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A note on zeros of orthogonal polynomials generated by
canonical transformations

Una nota sobre ceros de polinomios ortogonales generados por transformaciones
canónicas
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Abstract

In this work, the behavior of zeros of orthogonal polynomials associated with canonical spectral transformations of weight
functions on [0,∞) is studied. Namely, by means of standard techniques, we obtain interlacing properties for zeros associated
with some particular cases of rational and Christoffel transformations.
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Resumen

En este trabajo se estudia el comportamiento de ceros de polinomios ortogonales asociados a transformaciones espectrales
canónicas de funciones de peso sobre [0,∞). A saber, mediante técnicas estándar, obtenemos propiedades de entrelazado para
ceros asociados a algunos casos particulares de transformaciones racionales y de Christoffel.
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1. Introduction

Let {Pn}n∈N be a sequence of monic polynomials orthogo-
nal with respect to a weight function ω en (0,∞). Consider
the weight function ρω where

ρ(x) =

k

∏
i=1

(x−ζi)
mi

p

∏
j=1

(x−η j)
q j

, (1)

where k, p ≥ 1, ζi,η j < 0 and mi,q j ∈ Z+ ∪ {0} . When
q j = 0 for every j, the function ρ produces a perturba-
tion on the weight ω , known in the literature as Christoffel
transformation, introduced in [1], (see also [2], [3] and [4]).
Orthogonal polynomials associated with this kind of per-
turbations have been widely studied, in particular analytic
properties associated to zeros and asymptotic behavior, (see
for instance [5], [6], [7], [8], [9], [10] and [11]). On the
other hand, if mi = 0 for every i, ρ produces a very par-
ticular case of a Geronimus transformation, introduced in
a general way in [12] and [13], and related with mechani-
cal quadrature, numerical analysis and physics problems
concerning non-isospectral discrete-time Volterra chains.
See [14], [15], [16], [17], [18], [8], [19] and [20] for recent
developments in analytic and asymptotic properties as well
as electrostatic models. Finally, if in (1) there exist i, j such
that miq j , 0, we get a rational transformation of the weight.
In [21] can be seen a deep study about asymptotic behavior
of orthogonal polynomials with respect to this kind of per-
turbation when ω is the classical Laguerre weight. For a
general treatment [16], [22], [23], [24], [10] and [11], are
highly recommended.

Special cases of transformations outlined above are the focus
of this paper. In particular, this contribution has to do with
location of zeros of polynomials associated with this kind
of perturbation in some very particular cases. In this way,
the structure of this manuscript is as follows. In Section 2,
we present some basic elements of the theory and auxiliary
results. In Section 3 we discuss some algebraic connections
and interlacing properties of zeros of polynomials associated
to particular cases of Christoffel transformations when the
weight is perturbed by linear factors (x−ζ1) and (x−ζ2),
with ζ1 , ζ2, and ζ1,ζ2 < 0. Finally, in section 4 we consider
interlacing properties of zeros of polynomials orthogonal
with respect to rational perturbations, namely, we consider

perturbations with the rational functions
1

x−ν
and

(x−ζ )

(x−ν)
,

with ζ , ν and ζ ,ν < 0.

2. Preliminaries

Let P be the linear space of polynomials with complex coef-
ficients. Pn will denote the linear subspace of polynomials
of degree at most n. Let u be a linear functional in the al-
gebraic dual space of P. It will be denoted P′. ⟨u, p⟩ is the

action of the linear functional u on the polynomial p ∈ P.
For u ∈ P′, the sequence {un}n≥0, un = ⟨u,xn⟩ , is said to
be the respective moment sequence. We define the Hankel
determinant of order n+ 1 for ∆n = |(ui+ j)

n
i, j=0|. Also, u

is so called quasi-definite or regular if ∆n , 0 for n ≥ 0,
and it is called positive-definite if ⟨u,π(x)⟩ > 0 for every
nonzero and non-negative real polynomial π.

Theorem 1 ( [2]). u is positive definite if and only if their
moments are real and ∆n > 0 for n ≥ 0.

