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Testing for Normality in Geostatistics. A New Approach Based on
the Mahalanobis Distance

A discussion on the use of univariate normality tests in this context

Ramón Giraldo1 and Emilio Porcu2

Abstract

Simple kriging is a best linear predictor (BLP) and ordinary kriging is a best linear unbiased predictor (BLUP). When the underlying
process is normal, simple kriging is not only a BLP but a best predictor (BT) as well, that is, under squared loss, this predictor
coincides with the conditional expectation of the predictor given the information. In this scenario, ordinary kriging provides an
approximation to the BP. For this reason, in applied geostatistics, it is important to test for normality. Given a realization of a spatial
random process, the simple kriging predictor will be optimal if the random vector follows a multivariate normal distribution. Some
classical tests, such as Shapiro-Wilk (SW), Shapiro-Francia (SF), or Anderson-Darling (AD) are frequently used to evaluate the
normality assumption. Such approaches assume independence and hence are not effective for at least two reasons. On the one
hand, observations in a geostatistical analysis are typically spatially correlated. On the other hand, kriging optimality as mentioned
above is based on multivariate rather than univariate normality. In this work, we provide a simulation study to describe the negative
effect of using normality univariate tests with geostatistical data. We also show how the Mahalanobis distance can be adapted to the
geostatistical context to test for normality.

Keywords: Chi-square distribution, Multivariate normal distribution, Mahalanobis distance, Normality test, Random field, Monte
Carlo simulation.

Resumen

En geoestadística, bajo estacionariedad, kriging simple (KS) es el mejor predictor lineal (MPL) y kriging ordinario (KO) es
el mejor predictor lineal insesgado (MPLI). Cuando el proceso estocástico es Normal, KS no es solo un MPL sino un mejor
predictor (MP), es decir que bajo la función de peŕdida cuadrática, éste coincide con la esperanza condicional del predictor dada
la información. En este escenario, el predictor KO sirve como aproximación del MP. Por esta razón, en geoestadística aplicada,
es importante probar el supuesto de normalidad. Dada una realización de un proceso espacial, KS será un predictor óptimo si el
vector aleatorio subyacente sigue una distribución normal multivariada. Algunas pruebas de normalidad clásicas como Shapiro-Wilk
(SW), Shapiro-Francia (SF), o Anderson-Darling (AD) son usadas para evaluar este supuesto. Estas asumen independencia y por
ello no son apropiadas en geoestadística (y en general en estadística espacial). Por un lado, las observaciones en geoestadística
son espacialmente correlacionadas. Por otro lado la optimalidad del kriging es fundamentada en normalidad multivariada (no en
normalidad univariada). En este trabajo se presenta un estudio de simulación para mostrar por qué es inapropiado el uso de pruebas
univaridas de normalidad con datos geoestadísticos. También, como solución al problema anterior, se propone una adaptación de la
prueba de Mahalanobis al contexto geoestadístico para hacer de manera correcta el test de normalidad en este aḿbito.

Palabras clave: Distribución chi-cuadrado, Distribución normal multivariada, Distancia de Mahalanobis, Prueba de normalidad,
Campo aleatorio, Simulación de Monte Carlo.
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1 Introduction

Geostatistics plays an important role in applied fields
as diverse as ecology [1], agronomy [2], mining
[3], meteorology [4], environmental pollution [5],
amongst others. Usually, a geostatistical analysis is
carried out in three steps, namely: exploratory data
analysis, spatial dependence estimation, and kriging
prediction [6]. Classical results from decision theory
[27] show that under squared loss, the best predictor
(BP) is the conditional expectation of the predictor
given the information. For normal processes, the
BP is equivalent to the best linear predictor (BLP),
called simple kriging in geostatistics [8].When the
mean is unknown and the random field is normal,
ordinary kriging provides as an approximation to
the BLP [9]. The solution, in this case, includes
an additional constraint to ensure the predictor
to be unbiased. Hence, ordinary kriging is a
best linear unbiased predictor (BLUP). Such an
explicit link between BP and normality calls for
testing the normality assumption on the basis of
a limited number of observations. The literature
has typically relied on univariate normality tests:
[10] have studied the spatial distribution of some
chemical variables in a mine located in Ireland. The
authors use a Kolmogorov-Smirnov test and Box-
Cox transformations to achieve normality. [11] study
the spatial variability of mechanical resistance to
penetration in a ferralsol cropped with corn, in Ilha
Solteira, Brazil. The normality hypothesis is tested
by using a Lilliefors test. [12] use a SW normality
test with data of penetration resistance of soil in a
region of Poland. [13] assess the distribution pattern
of organic carbon in a region of central Japan. [13]
assess distribution pattern of organic carbon in a
region of central Japan. They use a SW normality
test in a previous step of the analysis. Other
references about the use of univariate normality tests
with spatially distributed data are [14], [15], [16],
[17] and [18]. These are just a few examples on
the use of classical normality tests with samples
from spatial processes. These tests are defined on
the basis of the assumptions of independence and
identical distribution. This is clearly inadequate in
geostatistics, where the observations are typically
spatially correlated. Hence, these tests might
be inappropriate to say the least. The literature

