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Hopf Bifurcation in the Study of Synchronous Motor Stability

Bifurcación de Hopf en el estudio de la estabilidad del motor síncrono

Fernando Mesa1, Germán Correa1 and J. Barba-Ortega2,3

Abstract

In this work, the dynamic model of the synchronous motor was analyzed, which has a typical structure of Lienard-type systems. For
this, the theory of dynamic systems was used, especially the Hopf bifurcation. The objective is to apply this type of bifurcation to
the model described in order to show the variations in the equilibrium points of the system by taking as a variable parameter the
voltage of the bus to which it is connected. The conditions that the voltage of the infinite bus to which the network is connected must
meet in order for it to have asymptotic or spiral stability. It can then be shown that when the bus voltage presents variations, the
equilibrium points change their dynamics from asymptotic stability to spiral stability.
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Resumen

En este trabajo se analizó el modelo dinámico del motor síncrono, el cual tiene una estructura típica de los sistemas tipo Lienard. Para
ello se utilizó la teoría de los sistemas dinámicos, en especial la bifurcación de Hopf. El objetivo es aplicar este tipo de bifurcación
al modelo descrito para mostrar las variaciones en los puntos de equilibrio del sistema tomando como parámetro variable la tensión
de la barra a la que está conectado. Las condiciones que debe cumplir la tensión de la barra infinita a la que está conectada la red
para que tenga estabilidad asintótica o espiral. Entonces se puede demostrar que cuando la tensión de la barra presenta variaciones,
los puntos de equilibrio cambian su dinámica de estabilidad asintótica a estabilidad espiral.
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1 Introduction

Synchronous motors are highly used in electrical
power systems because they are an economical
means to improve the power factor of the network,
generating a reduction in the cost of electrical energy.
This characteristic, together with the ability to
operate at constant speeds determined by some types
of loads, make synchronous motors indispensable
for the industry, with applications in different areas
such as: Quarries and cement factories to move
ball mills or mills. rollers, compressors, and
blowing machines such as extractors, fans, turbofan,
centrifugal compressors; in sawmills, in paper mills
to move refiners, in rubber and plastic industries to
power mixers, steel industries, among many more
applications [1-3].

The stability of a dynamic system is the ability of
the system to maintain its equilibrium point against
certain external disturbances, in electrical power
systems these disturbances are due to abnormal
situations in operation such as variations in loads,
failures caused by natural factors, among many other
factors. The treatment of the stability problem
consists of establishing those conditions for which
the operation of the system (generators, motors, or
capacitors) turns out to be critical, that is, limit
conditions; in such a way that stability is defined
for any other condition [4-6].

The purpose of this document is to analyze in its
different aspects, the specific problem of stability
in synchronous motor operates, as a device for
converting electrical power into mechanical power,
since hyperbolicity and stable structure are strongly
related, since when there is presence of an eigenvalue
with zero real part, the possibility that the system
is structurally stable is broken. Thus, through the
implementation of the bifurcation theory, it will be in
charge of establishing conditions in the parameters
of the dynamic system in question for which the
system goes from being stable to being unstable.
These conditions occur at a specific value of the
parameters called the branch point.

2 Theoretical Formalisms

2.1 Lienard Type dynamics model

The dynamics of the synchronous motor represented
schematically in the Figure 1 is governed by the
second order differential equation (1) [7]. The
synchronous motor is connected to an infinite voltage
bus V∞ through a reactance xL, and is modeled with
an FEM Eq and a transient reactance x′d .

Pe −Pm −Pd = H
d2δ

dt2 (1)

Where δ is the rotor angle of the synchronous
motor, H is the constant inertia, Pe, Pm, and Pd

are the electrical, mechanical and damping powers
respectively, associated with the motor dynamics and
defined as:

Pe = c1 sin(δ )− c2 sin(2δ )

Pm = c1 sin(δ0)− c2 sin(2δ0)

Pd = c3 sin2(δ )+ c4 cos2(2δ )

(2)

The load Pm in the synchronism is assumed constant,

Figure 1. Synchronous motor diagram

independent of the small variations in speed during
external disturbances. Furthermore, the model
parameters c1, c2, c3, and c4 are defined by Equation
(3) [7] as:

c1 =
V∞Eq

xL + x′d

c2 =
V 2

∞(xq − x′d)
2(xL + xq)(xL + x′d)

c3 =
V 2

∞(x
′
d − x′′d)T

′′
d0

(xL + x′d)
2

c4 =
V 2

∞(x
′
q − x′′q)T

′′
q0

(xL + x′q)2

(3)

The parameters c1, c2 are the amplitude of the
fundamental component and the second harmonic of
the electrical power and the parameters c3, c4 decide
on the amplitude of the damping power Pd imposed
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on the rotor of the synchronous motor. The constant
damping case can be analyzed when c3 = c4. The
steady state equilibrium point of the synchronous
motor is given by δ = δ0 and δ̇ = 0 [7-10]. If we
define the state variables x1 = δ (t) and x2 = dδ (t)

dt
for model gyven by the Equation (1), the following
system of differential equations is obtained in the
state space (Equation 4) [9]:

ẋ1 = x2

ẋ2 =K2(sin2δ0 − sin2x1)−K1(sinδ0 − sinx1)

− (K3 sin2 x1 +K4 cos2 x1) · x2

(4)

Being Ki =
ci
H for i = 1,2,3,4. The model in state

space represented in Equation (4), has the form of a
Lienard-type system which is defined by Equation
(5) [9]:

ẋ1 = x2

ẋ2 =−g(x1)− f (x1) · x2
(5)

resulting from the second-order differential equation
x′′ + f (x)x′ + g(x) = 0. This type of system has
the characteristic of presenting limit cycles if the
functions f (x) and g(x) meet certain conditions,
which are stated in the following Lienard theorem.