If u is positive-definite, then there exists a positive Borel
measure µ supported on an infinite set E ⊆ R such that
u has an integral representation

⟨u, p⟩=
∫

E
p(x)dµ(x), p ∈ P.

Given a quasi-definite linear functional u on the space P(R)
of polynomials with real coefficient, a bilinear form ⟨,⟩u :
P(R)×P(R)→R is defined as ⟨p,q⟩u := ⟨u, pq⟩ . If u is
positive definite then the bilinear form is an inner product
on P(R) and, it is usual,

∥p∥u = ⟨p, p⟩1/2
u =

〈
u, p2〉1/2

=

(∫
E

p2(x)dµ(x)
)1/2

,

represents the induced norm.

Definition 1 A sequence {Pn}n≥0 is called an orthogonal
polynomial sequence, (OPS in short), with respect to a mo-
ment functional u if for n,m ≥ 0, i). Pn is a polynomial of
degree n; ii). ⟨u,PnPm⟩= 0, for n , m, and iii).

〈
u,P2

n
〉
, 0.

If the leading coefficient of Pn is 1 for every n ≥ 0, then
{Pn}n≥0 is said to be a monic orthogonal polynomial se-
quence, (MOPS in short).

proposition 1 ( [2]). Let u be a moment functional. u is
quasi-definite if and only if there exists an OPS {Pn}n≥0
with respect to the functional

Theorem 2 (Favard’s theorem) ( [2]). Let {Pn}n≥0 be a
sequence of monic polynomials. {Pn}n≥0 is a MOPS with
respect to a quasi-definite linear functional u if and only if
there exist sequences of numbers {βn}n≥1 and {γn}n≥1, with
γn , 0 for n ≥ 1, such that

xPn(x) = Pn+1(x)+βnPn(x)+ γnPn−1(x), n ≥ 1, (2)

P0(x) = 1, P1(x) = x−β0.

On the other hand,

βn =

〈
u,xP2

n
〉

⟨u,P2
n ⟩

, n ≥ 0,

γn =
⟨u,xPnPn−1⟩〈

u,P2
n−1

〉 =

〈
u,P2

n
〉〈

u,P2
n−1

〉 , n ≥ 1.
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If
{

xn, j
}n

j=1 are the zeros of the polynomial Pn we enunciate
the following result.

Theorem 3 ( [2]). Let I be the support of a positive-definite
linear functional u and {Pn}n≥0 the respective MOPS. Then,
i). The zeros of Pn are real, simple and located in the interior
of the convex hull of I. ii). (Interlacing property). The zeros
of Pn and Pn+1 mutually separate each other, i.e. if

{
xn, j
}n

j=1
are the n zeros of the polynomial Pn, arranged in an increa-
sing order, then xn+1, j < xn, j < xn+1, j+1, 1 ≤ j ≤ n.

We will consider the next tool, useful to deduce interlacing
properties of zeros.

lemma 1 (See [25]). Let rn(x) = (x− x1) · · ·(x− xn) and
rn−1(x) = (x− y1) · · ·(x− yn−1) be polynomials with real
and interlacing zeros

x1 < y1 < x2 < · · ·< xn−1 < yn−1 < xn,

Then for any real constant C the polynomial Rn(x) = rn(x)+
Crn−1(x) has n real zeros ξ1 < ξ2 < · · ·< ξn which interlace
with both the zeros of rn(x) and rn−1(x) in the next way: if
C > 0,

ξ1 < x1 < y1 < ξ2 < x2 < y2 <

· · ·< ξn−1 < xn−1 < yn−1 < ξn < xn,

but if C < 0

x1 < ξ1 < y1 < x2 < ξ2 <

· · ·< xn−1 < ξn−1 < yn−1 < xn < ξn,

3. Christoffel Transformations

If u is a positive-definite linear functional, the respective
Borel measure dµ is supported on [a,b] and if ζi < (a,b),

i = 1,2, . . . ,k, the measure dµ∗ =
k

∏
i=1

|x−ζi|dµ is called

a canonical Christoffel Transformation. Concerning to the
relation between polynomials orthogonal with respect to µ

and µ∗ in the particular case k = 1, we get the next result.