about normality tests in the presence of spatial
correlation is sparse, with the exception of [19], who
provide a method for obtaining unbiased estimates
of the probability density function by weighting the
observations using block kriging, and [20], who use
a generalized form of the bootstrap method to model
the distribution of the statistic of the Kolmogorov-
Smirnov test.

Using classical multivariate normality tests [21,
22] in geostatistics is limited because several
samples of the random vector are required. In
geostatistics, we generally have only one realization
of the random field of interest (just one observation
of the process is available). Consequently, such
tests (in their usual way) cannot be assumed as a
viable alternative under a geostatistical framework.
In this work, we focus two aspects on. Initially,
we show (through simulation) that using univariate
normality tests (SW, SF, AD, etc) in geostatistics
is not appropriate because these ones do not take
into account the spatial dependence. We also show
how the Mahalanobis distance [23] can be adapted
to a geostatistical scenario to test for multivariate
normality of Y = (Y (x1), · · · ,Y (xn))

T of the random
process based on just one an observation y(x) =
(y(x1), . . . ,y(xn))

T .

The paper is organized as follows. Section
2 presents an overview of kriging and optimal
prediction under normality. In Section 3, we show
the approach based on the Mahalanobis distance [23].
A simulation study is developed in Section 4. The
paper ends with a short discussion and suggestions
for further research.

2 Materials and Methods

In this section we show the basics of simple
kriging, ordinary kriging and BP under multivariate
normality.

2.1 Simple Kriging and BLP

This section is based on [9], [24], [25], and [26]. Let
A be a countable subset of R2. Geostatistics concerns
with the analysis of a real valued stochastic process
{Y (x) : x ∈ A}, which is typically considered to be
a partial realization of a stochastic process {Y (x) :
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x ∈ R2}. Let Y = (Y (x1), · · · ,Y (xn))
T be a random

vector following any multivariate distribution Y ∼
f (µµµ,Σ), with µµµ denoting the mean vector and Σ

the covariance matrix. Here T denotes transpose.
Assume that E(Y (xi)) = µ and V(Y (xi)) = σ2, for
all i = 1, . . . ,n. Then Y can be written as

Y =

 Y (x1)
...

Y (xn)

=

 µ

...
µ

+

 ε(x1)
...

ε(xn)


= µµµ +εεε, x1, . . . ,xn ∈ A,

(1)

where we assume that

V(εεε) = Σ =


σ2 σ12 · · · σ1n

σ21 σ2 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σ2

 ,

with V(Y (xi)) = V(ε(xi)) = σ2, i = 1, · · · ,n, and
C(Y (xi),Y (x j)) = C(ε(xi),ε(x j)) = σi j, i, j =

1, . . . ,n, i ̸= j. Suppose we want to predict Y (x0),
x0 ∈ A, based on Y where µµµ and Σ are known.
Simple kriging consider linear predictors of the form

Ŷ (x0) = λ0 +
n

∑
i=1

λiY (xi)

= λ0 +λλλ
T Y, x1, . . . ,xn ∈ A,

which minimizes the mean-squared prediction error,
denoted MSPE, and defined as

E(Ŷ (x0)−Y (x0))
2 = V(Ŷ (x0)−Y (x0))

+(E(Ŷ (x0)−Y (x0))
2.

(2)

Both terms in Equation (2) are nonnegative and the
MSPE will be minimized when each term is as small
as possible. The second term in the right hand side
of Equation (2) is minimized when

E(Ŷ (x0)) = E(Y (x0)),

that is, when

λ0 +λλλ
T

µµµ = µ, with λ0 = µ −λλλ
T

µµµ.

