, entonces X - B es pre regular pc-I-abierto y pre regular pc-I-cerrado, así $X = B \cup (X - B)$, como X es conexo, entonces $B = \emptyset$ o B = X.

- (2) \Longrightarrow (1): Supongamos que X no es pre regular pc-I-conexo y $X = U \cup B$, entonces U = X B, por hipótesis, se tiene que $U = \emptyset$ o U = X, lo que contradice el hecho de que U y V son no vacíos.
- (2) \Longrightarrow (3): Sea $f(X,\tau,I) \to Y$ una función pre regular pc-I-continua donde Y es un espacio topológico discreto y contiene al menos dos puntos, entonces X se puede escribir como una colección de conjuntos que son a la vez pre regular pc-I-abiertos y pre regular pc-I-cerrados de la forma que $\{f^{-1}(y): y \in Y\}$, de esto, se concluye que existe un $y_0 \in Y$ tal que $f^{-1}(\{y_0\}) = X$ y así, f es una función constante.
- (3) \Longrightarrow (2): Sea Z un conjunto de X que es pre regular pc-I-abierto y pre regular pc-I-cerrado. Supongamos que $W \neq \emptyset$ y sea $f: (X, \tau, I) \rightarrow Y$ una función pre regular pc-I-continua definida por $f(Z) = \{y_1\}$ y $f(X Z) = \{Y_2\}$ para $y_1 \neq y_2$, con $y_1, y_2 \in Y$. Puesto que f es una función constante, se concluye que X = Z.

Definición 4.7. *Una función* $f:(X,\tau,I) \rightarrow (Y,\sigma,J)$ *se dice:*

1. Contra pre regular pc-I-continua, si $f^{-1}(V)$ es un conjunto pre regular pc-I-cerrado en X para cada onjunto abierto V en Y.

2. Contra sweca-pre regular pc-I-continua, si $f^{-1}(V)$ es un conjunto pre regular pc-I-cerrado en X para cada conjunto σ^* -abierto V en Y.

Teorema 4.8. Toda función contra sweca-pre regular pc-I-continua es contra pre regular pc-I-continua.

Proof. Sea V un conjunto abierto en Y, entonces V es un conjunto σ^* -abierto en Y y puesto que f es contra sweca-pre regular pc-I-continua, tenemos que $f^{-1}(V)$ es un conjunto pre regular pc-I-cerrado de X. Por lo tanto, f es contra pre regular pc-I-continua.

Observación 7. El reciproco del teorema anterior no se cumple de forma general, pues todo conjunto σ^* -abierto no es necesariamente un conjunto abierto, entonces puede existir un conjunto σ^* -abierto en (Y, σ, J) que no sea pre regular pc-I-cerrado en (X, τ, I) , como se puede ver en el siguiente ejemplo.

Ejemplo 4.1. Sea $X = \{q, w, e\}, \quad \tau = \{\emptyset, X, \{q\}, \{q, w\}\}, \quad \sigma = \{\emptyset, X, \{e\}, \{w, e\}\}, I = \{\emptyset, \{e\}\} \ y \ J = \{\emptyset, \{e\}, \{w, e\}, \{w\}\}.$ Entonces, la colección de todos los subconjuntos σ^* -abiertos de X es $\{\emptyset, X, \{e\}, \{w, e\}, \{q\}, \{q, w\}, \{q, w\}\} \ y$ la colección de todos los subconjuntos pre regular pc-I-cerrados de X es $\{\emptyset, X, \{e\}, \{w, e\}, \{q, e\}, \{w\}\}.$ La función identidad $f: (X, \tau, I) \rightarrow (X, \sigma, J)$ es contra pre regular pc-I-continua, pero no es contra sweca-pre regular pc-I-continua.

Teorema 4.9. Sea $f:(X,\tau,I) \to (Y,\sigma,J)$ una función, tal que la unión arbitraria de conjuntos pre regular pc-I-abiertos en X es un conjunto pre regular pc-I-abierto, entonces los siguientes enunciados son equivalentes:

- 1. f es contra pre regular pc-I-continua.
- 2. $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X para cada conjunto cerrado F de Y.
- 3. Para cada $x \in X$ y cada conjunto cerrado F de Y que contiene a f(x), existe un conjunto pre regular pc-I-abierto U de X que contiene a x y $f(U) \subset F$.