proposition 2 ( [2]). Let {Pn} be the MOPS with respect to
µ, supported in the interval [a,b]. If ζ ≤ a, is not a zero

of Pn, for every n ≥ 1, then
{

P[1]
n

}
, the monic sequence

orthogonal with respect to dµ∗ = (x−ζ )dµ , satisfies

P[1]
n (x) = (x−ζ )−1

(
Pn+1(x)−

Pn+1(ζ )

Pn(ζ )
Pn(x)

)
.

In addition, if
{

x[1]n,i

}n

i=1
are the real and simple zeros of P[1]

n

then
xn,i < x[1]n,i, i = 1, . . . ,n. (3)

In the sequel, let {Pn}n∈N be a sequence of monic polyno-
mials orthogonal with respect to the inner product

⟨r,q⟩
ω
=
∫

∞

0
r(x)q(x)dµω , (4)

where dµω = ω(x)dx, and ω is a weight function on (0,∞).
As before, {xn,i}n

i=1 represents the zeros of Pn. In this way,

let
{

P[k]
n

}
be the sequence of monic polynomials orthogonal

with respect to

⟨p,q⟩k =
∫

∞

0
p(x)q(x)(x−ζ )kw(x)dx=

∫
∞

0
p(x)q(x)dµω,k,

(5)
ζ < 0, k ≥ 0. For every n, P[0]

n := Pn and µω,0 := µω . Also,
∥.∥k represents the induced norm for (5), with ∥.∥0 := ∥.∥,
the latter, the norm induced by (4).

proposition 3 (see [7]). For k ≥ 1

(x−ζ )P[k]
n (x) = P[k−1]

n+1 (x)−
P[k−1]

n+1 (ζ )

P[k−1]
n (ζ )

P[k−1]
n (x), (6)

moreover∥∥∥P[k]
n

∥∥∥2

k
= (−1)k

k

∏
j=1

(
P[k− j]

n+1 (ζ )

P[k− j]
n (ζ )

)
∥Pn∥2 . (7)

proposition 4 Let
{

x[k]n,i

}n

i=1
the zeros of P[k]

n arranged in
an increasing order. It holds that

x[p]n,i < x[q]n,i, i = 1, . . . ,n, (8)

with p,q ∈N∪{0} and p < q.

proof 1 Notice that from (3), we know how zeros of mem-
bers of the MOPS associated with a weight on [0,∞), are
interlaced with the zeros of members of the MOPS associa-
ted with the weight perturbed by (x−ζ ). As a consequence
we get

x[k−1]
n,i < x[k]n,i,

for k ≥ 0.

Next, we are going to obtain explicitly the three terms recu-
rrence relation, (TTRR in short), that the sequence

{
P[k]

n

}
satisfies. To do that, we expand xP[k]

n−1 in terms of
{

P[k]
n

}
,

namely

xP[k]
n−1(x) =

n

∑
i=0

aniP
[k]
i (x),

an,i =

∫
∞

0 xP[k]
n−1(x)P

[k]
i (x)(x−ζ )kw(x)dx∫

∞

0 (P[k]
i (x))2(x−ζ )kw(x)dx

.

It is clear that ank = 0 for 0 ≤ k < n−3. Then

xP[k]
n−1(x) = P[k]

n (x)+ c[k]n P[k]
n−1(x)+λ

[k]
n P[k]

n−2(x).

According to explicit formulas for coefficients in (2) we get

λ
[k]
n =

∥∥∥P[k]
n

∥∥∥2

k∥∥∥P[k]
n−1

∥∥∥2

k

,
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and

c[k]n =

∫
∞

0 x(P[k]
n−1(x))

2(x−ζ )kw(x)dx∥∥∥P[k]
n−1

∥∥∥2

k

.