On the other hand,

V(Ŷ (x0)−Y (x0)) = λλλ
T

Σλλλ −2cT
λλλ +σ

2, (3)

with C(Y,Y (x0)) = (σ10, . . . ,σn0)
T = c. Differenti-

ating (3) with respect to λλλ and equating to zero gives
λλλ T = cT Σ−1. Thus, the BLP is

Ŷ (x0) = µ +
n

∑
i=1

λi(Y (xi)−µ)

= µ +λλλ
T (Y−µµµ)

= µ + cT
Σ
−1(Y−µµµ).

(4)

Replacing λλλ T = cT Σ−1 in (3) yields the simple
kriging variance

σ
2
sk = σ

2 − cT
Σ
−1. (5)

2.2 Ordinary Kriging and BLUP

This section assumes the same conditions as in
Section 2.1 but µ is now unknown. The ordinary
kriging predictor of Y (x0) has the same expression
as the simple kriging predictor:

Ŷ (x0) = λ0 +
n

∑
i=1

λiY (xi), x1, . . . ,xn ∈ A.

Again, the parameters are estimated by minimiz-
ing the MSPE as defined in Equation (2). Note that
µ unknown implies λ0 to be unknown as well. In
this case, we guarantee that E(Ŷ (x0)) =E(Y (x0)) by
taking λ0 = 0 and ∑

n
i=1 λi = 1. The predictor is now

restricted to these unbiasedness conditions. This is
called best linear unbiased predictor (BLUP). The
ordinary kriging predictor is consequently defined
defined as

Ŷ (x0) =
n

∑
i=1

λiY (xi)

= λλλ
T Y, (6)

and the parameters are estimated by minimizing
E(Ŷ (x0) − Y (x0))

2 subject to the unbiasedness
constraint, that is, by considering the following
optimization problem:

min
λλλ

V(Ŷ (x0)−Y (x0)), s.t.
n

∑
i=1

λi = 1. (7)

To solve (7), we let m denote the Lagrange multiplier.
Then, the optimization function is given by

Ciencia en Desarrollo, Vol. 13 No. 2, julio-diciembre de 2022 101
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min
λi,m

V(Ŷ (x0))+V(Y0)−2C(Ŷ (x0),Y (x0))

−2m(
n

∑
i=1

λi −1) = min
λλλ ,m

V(λλλ T Y)+σ
2

−2C(λλλ T Y,Y (x0))−2m(λλλ T 1−1)

= min
λλλ ,m

λλλ
T

Σλλλ +σ
2 −2λλλ

T c−2m(λλλ T 1−1),

where the second line in the chain of equalities
comes from the definition of Ŷ , while the third
line comes from the fact that covariance is a linear
operator [23]. Differentiation with respect to λλλ and
m provides the system

Σλλλ − c−m1 = 0, with λλλ
T 1−1 = 0. (8)

Solving with respect to λλλ in (8) gives

λλλ = Σ
−1(c+m1). (9)

To obtain m, we plug λλλ into the unbiasedness
condition in (8), and find

(Σ−1(c+m1))T 1 = 1,

m =
1−1T (Σ−1c)

1T Σ−11
. (10)

Plugging (10) into (9) shows that

λλλ = Σ
−1

(
c+

1−1T (Σ−1c)
1T Σ−11

1
)
, and

λλλ
T =

(
c+1

1−1T (Σ−1c)
1T Σ−11

)T

Σ
−1. (11)

According to the solution in (11), the kriging
predictor Ŷ (x0) as defined at (6) is given by

Ŷ (x0) =
n

∑
i=1

λiY (xi) = λλλ
T Y

=

[(
c+1

1−1T Σ−1c
1T Σ−11

)T

Σ
−1

]
Y

= cT
Σ
−1Y+

[
1− (1T

Σ
−1c)T ] 1T Σ−1Y

1T Σ−11
= cT

Σ
−1Y+

[
1− (cT

Σ
−11)

]
µ̂

= µ̂ + cT
Σ
−1 (Y−1µ̂) , (12)

where µ̂ is the generalized least squares estimator of
µ defined in Equation (1). From the linear regression
model Y = Xβββ +εεε , with V(εεε) = Σ, the parameters
are estimated by [9]

β̂ββ =
(
XT

Σ
−1X

)−1 (
XT

Σ
−1Y

)
. (13)

Taking X = 1 and β̂ββ = µ̂ in Equation (13) we obtain,
µ̂ =

(
1T Σ−11

)−1 (1T Σ−1Y
)
. This is the expression

for µ̂ in Equation (12). The variance of the predictor
(12) is given by

σ
2
ok = σ

2 − cT
Σ

1c+
(1−1T Σ−1c)2

(1T Σ−11)
. (14)

Comparing (5) and (14) we observe that σ2
sk < σ2

ok,
since the last term on the right-hand side of (14) is
positive. An unknown mean increases the MSPE. In
practice, Σ and c are unknown and must be estimated.
Then, a plug-in estimation of λλλ and m is usually
carried out. Thus the ordinary kriging predictor
is not a BLUP but an estimated BLUP (EBLUP,
throughout).