Proof. (1) \Rightarrow (2): Sea F cualquier conjunto cerrado en Y, entonces V = Y - F es un conjunto abierto en Y y puesto que f es contra pre regular pc-I-continua, $f^{-1}(V)$ es un conjunto pre regular pc-I-cerrado de X, pero $f^{-1}(V) = f^{-1}(Y - F) = f^{-1}(Y) - f^{-1}(F) = X - f^{-1}(F)$ y por lo tanto, $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X.

 $(2) \Rightarrow (1)$: Sea V cualquier conjunto abierto de Y, entonces F = Y - V es un conjunto cerrado de Y y por hipótesis, tenemos que $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X, pero $f^{-1}(F) = f^{-1}(Y - V) = f^{-1}(Y) - f^{-1}(V) = X - f^{-1}(V)$ y por lo tanto, $f^{-1}(V)$ es un conjunto pre regular pc-I-cerrado en X. Esto demuestra que f es contra pre regular pc-I-continua.

(1) \Rightarrow (3): Sea $x \in X$ y F un conjunto cerrado en Y tal que $f(x) \in F$, entonces $x \in f^{-1}(F)$ y puesto que f es una función contra pre regular pc-I-continua, $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X. Si $U = f^{-1}(F)$, entonces U es un conjunto pre regular pc-I-abierto en X tal que $X \in U$ y X y X tal que X is X is X is X is X tal que X is X

(3) \Rightarrow (1): Sea F cualquier conjunto cerrado en Y y $x \in f^{-1}(F)$, entonces $f(x) \in F$ y por la parte (3) de este teorema, existe un conjunto pre regular pc-I-abierto U_x de X tal que $x \in U_x$ y $f(U_x) \subset F$. Así, $x \in U_x \subset f^{-1}(f(U)) \subset f^{-1}(F)$ y por lo tanto, $f^{-1}(F) = \bigcup \{U_x : x \in f^{-1}(F)\}$. Por lo tanto, concluimos que $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X.

Teorema 4.10. Sea $f:(X,\tau,I) \to (Y,\sigma,J)$ una función, tal que la unión arbitraria de conjuntos pre regular pc-I-abiertos en X es un conjunto pre regular pc-I-abierto, entonces los siguientes enunciados son equivalentes:

- 1. f es contra sweca-pre regular pc-I-continua.
- 2. $f^{-1}(F)$ es un conjunto pre regular pc-I-abierto en X para cada conjunto σ^* -cerrado F de Y.
- 3. Para cada $x \in X$ y cada conjunto σ^* -cerrado F de Y que contiene a f(x), existe un conjunto pre regular pc-I-abierto U de X que contiene a x y $f(U) \subset F$.

Proof. La demostración de este teorema se realiza de manera similar al teorema 4.9. □

Teorema 4.11. Si $f:(X,\tau,I) \to (Y,\sigma,J)$ es una función sobreyectiva contra pre regular pc-I-continua $y(X,\tau,I)$ es un espacio pre regular pc-I-conexo, entonces el espacio (Y,σ,J) no es discreto.

Proof. Supongamos que (Y, σ, J) es un espacio discreto y sea A cualquier conjunto propio no vacío en Y. Entonces, A es un conjunto abierto y cerrado en Y y como f es contra pre regular pc-I-continua, tenemos que $f^{-1}(A)$ es un conjunto pre regular pc-I-abierto y pre regular pc-I-cerrado en X. Puesto que (X, τ, I) es un espacio pre regular p-I-conexo, por el Teorema 4.7, los únicos conjuntos de X que son a la vez pre regular pc-I-abiertos y pre regular pc-I-cerrados son \emptyset y X. Así, $f^{-1}(A) = \emptyset$ ó $f^{-1}(A) = X$. Si $f^{-1}(A) = \emptyset$, entonces esto contradice el hecho que $A \neq \emptyset$ y f es sobreyectiva. Si $f^{-1}(A) = X$, entonces f no es una función. Por lo tanto, (Y, σ, J) no es un espacio discreto.

Teorema 4.12. Un espacio topológico ideal (X, τ, I) es pre regular pc-I-conexo, si cada función contra pre regular pc-I-continua $f: (X, \tau, I) \to (Y, \sigma, J)$, donde (Y, σ, J) es un espacio T_0 , es una función constante.