By means of (7) we get

λ
[k]
n =

∥Pn−1∥2

∥Pn−2∥2

k

∏
j=1

P[k− j]
n (ζ )P[k− j]

n−2 (ζ )(
P[k− j]

n−1 (ζ )
)2 , (9)

and

c[k]n =

∫
∞

0 x(P[k]
n−1(x))

2(x−ζ )kw(x)dx

(−1)k
k

∏
j=1

(
P[k− j]

n (ζ )

P[k− j]
n−1 (ζ )

)
∥Pn−1∥2

. (10)

In particular, for k = 1 we obtain

λ
[1]
n =

∥∥∥P[1]
n

∥∥∥2

1∥∥∥P[1]
n−1

∥∥∥2

1

,

and

c[1]n =

∫
∞

0 x(P[1]
n−1(x))

2(x−ζ )w(x)dx∥∥∥P[1]
n−1

∥∥∥2

1

,

moreover

c[1]n

=

∫
∞

0 (P[1]
n−1(x))

2(x−ζ )2w(x)dx∥∥∥P[1]
n−1

∥∥∥2

1

+ζ

=

∫
∞

0

(
Pn(x)− Pn(ζ )

Pn−1(ζ )
Pn−1(x)

)2
w(x)dx∥∥∥P[1]

n−1

∥∥∥2

1

+ζ

=
∥Pn∥2∥∥∥P[1]

n−1

∥∥∥2

1

+

(
Pn(ζ )

Pn−1(ζ )

)2
∥Pn−1∥2∥∥∥P[1]

n−1

∥∥∥2

1

+ζ .

Here we have used (6). From (7), we finally obtain

c[1]n =−Pn−1(ζ )∥Pn∥2

Pn(ζ )∥Pn−1∥2 − Pn(ζ )

Pn−1(ζ )
+ζ . (11)

and

λ
[1]
n (12)

=

Pn+1(ζ )
Pn(ζ )

∥Pn∥2

Pn(ζ )
Pn−1(ζ )

∥Pn−1∥2

=
Pn−1(ζ )Pn+1(ζ )∥Pn∥2

(Pn(ζ ))2 ∥Pn−1∥2 .

Summarizing, we get the following result.

proposition 5 The sequence
{

P[k]
n

}
satisfies the TTRR

P[k]
n (x) = (x− c[k]n )P[k]

n−1 −λ
[k]
n P[k]

n−2(x), (13)

with c[k]n and λ
[k]
n defined in (9) and (10). In particular, when

k = 1, we get

c[1]n =−Pn−1(ζ )∥Pn∥2

Pn(ζ )∥Pn−1∥2 − Pn(ζ )

Pn−1(ζ )
+ζ ,

and

λ
[1]
n =

Pn−1(ζ )Pn+1(ζ )∥Pn∥2

(Pn(ζ ))2 ∥Pn−1∥2 .

Now, let {Qn} be the monic sequence of polynomials ortho-
gonal with respect to

⟨p,q⟩=
∫

∞

0
p(x)q(x)(x−ζ1)(x−ζ2)dµω ,

ζ1 < ζ2 < 0, and let
{

P[1,1]
n

}
,
{

P[1,2]
n

}
be the MOPS asso-

ciated with the weights (x−ζ1)ω and (x−ζ2)ω respectively.
Also, ∥.∥[1,1] and ∥.∥[1,2] will denote the respective induced
norms. By using of (6) with k = 1, we get

(x−ζ2)P
[1,2]
n (x) = Pn+1(x)−

Pn+1(ζ2)

Pn(ζ2)
Pn(x), (14)

(x−ζ1)P
[1,1]
n (x) = Pn+1(x)−

Pn+1(ζ1)

Pn(ζ1)
Pn(x), (15)

and

(x−ζ1)Qn(x) = P[1,2]
n+1 (x)−

P[1,2]
n+1 (ζ1)

P[1,2]
n (ζ1)

P[1,2]
n (x). (16)

Multiplying on both sides of (16) by (x−ζ2) we get

(x−ζ2)(x−ζ1)Qn(x)