2.2 Lienard’s theorem

The system f (x,µ) = 0, has a single stable limit
cycle around the origin if the functions f (x) and
g(x) satisfy the following conditions:

• f (x) and g(x) must be continuously differen-
tiable for every value of x.

• g(−x) = −g(x) for all x, that is, it must be an
odd function.

• g(x)> 0 for all x > 0.

• f (−x) = f (x) for all x.

• The odd function F(x) =
∫ x

0 [ f (u)du] has ex-
actly one zero at x = a, being negative for
0< x< a, positive and non-decreasing for x> a
and F(x)−→ ∞ when x −→ ∞.

2.3 Foundation of nonlinerar dynamics systems

The mathematical model of a dynamic system can
be represented in state space by a set of first-order
differential equations as observed in Equation (6)
[11]:

ẋ = f (x,µ) (6)

where x ∈ Rn, being x is the vector of states of the
system and µ ∈ Rk with µ as the state parameter.
The solution x(t) of the system gyven by the Equa-
tion (6) will depend on the initial conditions defined.
For nonlinear dynamic systems, these equations are
calculated mostly by computational integration tech-
niques [11]. The qualitative analysis is strictly re-
lated to the projection of the trajectories x(t) in the
phase space, called phase portrait. In this diagram
all the qualitative characteristics of the behavior of
the system are observed, one of the most relevant is
the analysis of the isolated equilibrium points since
there is sufficient mathematical background that al-
lows a clear classification of these points, on the
other hand, It should be noted that for non-linear dy-
namic systems the equilibrium points are not unique
and depending on the initial conditions the system
reaches different equilibria.

2.4 Equilibrium points

The equilibrium points for the system represented by
Equation (6) are given by ẋ = 0, that is; by Equation
(7) [11]:

f (x,µ) = 0 (7)

For a given value of µ , the solution of Equation (7)
will be an equilibrium point for the system given by
Equation (6). Once the equilibrium points have been
defined, it is necessary to study the classification of
their stability through linearization around them, as
shown.

Taking xo y µ0 as equilibrium points, the system
gyven by Equation (6) can be rewritten as Equation
(8) [11]:

ẋ = Ax (8)

where A is the Jacobian matrix of the system
represented by Equation (1), defined according to
Equation (9) [11]:

A = [ai j] =

[
∂ fi

∂x j

]
with x = xo

Ciencia en Desarrollo, Vol. 13 No. 1, enero-junio de 2022 3
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The stability of each of the equilibrium points of
the system represented by Equation (6) will depend
on the eigenvalues of matrix A; They can also be
classified depending on the values taken by the trace
of matrix A(Tr(A)) and its determinant (Det(A)). A
summary of this is graphically shown in Figure 2
[12, 13].

Figure 2. Classification of the equilibrium points
according to Tr(A) and Det(A).

2.5 Hyperbolicity and structural stability

One of the most relevant properties that can be
obtained from the eigenvalues of matrix A to
characterize the equilibrium point analyzed is the
concept of hyperbolicity. If none of the eigenvalues
of matrix A has a real part zero, the point x0 is said
to be a hyperbolic point. Two consequences of a
hyperbolic equilibrium point are the following:

• If matrix A has no zero eigenvalues, then x0 is
a simple transverse zero of (7). Therefore, by
the implicit function theorem, the existence of
a smooth function x(µ) with x(µ0) = x0 that
shows the variation of x0 when the parameter µ

is varied is guaranteed. Furthermore, there is no
variation in the number of equilibrium points
when µ = µ0.

• The qualitative structure of the phase diagram
for the non-linear system is the same as that of
the linearized system, this as a consequence
of the Hartman-Grodman theorem [14, 15].
This fact is very important from the qualitative
characterization of a non-linear system through
its linearization. It should be noted that, for
non-hyperbolic equilibrium points, the analysis

of their stability will not be the same for both
systems, that is, it is not possible to conclude
about their stability through the criterion of
eigenvalues and it is necessary to study by other
techniques such as the construction of energy
functions [16, 17].

A system can be robust if when making small
modifications of a parameter, the trajectories of the
phase space are only slightly disturbed, if this is
the case, the system is said to be structurally stable.
Both concepts of hyperbolicity and stable structure
are strongly related since when there is the presence
of an eigenvalue with zero real part, the possibility
that the system is structurally stable is broken.