Proof. Supongamos que (X, τ, I) no es un espacio pre regular pc-I-conexo y cada función contra pre regular *pc-I*-continua $f:(X,\tau,I)\to (Y,\sigma,J)$, donde (Y, σ, J) es un espacio T_0 , es una función constante. Puesto que (X, τ, I) no es un espacio pre regular pc-I-conexo, por el Teorema 4.7, existe un subconjunto propio no vacío A de X que es a la vez pre regular pc-*I*-abierto y pre regular *pc-I*-cerrado. Sea $Y = \{a, b\}$ y $\sigma = \{Y, \emptyset, \{a\}, \{b\}\}\$ una topología para Y. Sea $f: (X, \tau, I) \to (Y, \sigma, J)$ una función tal que f(A) = $\{a\}$ y $f(X-A) = \{b\}$, entonces f es una función no constante y contra pre regular pc-I-continua tal que (Y, σ, J) es un espacio T_0 , que es una contradicción. Por lo tanto, (X, τ, I) es un espacio pre regular pc-Iconexo.

Teorema 4.13. Si $f:(X,\tau,I) \to (Y,\sigma,J)$ es una función contra pre regular pc-I-continua $y:(Y,\sigma,J)$ es un espacio regular, entonces f es pre regular pc-I-continua.

Proof. Sean $x \in X$ y V un conjunto abierto en Y tal que $f(x) \in V$. Puesto que (Y, σ, J) es regular, existe un conjunto abierto W de Y tal que $f(x) \in W \subset Cl(W) \subset V$. Ahora, como f es una función contra pre regular pc-I-continua y Cl(W) es un conjunto cerrado en Y que contiene a f(x), entonces por el Teorema 4.9, existe un conjunto pre regular pc-I-abierto U en X tal que $x \in U$ y $f(U) \subset Cl(W) \subset V$. Entonces esto muestr que f es uan función pre regular pc-I-continua. □

Definición 4.8. *Un espacio topológico ideal* (X, τ, I) *se dice pre regular pc-I-normal, si para cada par de conjuntos cerrados disjuntos* A y B de X, existen conjuntos pre regular pc-I-abiertos U y V tales que $A \subset U$, $B \subset V$ y $U \cap V = \emptyset$.

Teorema 4.14. Si $f:(X,\tau,I) \to (Y,\sigma,J)$ es una función cerrada, inyectiva y contra pre regular pc-I-continua y (Y,σ,J) es un espacio ultra normal, entonces (X,τ,I) es un espacio pre regular pc-I-normal.

Proof. Sean A y B dos conjuntos cerrados disjuntos en X. Puesto que f es cerrada e inyectiva, entonces f(A) y f(B) son conjuntos cerrados disjuntos en Y y como (Y, σ, J) es un espacio ultra normal, existen dos conjuntos cerrados y abiertos a la vez G y H en Y tales que $f(A) \subset G$, $f(B) \subset H$ y $G \cap H = \emptyset$. Ahora, como f es contra pre regular pc-I-continua, $f^{-1}(G)$ y $f^{-1}(H)$ son conjuntos pre regular pc-I-cerrados en X y además, $A \subset f^{-1}(f(A)) \subset f^{-1}(G)$, $B \subset f^{-1}(f(B)) \subset f^{-1}(H)$ y $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$. Esto demuestra que (X, τ, I) es un espacio pre regular pc-I-normal. \square

Teorema 4.15. Si una función $f:(X,\tau,I) \to (Y,\sigma,J)$ es inyectiva contra pre regular pc-I-continua $y(Y,\sigma,J)$ es un espacio Urysohn, entonces (X,τ,I) es un espacio pre regular pc-I- T_2 .