= (x−ζ2)P
[1,2]
n+1 (x)−

P[1,2]
n+1 (ζ1)

P[1,2]
n (ζ1)

(x−ζ2)P
[1,2]
n (x)

= Pn+1(x)+

(
−Pn+1(ζ2)

Pn(ζ2)
−

P[1,2]
n+1 (ζ1)

P[1,2]
n (ζ1)

)
Pn+1(x)

+

(
Pn+1(ζ2)

Pn(ζ2)

)(
P[1,2]

n+1 (ζ1)

P[1,2]
n (ζ1)

)
Pn(x),

= Pn+1(x)+ γn(ζ1,ζ2)Pn+1(x)+ρn(ζ1,ζ2)Pn(x),

then we get the following result.

lemma 2 For every n

(x−ζ2)(x−ζ1)Qn(x) (17)
= Pn+1(x)+ γn(ζ1,ζ2)Pn+1(x)+ρn(ζ1,ζ2)Pn(x),
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with

γn(ζ1,ζ2) =−Pn+2(ζ2)

Pn(ζ2)
−

P[1,2]
n+1 (ζ1)

P[1,2]
n (ζ1)

,

and

ρn(ζ1,ζ2) =
Pn+1(ζ2)

Pn(ζ2)

P[1,2]
n+1 (ζ1)

P[1,2]
n (ζ1)

.

Notice that γn(ζ1,ζ2),ρn(ζ1,ζ2) > 0. Connection formula
(17) is relevant since allow us to build every polynomial Qn
in terms of known data, that is, in terms of members of the
original MOPS {Pn}.

On the other hand, if we expand (x−ζ1)P
[1,1]
n by means of

the basis
{

P[1,2]
n

}
, we obtain

(x−ζ1)P
[1,1]
n =

n+1

∑
i=0

aniP
[1,2]
i (x),

with

ani =

∫
∞

0 (x−ζ1)P
[1,1]
n (x)P[1,2]

i (x−ζ2)dµω∥∥∥P[1,2]
i

∥∥∥2

[1,2]

.

By orthogonality with respect to (x−ζ1)ω, ani = 0 for i =
0, . . . ,n−2. Formulas (14) and (15) allows us to obtain

ann =−
∥Pn+1∥2 +(

Pn+1(ζ1)
Pn(ζ1)

)(
Pn+1(ζ2)

Pn(ζ2)
)∥Pn∥2

Pn+1(ζ2)
Pn(ζ2)

∥Pn∥2

=− Pn(ζ2)

Pn+1(ζ2)

∥Pn+1∥2

∥Pn∥2 − Pn+1(ζ1)

Pn(ζ1)

and

an,n−1 =

Pn+1(ζ1)
Pn(ζ1)

∥Pn∥2

Pn(ζ2)
Pn−1(ζ2)

∥Pn−1∥2

=
Pn+1(ζ1)Pn−1(ζ2)

Pn(ζ1)Pn(ζ2)

∥Pn∥2

∥Pn−1∥2 .

Then we get the formula

(x−ζ1)P
[1,1]
n (x)

= P[1,2]
n+1 (x)

−

(
Pn(ζ2)

Pn+1(ζ2)

∥Pn+1∥2

∥Pn∥2 +
Pn+1(ζ1)

Pn(ζ1)

)
P[1,2]

n (x)

− Pn+1(ζ1)Pn(ζ2)

Pn(ζ1)Pn+1(ζ2)

∥Pn∥2

∥Pn−1∥2 P[1,2]
n−1 (x).

Now, by using the TTRR (13) for the sequence
{

P[1,2]
n

}
we

get the following result.

proposition 6 For every n,

(x−ζ1)P
[1,1]
n (x) = (x− γ

[1,2]
n )P[1,2]

n (x)+η
[1,2]
n P[1,2]

n−1 (x),
(18)

where

γ
[1,2]
n =

Pn+1(ζ1)

Pn(ζ1)
− Pn+1(ζ2)

Pn(ζ2)
+ζ2, (19)

and

η
[1,2]
n (20)

=
∥Pn∥2

∥Pn−1∥2
Pn−1(ζ2)

Pn(ζ2)

[
Pn+1(ζ1)

Pn+1(ζ1)
− Pn+1(ζ2)

Pn(ζ2)

]
.