2.3 Best Prediction

We provide a well know result about optimal
prediction, establishing that under the squared loss
function, the BP is the conditional expectation of the
predictor given the information. For a formal proof
the reader is refereed to [25] and [27].

Theorem 2.1. Let Y = (Y1, . . . ,Yn)
T be a vector

composed of a finite collection of n random variables.
Denote the corresponding realizations as y =

(y1, . . . ,yn)
T . Let Y0 be a random variable, and

Ŷ0 = ϕ(Y) be any function of Y for ϕ : Rn → R.
Then, E[(Y0 − Ŷ0)

2] attains its minimum value when
Ŷ0 = E(Y0|Y).

Let {Y (x) : x ∈ R2} be a normal random field [24].
Then

Y (x0)

Y (x1)
...

Y (xn)

∼ N




µ

µ

...
µ

 ,

(
σ2 cT

c Σ

) ,

(15)
with the vector c and the matrix Σ as defined in
Section 2.1. Standard properties of the multivariate
normal distribution [23] show that, if

Y =

(
Y(1)

Y(2)

)
∼ N

((
µµµ(1)

µµµ(2)

)
,

(
Σ11 Σ12

Σ21 Σ22

))
then Y(1)|Y(2) ∼ N(µµµ(1) + Σ12Σ

−1
22 (Y

(2) −
µµµ(2)),Σ11 − Σ12Σ

−1
22 Σ21) [23]. This property
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in concert with Equation (15) shows that

Y (x0)|Y ∼ N(µ + cT
Σ
−1(Y−µµµ),σ2 − cT

Σ
−1c).

Consequently, the BP under the squared loss function
with the stationary normal model is

Ŷ (x0) = E(Y (x0)|Y) = µ + cT
Σ
−1(Y−µµµ), (16)

with variance

V(Y (x0)|Y) = σ
2 − cT

Σ
−1c.

The predictors in Equations (4) and (16) are actually
the same. Thus, simple kriging is an optimal
predictor if the random field is normal. This result
has become popular in applied geostatistics ([14],
[12], [17], [18]). However, it has been sometimes
misunderstood. Some comments are in order:

• Data recorded in geostatistics correspond to
a realization of a stochastic process. These
should not be regarded as one sample of a
random variable. Then, testing for univariate
normality in this field is meaningless. If {Y (x) :
x ∈ R2} is a normal spatial random process then
the random vector Y = (Y (x1), . . . ,Y (xn))

T ∼
N(µµµ,Σ). Only when the process is stationary
and uncorrelated (mean and variance being
constant and Σ = σ2I) it has sense testing for
univariate normality.

• Simple kriging, as defined in Section 2.1, is a
BP whether the stochastic process of interest is
normal, and it is a BLP regardless of whether
the process is normal. In practice, using
simple kriging is limited because µ and Σ are
unknown.

• Ordinary kriging is not a BP, even when the
stochastic process is normal. This predictor is
always a BLUP (when µ is estimated and Σ

is known) or an EBLUP (when µ and Σ are
estimated).

• When the stochastic process is normal, maxi-
mum likelihood can be used for estimating µ ,
Σ, and c and consequently for carrying out pre-
diction by using ordinary kriging.

Although common practice, the use of classic
univariate normality tests does not make sense in
geostatistics. It is required to take into account the
spatial dependency structure. The following section
proposes an adaptation of the Mahalanobis statistic
for this purpose.

3 A New Test for Normality in Geostatistics
Based on the Mahalanobis Distance

We now illustrate how a normality test based on
the Mahalanobis distance [23], can be adapted to a
geostatistical framework. Let A = {x1, . . . ,xn} and
Y ∼ N(µµµ,Σ). It can be shown that

Q1 = (Y−µµµ)T
Σ
−1(Y−µµµ)∼ χ

2(n), (17)

where χ2(n) denotes the central χ2 distribution with
n degrees of freedom [28].

Assume that we have a random sample Y1, . . . ,Yr

from the n-dimensional random vector Y, that is we
have a random matrix defined as

YT
1

YT
2
...

