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A Predictive Model for the Identification of the Volume Fraction in
Two-Phase Flow

Modelo predictivo para la identificación de la fracción volumétrica en flujo bifásico
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Abstract

This work presents the use of artificial intelligence in multiphase flows, implementing a multilayer perceptron artificial neural
network with back-propagation, and using the sigmoid tangent activation function, to generate a predictive model capable of
obtaining the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe of 12 m. The artificial neural
network is developed using an input layer, formed by the pressure differential in the line and the superficial velocities of the
working fluids, also, it has two hidden layers and an outlet layer, which is made up of the volumetric fractions of the fluids. The
best-performing predictive model shows a mean percentage absolute error of 3.07 % and a coefficient of determination R2 of 0.985
using 15 neurons in the two hidden layers of the neural network. The 56 experimental data used in the study were obtained in the
laboratory LEMI EESC-USP (Brazil).
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Resumen

Este trabajo presenta el uso de inteligencia artificial en flujos multifásicos, implementando una red neuronal artificial de perceptrón
multicapa con retropropagación, y utilizando la función de activación tangente sigmoidea, para generar un modelo predictivo capaz
de obtener la fracción volumétrica de un flujo bifásico compuesto por agua y aceite mineral en una tubería horizontal de 12 m. La
red neuronal artificial se desarrolla a partir de una capa de entrada, formada por el diferencial de presión en la línea y las velocidades
superficiales de los fluidos de trabajo, además, tiene dos capas ocultas y una capa de salida, que está formada por las fracciones
volumétricas de los fluidos. El modelo predictivo de mejor rendimiento muestra un error medio porcentual absoluto del 3,07%
y un coeficiente de determinación R2 de 0,985 utilizando 15 neuronas en las dos capas ocultas de la red neuronal. Los 56 datos
experimentales utilizados en el estudio se obtuvieron en el laboratorio LEMI EESC-USP (Brasil).
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1 Introduction

Currently, cutting-edge technology is used in indus-
trial processes to tackle different types of problems
that arise when working with multiphase flows, cov-
ering the food industry, Oil & Gas, thermoelectric
plants, among others [1], [2]. There is a need to
increase the accuracy in the description and analysis
of the multiphase flow phenomena that are presented
in these processes [3]. Therefore, these processes
need to be investigated in depth to determine the
phenomenological or hydrodynamic behavior of the
working fluids [4, 5].

Artificial intelligence (AI) is used to perform
multiphase flow analysis to be able to identify
the global and local flow regime [6], using the
probability distribution to train an intelligent system
based on Artificial Neural Networks (ANN) [7]. To
identify flow patterns, analyzes have been carried
out applying intelligent algorithms based on Support
Vector Machine (SVM) [8]. Neural networks were
used by [9] to identify the flow regime having as
inputs the Probability Density Functions (PDF) and
the signal in time that gives the electrical impedance
of the fluid.

In order to characterize flow patterns from the
application of fuzzy logic, [10] studied topographic
images obtained with an intelligent system. A fluid
pressure signal as a function of time was used by [11]
to train an intelligent system based on the Elastic
Maps Algorithm (EMA) technique identifying the
flow pattern. A combination of artificial intelligence
and Principal Component Analysis (PCA) methods
to determine flow based on an electrical signal
of pressure as a function of time was developed
by [12].

To obtain the holdup and flow rate, [13] compared
three AI algorithms based on artificial neural
networks (ANN), genetic propagation (GP), and
Support Vector Machine (SVM). Studies for two
phases of water-air flow in a horizontal pipeline
using artificial intelligence were carried out by [14],
training a neural network with the spectrum of
bands acquired by hydrophones. Applied artificial
intelligence techniques based on neural networks
were developed by [15], where the pressure signal
as a function of time was the input of the network

to determine the flow pattern. In the study carried
out by [16], a back-propagation neural network was
trained to determine the flow regime in a horizontal
pipe.

Studies for training a neural network from flow
characteristics and a sensor based on electrical
capacitance as inputs, to obtain the holdup of water
of two-phase oil-water flow were developed by
[17, 18]. In a horizontal pipe, [19] analyzed flow
patterns and data generated from photographs and
signals generated by an optical probe using neural
networks.

This study aims to study the viability of the use
of neural networks in the generation of a predictive
model that allows obtaining the holdup of a two-
phase flow in a horizontal pipe. First, several
multilayer neural networks are trained with back-
propagation by modifying the number of neurons
that make up the hidden layers. Then, the best
model is selected from the comparison of the errors
presented when generating the predictive model.

2 Experimental Methodology

The experimental tests were done in the Industrial
Multiphase Flow Laboratory (LEMI), São Carlos
School of Engineering (EESC /USP), Brazil. The
experimental set up is shown in Figure 1.

For this study, a horizontal pipeline of 12 [m]
with 80 [mm] internal diameter and 4.5 [mm] thick
was used. The fluid was water with a viscosity of 1
[cP] and a specific density of 997 [kg/m3] at room
temperature, together with mineral oil M600 with a
viscosity of 180 [cP ] and a specific density of 868
[kg/m3].

The analysis of the experimental data obtained
was developed using the MATLAB software. The
artificial neural network was structured with back-
propagation to obtain an accurate holdup predictive
model, using the differential pressure as inputs of
the neural network, and the superficial velocities of
each of the fluids controlled and gradually modified
by the LabViewT M software. The sigmoid tangent
function was used as the activation function.