2.6 Bifurcation Theory

Bifurcation theory is a branch of applied mathemat-
ics where its main interest is the analysis of the Equa-
tion (7), where x is an equilibrium solution and µ is
a scalar parameter, that is, determining how is the
variation of x(µ) for when µ varies. The parameter
µ is called the branch parameter. A bifurcation point
is one where there is a branching or change of the
solution. System stability is closely related to this
bifurcation phenomenon [18].

2.7 Hopf bifurcation

The Hopf bifurcation is also known as the Poincaré-
Hopf-Andronov bifurcation, it is characterized
mainly by the appearance or disappearance of a
periodic solution (limit cycle) of an equilibrium
when the µ parameter of the system represented by
Equation (6) causes the eigenvalues to cross the axis
imaginary from left to right. There are two types of
Hopf bifurcation, supercritical or subcritical, stable,
or unstable within a manifold, respectively.

2.8 Hopf theorem

Taking the following considerations for the system
described in Equation (6):

1. The system has an equilibrium point at P0 =

(χ0,µ0)

2. The Jacobian matrix of (6) has a conjugate
pair of eigenvalues λ = α ± jω such that for

4 Ciencia en Desarrollo, Vol. 13 No. 1, enero-junio de 2022
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a critical value of the bifurcation parameter
µ = µc it holds that α(µc) = 0, α ′(µc) ̸= 0 and
ω(µc)> 0 where α ′ = dα

dµ

3. Except for ± jω(µc) the eigenvalues of the
system have a negative real part.

If these conditions are fulfilled, then for a distur-
bance in the state xi, the dynamics of the system
represented by Equation (6) has a stationary solu-
tion. The dynamics of the system corresponding to
the stationary solution will be stable for µc −µ > 0
and unstable for µc−µ < 0 if α ′(µc)> 0. Stable for
µc−µ < 0 and unstable for µc−µ > 0 if α ′(µc)< 0.
For µ = µc the system will have oscillations with
period 2π/ω(µc) [19].

3 Simulation and results

For the results obtained in this section, the following
values of the parameters were used:

Xd = 1.7 ; X ′
d = 0.245 ; X ′′

d = 0.185

Xq = 1.64 ; X ′
q = 0.38 ; X ′′

q = 0.18 ; XL = 0.3

T ′′
d0 = 5.9 ; T ′′

q0 = 0.075 ; H = 0.3108

Eq = 0.887 ; V∞ = 1

The equilibrium points of the system represented by
Equation (4) are given by the Equation (10):

x2 = 0

K2(sin2δ0 − sin2x1)−K1(sinδ0 − sinx1)

− (K3sin2x1 +K4cos2x1) · x2 = 0

(9)

With which the point Pe(δ0,0) is obtained and its
associated Jacobian matrix will be represented by
Equation (11): [

0 a12

a21 a22

]
(10)

where a12 = 1, a21 = K1 cos(δ0)−2K2 cos(2δ0) and
a22 = −(K3 sin2(δ0)+K4 cos2(δ0)). Therefore, the
trace and determinant will be defined as:

Tr(J) =−(K3sin2(δ0)+K4cos2(δ0))

Det(J) = K1cos(δ0)−2K2cos(2δ0)
(11)

For the parameters of the previous table, we have
that Tr(J)< 0 and that Det(J)< 0, with which it is
obtained that the equilibrium point of interest is a

saddle point as classified in the Figure 3. In addition,
two more points are obtained which correspond
to sinks, with which the stability of the system
will be determined not only by the value of its
parameters, but also by the initial conditions taken.
By varying the magnitude of the bus voltage to

Figure 3. Phase space x1 vs x2 asymptotic stability.

which the synchronous motor is connected, there is
a variation in the stability of the equilibrium points,
which go from having asymptotic stability to having
spiral stability as shown in the Figure 4. When a

Figure 4. Spiral stability of balance points.

constant damping value is taken equal to zero, that
is K3 = K4 = 0, it is given that the dynamics of
the stable points (sinks) become center points, as
observed in the Figure 5.

Figure 5. Phase space x1 vs x2 with zero damping.
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4 Conclusions

Qualitative analysis for nonlinear dynamic systems
is of vital importance since in most of these cases
the analytical solutions are impossible to determine.
Besides, with the bifurcation theory, critical values
can be established in the parameters where the
stability of the system will present variations. Also,
an application of the Hopf bifurcation theorem was
presented for the case of an asynchronous motor
with variable damping. The conditions that the
voltage of the infinite bus to which the network is
connected must meet for it to have asymptotic or
spiral stability were established. It was determined
that when the bus voltage presents variations, the
equilibrium points change their dynamics from
asymptotic stability to spiral stability. When the
synchronous motor enters the instability state, there
is only one option for this, and it is the asymptotic
type of instability since spiral type instability cannot
occur. For the parameters defined in this application,
it was observed that Tr(J)< 0 and that Det(J)< 0,
that is, the equilibrium point of interest is a saddle
point. When a constant damping value is taken equal
to zero, this is K3 = K4 = 0, it is given that the
dynamics of the stable points (sinks) become center
points
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