To find out the sign of each coefficient in the above formulas,
we present the following useful result.

lemma 3 For n ∈N, Rn(x) =
Pn+1(x)
Pn(x)

is a increasing fun-

ction on (−∞,0].

proof 2 It is enough to prove that the first derivative of
Rn(x) is positive on (−∞,0). Indeed

R′
n(x) =

p′n+1(x)pn(x)− pn+1(x)p′n(x)

(pn(x))
2 ,

In this way, and as a consequence, we can deduce the next
important information.

corollary 1 For every n, ζ1 < ζ2 < 0, and γ
[1,2]
n , η

[1,2]
n de-

fined in (19) and (20) respectively, it holds γ
[1,2]
n < 0 and

η
[1,2]
n > 0.

Let
{

x[1,1]n,i

}n

i=1
and

{
x[1,2]n,i

}n

i=1
be the zeros of P[1,1]

n and

P[1,2]
n respectively, and all arranged in an increasing order.

The connection formula (18) can be written as

(x−ζ1)P
[1,1]
n (x) (21)

= xP[1,2]
n (x)− γ

[1,2]
n

(
P[1,2]

n (x)− η
[1,2]
n

γ
[1,2]
n

P[1,2]
n−1 (x)

)
,

and we consider the sequence of monic polynomials {Dn}
defined as follows:

Dn(x) = P[1,2]
n (x)− η

[1,2]
n

γ
[1,2]
n

P[1,2]
n−1 (x). (22)

This family is quasi-orthogonal with respect to the weight
(x−ζ2)ω on [0,∞) in the next sense:

Definition 2 Let Rn be a polynomial of exact degree n. If ω

is a weight function on interval [a,b], and Rn satisfies the
conditions ∫ b

a
xkRn(x)ω(x)dx = 0,

k = 0, . . . ,n− r−1, then Rn is quasi-orthogonal of order r
with respect to ω on [a,b].
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Next, some consequences of this definition.

Theorem 4 (See [26]). If {Pn} is a OPS with respect to ω

on [a,b], Rn is quasi-orthogonal of order r with respect to
ω on [a,b] if there exist numbers cn,i, i = 1, . . . ,r, cn,r , 0,
such that

Rn(x) = Pn(x)+
r

∑
k=1

cn,kPn−k(x).

Theorem 5 (See [27]). If Rn is quasi-orthogonal of order r
with respect to ω on [a,b], the zeros are real, simple and at
least n− r lie in (a,b).

Let {ϕn,i}n
i=1 be the zeros of Dn, arranged in an increa-

sing order. By Lemma 1 since x[1,2]n,i < x[1,2]n−1,i < x[1,2]n,i+1, i =
1, . . . ,n−1, from (22), we get the following result.

lemma 4 For every n ≥ 1, ϕn,1 < x[1,2]n,1 , and

x[1,2]n−1,i < ϕn,i+2 < x[1,2]n,i+1

for i = 1, . . . ,n−1.

ϕn,1 < x[1,2]n,1 < x[1,2]n−1,1 < ϕn,2 < x[1,2]n,2 <

· · ·< ϕn,n−1 < x[1,2]n,n−1 < x[1,2]n−1,n−1 < ϕn,n < x[1,2]n,n .

If 0 < ϕn,1 < x[1,2]n,1 , and taking into account Lemma 4, we
can use formula (21) and Lemma 1 to prove the following
interlacing properties.

proposition 7 If 0 < ϕn,1, then

x[1,1]n,i < x[1,2]n,i ,

for i = 1, . . . ,n.