YT
r

=


Y11 Y12 · · · Y1n

Y21 Y22 · · · Y2n
...

...
. . .

...
Yr1 Yr2 · · · Yrn

 ,

where Yi j, i = 1, . . . ,r, is a random sample of size r
from the random variable Yj, j = 1, . . . ,n. It is known
that asymptotically

Q2 = (Y− Ȳ)T
Σ̂
−1(Y− Ȳ)∼ χ

2(n), (18)

where Ȳ is the sample mean vector and Σ̂ is the
sample covariance matrix [28].

Let Y = (Y (x1), . . . ,Y (xn))
T be a realization of

size n from a stationary random process {Y (x) : x ∈
R2} with E(Y) = µµµ and V(Y) = Σ. Suppose we
have an observation y = (y(x1), . . . ,y(xn))

T of this
process and we want to test the hypothesis

Ho : Y ∼ N(µµµ,Σ) against Ha : Y ≁ N(µµµ,Σ).

Given µµµ and Σ known (an unrealistic scenario), the
statistic in Equation (17) is calculated as

Qc
1 = (y−µµµ)T

Σ
−1(y−µµµ). (19)

Ciencia en Desarrollo, Vol. 13 No. 2, julio-diciembre de 2022 103
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The null hypothesis of normality is then rejected at
level α if

Qc
1 < χ

2
α

2
(n) or Qc

1 > χ
2
1− α

2
(n).

On the other hand, let ȳ = (ȳ, . . . , ȳ)T
n×1 be a mean

vector with ȳ = ∑
n
i=1 y(xi)

n and

Σ̂ =


σ̂2

11 σ̂12 · · · σ̂1n

σ̂21 σ̂2
22 · · · σ̂2n

...
...

. . .
...

σ̂n1 σ̂n2 · · · σ̂2
nn

 , (20)

be the estimated covariance matrix, where σ̂i j =

Ĉ(Y (xi),Y (x j)), i, j = 1, . . . ,n. The elements of this
matrix can be obtained by fitting to the experimental
covariogram a covariance model (Exponential, Gaus-
sian, spherical, etc) through ordinary or weighted
least squares [26]. Then, based on ȳ and Σ̂, we can
calculate the statistic defined in Equation (18) as

Qc
2 = (y− ȳ)T

Σ̂
−1(y− ȳ). (21)

Consequently, the null hypothesis of normality of
the random process is rejected at level α if

Qc
2 < χ

2
α

2
(n) or Qc

2 > χ
2
1− α

2
(n).

We study through Monte Carlo simulation the
performance of some classical normality tests (SW,
SF, and AD) as well as the tests based on the
Mahalanobis distance. The goal is two-fold: to
show that using univariate normality tests in a
geostatistical context can be inappropriate, and to
assess the behavior of the statistics Q1 and Q2
defined in Equations (17) and (18).

4 Simulation Study

4.1 Simulation Under Normality

We simulate normal random fields over regular grids
with n= 25, 49 and 100 points on a square of 10×10
units (Figure 1). Also in order to establish the effect
of the spatial distribution of the sampling points on
the tests a size n = 100 clustered configuration is
considered (Figure 1).
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Figure 1. Spatial configurations used in the simulations. Regular grids size n = 25 (top), n = 49 (second panel) and n = 100
(third panel). Clustered grid n = 100 (bottom).

At each case, we simulate 1000 realizations
of Y = (Y (x1), . . . ,Y (xn))

T ∼ N(µµµ,Σ), with µµµ =

(100, . . . ,100)T
(n×1), and the covariance matrix given

by

Σ =


σ2 σ12 · · · σ1n

σ21 σ2 · · · σ2n
...

...
. . .

...
σn1 σn2 · · · σ2

 , (22)

where σi j = C(h) = σ2exp(− h
φ
),σ2,φ > 0, and

h = ∥xi − x j∥, that is, C(Y (xi),Y (x j)), i, j = 1, . . . ,n,
is defined by an exponential model [24]. We consider
two values for σ2 (8 and 400) and three values for
φ (3, 7 and 12), establishing thus two levels of
variability (low and high) and three levels of spatial
correlation (low, medium and high), respectively.
The models considered are plotted in Figure 2.
Combining n (25, 49, 100, 100), σ2 (8 and 400) and
φ (3,7, 12) values, in total, we have 24 simulation
scenarios. We use the software R [29] to obtain
the simulations. The random fields are simulated
by using the function grf of the library geoR [30].
The clustered configuration of points is defined by

using the function rMatClust of the library sp. The
functions shapiro.test, sf.test and ad.test of the
library nortest [32] are used to carry out the tests of
SW, SF and AD, respectively. The tests based on the
Mahalanobis distance (Q1 and Q2) are conducted
by using the package base of R [29]. A number of
1000 simulations under each scenario (combinations
of n, σ2 and φ ) are obtained and the rejection rate
for each one of the five tests is estimated by