Proof. Sean $x, y \in X$ tales que $x \neq y$. Puesto que f es una función inyectiva, tenemos que $f(x) \neq f(y)$ y, como (Y, σ, J) es un espacio Urysohn, existen conjuntos abiertos U y V de Y tales que $f(x) \in U$, $f(y) \in V$ y $Cl(U) \cap Cl(V) = \emptyset$. Dado que Cl(U) y Cl(V) son conjuntos cerrados en Y tales que $f(x) \in Cl(U)$ y $f(y) \in Cl(V)$, la contra pre regular pc-l-continuidad de f garantiza, por el Teorema 4.9, la

existencia de dos conjuntos pre regular pc-I-abiertos A y B en X tales que $x \in A$, $y \in B$, $f(A) \subset Cl(U)$ y $f(B) \subset Cl(V)$. Así, $f(A) \cap f(B) \subset Cl(U) \cap Cl(V) = \emptyset$, por lo que $f(A \cap B) = f(A) \cap f(B) = \emptyset$ y por lo tanto, $A \cap B = \emptyset$. Esto demuestra que (X, τ, I) es un espacio pre regular pc-I-I2.

Referencias

- [1] M. Abd El-Monsef, A. Mahmoud y A. Nasef, "Almost *I*-opennes and almost *I*-continuity", *J. Egyptian Math. Soc.*, vol. 7, no. 2, pp. 191-200, 1999.
- [2] D. Andrijević, "semi-preopen sets", *Mat. Vesnik.*, vol. 38, pp. 24-32, 1986.
- [3] D. Andrijevi, "On *b*-open sets", *Mat. Vesnik*, vol. 48, pp. 59-64, 1996.
- [4] C. Granados, "Pre regular *pc*-open sets in topological spaces and some variant of continuity", *South Asian Journal of Mathematics*, vol. 10, pp. 13-20, 2020.
- [5] C. Granados, " Λ_{AI} -sets and Λ_{AI} -continuous functions", *South Asian Journal of Mathematics*, vol. 10, pp. 29-51, 2020.
- [6] A. Guler y G. Aslim, "b-I-open sets and decomposition of continuity via idealization", *Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb.*, vol. 22, pp. 27-32, 2005.
- [7] E. Hatir y T. Noiri, "On decompositions of continuity via idealization", *Acta Math. Hungar.*, vol. 96, no. 4, pp. 341-349, 2002.
- [8] E. Hatir y T. Noiri, "On semi-*I*-open sets and semi-*I*-continuous functions", *Acta Math. Hungar.*, vol. 107, no. 4, pp. 345-353, 2005.
- [9] D. Jankovic y T. Hamlett, "Compatible extensions of ideals", *Boll. Un. Mat. Ital.*, vol. 7, no. 6-B, pp. 453-465, 1992.
- [10] D. Jankovic y T. Hamlett, "New topologies from old via ideals", *Amer. Math. Monthly*, vol. 97, pp. 295-310, 1990.

- [11] P. Jeyanthi, P. Nalayini and T.Noiri, "Pre regular spopen sets in topological spaces", *CUBO A Mathematical Journal*, vol. 20, no. 1, pp. 31-39, 2018.
- [12] K. Kuratowski "Topologie I", Monografie Matematyczne tom 3, PWN-Polish Scientific Publishers, Warszawa, 1933.
- [13] N. Levine, "Semi-open sets and semi-continuity in topological spaces", *Armer Math. Monthly*, vol. 70, pp. 36-41, 1963.
- [14] A. Mashhour, I. Hasanein y S. El-Deeb," α-continuous and α-open mappings", *Acta Math. Hungar.*, vol. 41, no. 3-4, pp. 213-218, 1983.
- [15] A. Mashhour, M. Abd El-Monsef y S. El-Deeb, "On precontinuous and weak precontinuous mappings", *Proc. Math. Phys. Soc. Egypt*, vol. 53, pp. 47-53, 1982.

- [16] T. Noiri y A. Keskin, "On Λ_I -sets and some weak separation axioms", *Int. J. Math. Anal.*, vol. 5, no. 11, pp. 539-548, 2011.
- [17] N. Pachon, "The P-Hausdorff, P-regular and P-normal ideal spaces", *Proyecciones Journal of Mathematics*, vol. 39, no. 3, pp. 693-710, 2020.
- [18] R. Premkumar y M. Rameshpandi, "New sets in ideal nano topological spaces", *Bulletin on the International Mathematical Virtual Institute*, vol. 10, no. 1, pp. 19-27, 2020.
- [19] J. Sanabria, C. Granados, E. Rosas y C. Carpintero, "Contra-continuous functions defined through Λ_I -closed sets", WSEAS Transactions on Mathematics, vol. 19, pp. 632-638, 2020.