On the other hand, if ϕn,1 < 0, notice that if we use (21) for
x = 0 and x = x[1,2]n,1 we get

P[1,1]
n (0)P[1,1]

n

(
x[1,2]n,1

)
=−

(
γ
[1,2]
n

)2

ζ1

(
x[1,2]n,1 −ζ1

)Dn(0)Dn

(
x[1,2]n,1

)
,

and from Lemma 4 we know that ϕn,1 < 0 < x[1,2]n,1 < ϕn,2,

then Dn does not change of sign in
[
0,x[1,2]n,1

]
, thus

P[1,1]
n (0)P[1,1]

n (x[1,2]n,1 )> 0 and as a consequence x[1,2]n,1 < x[1,1]n,1 .
Analogously, we can see that, from Lemma 4, and for i =
2, . . . ,n−1,

P[1,1]
n

(
x[1,2]n,i

)
P[1,1]

n

(
x[1,2]n,i+1

)
=

(
γ
[1,2]
n

)2
Dn

(
x[1,2]n,i

)
Dn

(
x[1,2]n,i+1

)
(

x[1,2]n,i −ζ1

)(
x[1,2]n,i+1 −ζ1

)
< 0.

It is straightforward show that P[1,1]
n

(
x[1,2]n,n

)
< 0. Thus, we

complete the proof of the following proposition.

proposition 8 If ϕn,1 < 0, then

x[1,2]n,i < x[1,1]n,i ,

for i = 1, . . . ,n.

4. Rational Transformations

Let {Tn} and {Gn} be the monic sequences of polynomials
orthogonal with respect to

⟨p,q⟩=
∫

∞

0
p(x)q(x)

(x−ζ )

(x−ν)
dµω , ζ ,ν < 0. (23)

and
⟨p,q⟩=

∫
∞

0
p(x)q(x)

1
(x−ν)

dµω , ν < 0. (24)

respectively. Also, let ∥.∥
ζ ,ν and ∥.∥[ν ] be the the respec-

tive induced norms. Again we consider the MOPS
{

P[1]
n

}
associated to the weight (x−ζ )ω on [0,∞).

If (x−ν)Pn is expanded in terms of the basis {Gn} we get

(x−ν)Pn(x) = Gn(x)+
n−1

∑
j=0

an, jG j(x),

where, immediately, an, j = 0, j = 1, . . . ,n−2, and

an,n−1 =

∫
∞

0 Pn(x)Gn(x)w(x)dx

∥Gn∥2
[ν ]

=
∥Pn∥2

∥Gn∥2
[ν ]

.

Thus

(x−ν)Pn(x) = Gn+1(x)+
∥Pn∥2

∥Gn∥2
[ν ]

Gn(x). (25)

Let {gn,i}n
i=1 be the zeros of Gn arranged in an increasing

order. By Lemma 1 applied to (25) we obtain for i= 1, . . . ,n.

gn,i < xn,i < gn+1,i+1. (26)

Now, we adopt the notation {Gn(.,k)} to represent the monic
sequence of polynomials orthogonal with respect to

⟨p,q⟩=
∫

∞

0
p(x)q(x)

1
(x−ν)k dµ, (27)

k ∈N∪{0} , ν < 0. Here, for every n we get Gn(.,0) := Pn
and Gn(.,1) := Gn. In addition {gn,i(k)}n

i=1 represents the
zeros of {Gn(.,k)}. As a direct consequence of (26), zeros
of {Gn(.,k)} and {Gn(.,k+1)} are interlaced as follows:

gn,i(k+1)< gn,i(k),

for i = 1, . . . ,n. In this way, we get the following result.
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proposition 9 For k,m∈N∪{0} , k<m, and for i= 1, . . . ,n

gn,i(m)< gn,i(k).