α̂ =
∑

1000
i=1 δi

1000
,

with δi a dichotomous variable taking the value 1 if
the null hypothesis is rejected and 0 otherwise. In all
cases, the tests are carried out by using a significance
level α = 5%, i.e, the test considered is appropriate if
the estimation of α (α̂) obtained from the simulation
is close to the nominal level 5%. The farther away
from this value, the worse its performance. The
results of the estimations are shown in Table 1.
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Figure 2. Covariance models with parameters σ2 = 8 (top) and σ2 = 400 (bottom).

Table 1. Estimated rejection rates (α̂) of the null hypothesis of normality obtained by using Monte Carlo simulation of
normal random fields with different levels of variability (σ2) and correlation (φ ). In all cases is considered that the process
follows an exponential correlation model. The rejection rates are calculated for three regular grids (n = 25,49 and 100) and
one clustered grid (n = 100, fourth line at each case).

Test Grid σ2 = 8, σ2 = 8, σ2 = 8, σ2 = 400, σ2 = 400, σ2 = 400,
φ = 3 φ = 7 φ = 12 φ = 3 φ = 7 φ = 12

Shapiro-Wilk n = 25 0.05 0.06 0.07 0.05 0.06 0.07
n = 49 0.08 0.12 0.15 0.08 0.12 0.16
n = 100 0.15 0.29 0.33 0.16 0.28 0.33
n = 100 0.43 0.52 0.60 0.42 0.53 0.58

Shapiro-Francia n = 25 0.05 0.06 0.06 0.05 0.05 0.06
n = 49 0.06 0.09 0.12 0.06 0.09 0.12
n = 100 0.12 0.23 0.28 0.13 0.23 0.28
n = 100 0.37 0.46 0.54 0.37 0.47 0.52

Anderson-Darling n = 25 0.05 0.06 0.07 0.05 0.06 0.07
n = 49 0.08 0.12 0.15 0.08 0.13 0.16
n = 100 0.16 0.28 0.33 0.17 0.28 0.34
n = 100 0.43 0.52 0.60 0.42 0.53 0.57

Q1 n = 25 0.05 0.05 0.05 0.05 0.05 0.05
n = 49 0.05 0.05 0.05 0.05 0.05 0.05
n = 100 0.05 0.05 0.05 0.05 0.05 0.05
n = 100 0.06 0.04 0.06 0.06 0.05 0.05

Q2 n = 25 0.02 0.07 0.09 0.03 0.06 0.09
n = 49 0.01 0.05 0.06 0.02 0.05 0.06
n = 100 0.01 0.02 0.05 0.01 0.02 0.05
n = 100 0.01 0.02 0.06 0.01 0.03 0.05
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Concerning the univariate tests (SW, SF and AD),
several points are identified from Table 1. The
estimations of the rejection rates have a very similar
behavior (although the values with SF are slightly
lower). In general the results are unsatisfactory. It is
clear that these tests do not have a good performance
because the α̂ values obtained are greater than
the nominal α = 5% defined in the simulations,
except in those cases where there is both low spatial
dependence (φ = 3) and small sample size (n = 25).
It can also be observed that the stronger the spatial
dependence, the bigger the difference between α̂ and
α (the higher the spatial correlation, the worse the
performance of these tests). A comparison of the α̂

values reported for the three statistics (SW, SF, AD)
in the two 100-point spatial configurations (regular
and clustered, Table 1) indicates that the magnitude
of the error (overestimation of α) increases if a
clustered sampling is considered. All the above
results are consistent: it is natural that the classical
tests are not satisfactory, because they are based on
the assumption of independence and the simulations
are obtained from normal random fields with an
underlying correlation structure.