The selection of predictive model was done by
comparing the results obtained by making variations
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Figure 1. Schematic view of the multiphase flow circuit in LEMI [20].

in the number of neurons that make up the two
hidden layers of the neural network. The adequate
number of neurons was obtained such that, when
interrelated with the other structure, generate the
least error in the calculation of the holdup of fluids.

3 Design of the Artificial Neural Network

The application of artificial intelligence techniques
is particularized in this study to the structuring of a
multilayer perceptron artificial neural network based
on machine learning. This approach is particularly
interesting due to the flexibility it presents in the
adaptation and modification of inputs, outputs, and
hidden layers, together with its respective synaptic
weights and biases, with the application of the
sigmoid tangent activation function. The general
structure of the artificial neural network is presented
in Figure 2.

Figure 2. General structure of the artificial neuronal
network.

The net input of the implemented artificial
neural network has an internal mathematical design
obtained using (1), as shown in [21].

Si =
m

∑
j=1

xiwi j +b j. (1)

where wi j are the weights that represent the degree
of relationship or connection between the nodes i
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and j, xi are the inputs to the node j, i is the number
of nodes and b j is the bias related to each node j,
and the hidden layer node is represented by j.

To obtain an accurate model, the sigmoid tangent
activation function is implemented for the treatment
of input data [22]. Equation (2) shows the
mathematical definition of the TanSig activation
function.

TanSig(S j) = f (S j) =

(
e(S j)− e(−S j)

)
(

e(S j) + e(−S j)
) . (2)

The input element to the nodes of the next layer
is represented by f (S j), likewise represents the
output of the node j. Two important factors in the
structuring of the ANN are the synaptic weights and
the biases that are directly involved with each input
value, representing the level of influence of each
variable in the output process, which are generated
and adjusted during neural network training.

The design of the artificial neural network was
developed using the MATLAB 2019a software,
given its applicability and optimal fit in this study.

3.1 Error Evaluation of the Predictive Model

The number of neurons that make up the hidden
layers of the neural network increases the complexity
of the study, due to the interactions generated by
integrating three variables as inputs to the ANN,
such as the pressure differential in the pipeline and
the superficial velocities of water and oil. Therefore,
the mean square error is established as the initial
parameter for the selection of an accurate predictive
model, which is mathematically represented by (3).

MSE =
1
n

n

∑
m=1

(YExp,m −YPred,m)
2. (3)

YExp,m is the experimental value of the output,
YPred is the output value of the prediction, and n
is the total number of input data to the artificial
neural network. Additionally, the study of the
results includes the absolute average percentage
error (AAPE), expressed mathematically in (4), and
the coefficient of determination R2 defined in (5).
With these comparison parameters we have enough

information to make the proper selection of the
predictive model.

AAPE =
1
n

n

∑
m=1

|
YExp,m −YPred,m

YExp,m
| ∗100. (4)

R2 = 1− ∑
n
m=1(YExp,m −YPred,m)

2

∑
n
m=1(YExp,m −Y Pred,m)2

. (5)

where Y Pred,m represents the average value of the
output values.

4 Results

Table 1 shows the results obtained in the training
of the ANN and its validation when applying the
TanSig activation function. The table compares the
results for MSE, R2, and AAPE for different number
of neurons that make up the hidden layers of the
network.

Table 1. Results of MSE, R2, and AAPE for different
number of neurons in the two hidden layers of the
artificial neural network.

Number of neurons MSE R2 AAPE

1 0.01801 0.814 16.20

2 0.01376 0.957 8.90

3 0.01373 0.948 8.06

5 0.01373 0.797 8.06

8 0.01318 0.973 2.83

10 0.01433 0.916 11.17

12 0.01380 0.949 6.07

14 0.01317 0.967 6.39

15 0.01280 0.985 3.07

16 0.01462 0.925 7.13

20 0.01281 0.974 3.00

25 0.01423 0.921 4.71

Analyzing this information for the multilayer
artificial neural network composed of two hidden
layers, three inputs and two outputs, it was possible
to determine the ANN that integrates the minimum
values of the established parameters. Including in the
two hidden layers a number of 15 neurons, we have
a MSE of 0.01280 %, a coefficient of determination
R2 of 0.985, and a AAPE of 3.07%.
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Figure 3 shows the linear behavior of the training,
validation, and testing phases, focused on the
structuring of the artificial neural network model, for
which the final model yields a correlation coefficient
R of 0.9926.

Figure 3. Regression generated for the ANN model.

Figure 4 shows the behavior of the MSE as the
model development phases progress. The lowest
value reached by the MSE in the validation phase
was 0.001267 after having advanced 34 epochs out
of the 129 used.

Figure 4. Best validation performance for ANN model.

5 Conclusions

We presented an efficient predictive model based
on machine learning structured in a multilayer
perceptron neural network for the calculation of
the holdup of biphasic flows. The model considers
water and oil fluids that flow through a horizontal
circular pipe, and uses experimental data obtained
for the surface speed of the fluids and the differential
pressure in the pipe.

The predictive model presents minimum values
for the MSE = 0.01280 % and AAPE = 3.07%
parameters, and a high R2 = 0.985 when 15 neurons
are included in the two hidden layers.
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