Now, we are going to expand (x−ζ )Tn by using the basis
{Gn} and (x−ν)P[1]

n , by using {Tn}. On the one hand, we
get

(x−ζ )Tn(x) = Gn+1(x)+
∥Tn∥2

ζ ,ν

∥Gn∥2
[ν ]

Gn(x),

and evaluating in ζ , we have

(x−ζ )Tn(x) = Gn+1(x)−
Gn+1(ζ )

Gn(ζ )
Gn(x). (28)

In [18] the next connection formula is presented:

Gn(x) = Pn(x)−
Fn(ν)

Fn−1(ν)
Pn−1(x), (29)

with

Fn(z) =
∫

∞

0

Pn(t)
z− t

ω(t)dt, z ∈ C\[0,∞),

where the sequence {Fn} is very known in the literature and
so-called the Cauchy integrals of {Pn} , or functions of the
second kind associated with {Pn} . In the genesis of what
is known today as orthogonal polynomials, the functions
of the second kind allowed to find the relationship between
continued fractions and orthogonality. The nice work [28] is
highly recommended.

In the same way, we obtain

(x−ν)P[1]
n (x) = Tn+1(x)+

∥∥∥P[1]
n

∥∥∥2

1

∥Tn∥2
ζ ,ν

Tn(x),

and evaluating in ν we get

(x−ν)P[1]
n (x) = Tn+1(x)−

Tn+1(ν)

Tn(ν)
Tn(x). (30)

Now, multiplying (30) by (x−ζ ), and using formula (28),
we get

(x−ζ )(x−ν)P[1]
n (x)

= (x−ζ )Tn+1(x)−
Tn+1(ν)

Tn(ν)
(x−ζ )Tn(x)

= Gn+2(x)−
(

Gn+2(ζ )

Gn+1(ζ )
+

Tn+1(ν)

Tn(ν)

)
Gn+1(x)

+
Gn+1(ζ )

Gn(ζ )

Tn+1(ν)

Tn(ν)
Gn(x).

This is a connection formula that allow us to build every
polynomial P[1]

n by means of polynomials of the sequence
{Gn}. We summarize in the next proposition.

proposition 10 For every n

(x−ζ )(x−ν)P[1]
n (x)

= Gn+2(x)+φn,1(ζ ,ν)Gn+1(x)+φn,2(ζ ,ν)Gn(x),

where

φn,1(ζ ,ν) =−
(

Gn+2(ζ )

Gn+1(ζ )
+

Tn+1(ν)

Tn(ν)

)
> 0,

and

φn,2(ζ ,ν) =
Gn+1(ζ )

Gn(ζ )

Tn+1(ν)

Tn(ν)
> 0.

Let
{

x[1]n,i

}n

i=1
and {tn,i}n

i=1 be the zeros of P[1]
n and Tn res-

pectively, as before, arranged in an increasing order. Since
−Gn+1(ζ )

Gn(ζ )
> 0 in (28), by Lemma 1 we obtain

gn,i < tn,i < gn+1,i+1, (31)

for i = 1, . . . ,n. In the same way, since −Tn+1(ν)
Tn(ν)

> 0 in (30)
we get

tn,i < x[1]n,i < tn+1,i+1, (32)

for i = 1, . . . ,n. Finally, by means of the inequalities (3),
(26), (31) and (32) we can prove the following result.

proposition 11 For every n ∈N, the zeros of Gn, Tn and
P[1]

n are interlaced as follows:

gn,i < tn,i < x[1]n,i,

for i = 1, . . . ,n.

5. Conclusions

In general, we have considered the inner product

⟨p,q⟩=
∫

∞

0
p(x)q(x)ω(x)dx,

on the space of real polynomials.

We have built an appropriate connection formula to
prove interlacing of zeros of polynomials of equal de-
gree that belong to sequences of monic polynomials
orthogonal with respect to the Christoffel transfor-
mations (x−ζ1)ω and (x−ζ2)ω, respectively, with
ζ1 < ζ2 < 0. As far as we know, the proof is new.

For different values of k, we have exhibited the natural
interlacing of zerosof polynomials of equal degree and
orthogonal with respect to Rational transformations
as 1

(x−ν)k ω, ν < 0.

We have considered the canonical transformations
(x−ζ )
(x−ν)ω, 1

(x−ν)ω and (x−ζ )ω, with ζ ,ν < 0 and ζ ,

ν . In this way, we have obtained interlacing properties
for zeros of polynomials of equal degree, orthogonal
with respect to each of them. As far as we know, the
proof is unpublished.
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