As for the tests based on the statistics Q1 and
Q2, we can observe in Table 1 that in all cases the
estimated rejection probabilities (α̂) (after rounding
to two decimal places) are close to the significance
level α = 5% considered (particularly when n ≥ 49),
i.e. these tests are unbiased [33]. The rejection rates
obtained with Q1 indicate that under ideal situations
(when the parameters are known), the Mahalanobis
distance would perform satisfactorily (as expected
in this case all the α̂ values are practically equal to
α because the parameters µµµ and Σ in Equation (17)
should not be estimated). Likewise, the rejection
rates estimated with Q2, although slightly different
from the 5%, are also appropriate (in all cases
less than 9%). The relationship between n and α̂

corresponding to the statistics Q2 (for all correlation
and variability levels considered) is illustrated in
Figure 3. Only the estimations obtained with
the regular grids are considered (for the clustered
distribution we only have the estimations with n =

100 and these are practically the same as those
obtained with the regular grid of the same size).
We note according to the interpolations lines in this

Figure, that the optimal n is around 50 when φ = 7,
while this value is close to 100 when φ = 12, i.e.,
the greater the spatial dependence, the bigger the
sample size required to get a good approximation to
the nominal level α = 5% defined in the simulations.

Note from Table 1 that in general (for all the test
considered) when n and φ are fixed the estimations
of the rejection probabilities obtained under the
two levels of variability (σ2 = 8 and 400) are very
similar, i.e, α̂ values in columns 3 and 6, 4 and 7,
and 5 and 8 are close. In other words, the variability
of the random process has no influence on the result
of the normality test. The tests depends only on the
number of observations (n) of the random process
and the level of spatial correlation (φ ). This pattern
is apparent in Figure 3 (to the case of Q2), where it
can be seen that the variation of α̂ (with respect to n
and φ ) is practically the same in both panels (σ2 = 8,
above, and σ2 = 400, below).

According to the above comments, the classical
tests of normality (SW, SF, AD) should not be used in
geostatistics. On the other hand, the test based on the
Q1 statistic, although satisfactory, is not applicable
in practice because the vector of means and the
covariance matrix are unknown. An appropriate
test, according to the estimates given in Table 1,
is that based on the Q2 statistic. In summary, the
estimations based on Q2 given in Table 1 reveal that
this statistic can be used in applied geostatistics for
carrying out the normality test and also indicate that
its performance depends on the sample size.

4.2 Simulation Under Log-Normality

We also evaluate the power of the test, denoted with
π throughout. For this purpose, we simulate data
from log-normal stationary processes. Assuming{

Y (x),x ∈ R2
}

is a normal stationary stochastic
process with mean µ and variance σ2, a log-normal
process can be obtained from Y (x) by means of the
transformation T (x) = exp(Y (x)) [24]. It is known
that mean and variance of T (x) are given by [26]

E(T (x)) = exp
(

µ +
σ2

2

)
, and

V(T (x)) = exp
(
2µ +σ

2)(exp(σ2)−1
)
. (23)
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Figure 3. Optimal number of sites (points) required to have a good estimation of α when is used the statistic Q2. Lines
calculated only with the estimations of the regular grids.

We use the expressions in (23) to obtain realiza-
tions of log-normal random fields starting from sim-
ulations of normal processes with µ = 0 and σ = 1.
The parameters µ and σ are changed with respect to
those used in Section 4.1 for simplicity on the calcu-
lations. It is clear that these values have no effect on
the estimation of the rejection probabilities π̂ . With
these specifications of µ and σ we have

E(T (x)) = exp
(

µ +
σ2

2

)
= 1.65, (24)

and

V(T (x)) = exp
(
2µ +σ

2)(exp(σ2)−1
)

= exp(1)(exp(1)−1)

= 4.67 = σ
2
2 . (25)

The covariance matrix Σ (see Equation 22) required
to calculate the statistic Q1 (Equation 17) for the

log-normal processes is based on Equations (24) and
(25). The elements of the matrix are now given by

σi j = σ
2
2 exp

(
− h

φ

)
,with φ > 0; and h = ∥xi − x j∥.

The matrix Σ̂ used for obtaining Q2 is calculated at
each case by fitting covariance exponential models
by ordinary least squares to the simulated processes
(analogously to the procedure used in Section
4.1). Three sample sizes n = (25,49,100) and five
correlation coefficients φ = (10,20,30,40,50) are
used to evaluate empirically the power of the tests.
A size n = 100 clustered configuration (as defined in
Section 4.1) is also considered to evaluate the effect
of spatial distribution on the estimation of π . The
results are shown in Table 2.
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Table 2. Estimated power (π̂) of the normality hypothesis obtained by using Monte Carlo simulation of log-normal random
fields with different levels of correlation (φ ) and sample size (n). In all cases it is considered that the process has an
exponential spatial correlation structure. The power is calculated for three regular grids (n = 25,49 and 100) and one
clustered grid (n = 100, fourth line at each case).

Test Grid φ = 10 φ = 20 φ = 30 φ = 50 φ = 70
Shapiro-Wilk n = 25 0.77 0.58 0.47 0.34 0.27

n = 49 0.94 0.77 0.68 0.56 0.47
n = 100 0.99 0.93 0.84 0.75 0.68
n = 100 0.95 0.88 0.83 0.74 0.72

Shapiro-Francia n = 25 0.74 0.55 0.44 0.31 0.25
n = 49 0.92 0.74 0.65 0.52 0.43
n = 100 0.99 0.91 0.81 0.71 0.64
n = 100 0.93 0.85 0.79 0.72 0.67

Anderson-Darling n = 25 0.70 0.52 0.43 0.30 0.24
n = 49 0.90 0.70 0.61 0.50 0.42
n = 100 0.98 0.88 0.78 0.68 0.62
n = 100 0.92 0.84 0.78 0.73 0.69

Q1 n = 25 0.77 0.80 0.82 0.82 0.82
n = 49 0.84 0.85 0.86 0.87 0.88
n = 100 0.88 0.90 0.92 0.92 0.92
n = 100 0.89 0.90 0.90 0.91 0.92

Q2 n = 25 0.75 0.75 0.75 0.75 0.75
n = 49 0.81 0.83 0.83 0.84 0.85
n = 100 0.86 0.88 0.88 0.88 0.89
n = 100 0.88 0.89 0.89 0.90 0.90

Two points can be highlighted from the π̂ values.
First, the estimations based on the statistics Q1 and
Q2 are in general much bigger than derived with the
classical tests (except when φ = 10 or both φ = 20
and n = 100) i.e., the tests based on the Mahalanobis
distance are more powerful. On the other hand, there
are marked differences between trends of change
when the level of correlation increases (φ ≥ 30). The
three classical tests (SW, SF, AD) show the same
pattern. There is an inverse relationship between π̂

and φ , that is, the stronger the spatial dependence,
the lower the estimation of the rejection probability
(π̂). On the contrary, in the case of the estimations
based on Q1 and Q2 the relationship is monotonous
increasing and π̂ is around 90% (when φ = 70 and
n = 100 (in both spatial configurations)).

Summarizing, the results in Tables 1 and 2
allow us to establish empirically that the classical
normality tests such as SW, SF and AD are
not appropriate to evaluate this assumption in
geostatistics because tend to both overestimate the
significance level (α̂ values for these tests in Table
1 are much greater than the nominal level α = 5%

considered, particularly when the sample size n and
the correlation level φ increase) and underestimate
the power (π̂ values in Table 2 for these tests
are much lower that obtained with Q1). Results
also show that the Mahalanobis distance-based
approaches (Q1 and Q2) have a good performance
(α̂ values (Table 1) are close to the nominal level
α = 5% and the power values π̂ (Table 2) increase as
expected when the sample size n and the correlation
level φ increase). Consequently the approaches
proposed and particularly the statistics Q2 can be
applied in practical problems of geostatistics for
testing for normality when the process under study
is stationary (when simple and ordinary kriging is
going to be used to carry out spatial prediction).

Kriging prediction can be applied independently
of the distribution that follows the process. However,
under normality the prediction is optimal (simple
kriging is a BP). In addition to the combination of
the method-of-moments and least squares, maximum
likelihood can be used to estimate the parameters
of the covariance model. This is a straightforward
procedure widely used when the random process is
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normal. For these reasons (optimality and simplicity
of estimation) testing for normality is a relevant step
in any geostatistical analysis. Classical normality
tests based on SW, SF or AD are not suitable in this
scenario. The statistics proposed in this work are a
good alternative to fulfill this stage of the analysis.
Particularly in practical geostatistics, the statistic Q2
can be used in a preliminary step of the analysis for
testing for normality.

5 Conclusion and Further Research

In this paper, we introduced an approach to test for
normality in geostatistics. Specifically we showed
how the Mahalanobis distance, traditionally used in
multivariate analysis, can be adapted to a geostatisti-
cal context to test for normality. Simulation results
indicated firstly that using univariate tests such as
Shapiro-Wilk, Shapiro-Francia or Anderson-Darling
in geostatistics is inadequate and on the other hand,
that the strategy proposed is attractive from a practi-
cal point of view because it can be calculated based
on just one realization of the underlying random pro-
cess. There is room for research in the context of
this paper. A generalization to the non-stationary
case is required. Also the test could be extended to a
multivariate geostatistical scenario.
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