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Aplicación de un método de cociente de diferencias de dos
lados en la solución de un problema inverso mal puesto no

lineal de una ecuación elı́ptica auto-adjunta
Application of the Two-sided difference quotient in the solution of nonlinear Ill-posed

inverse self-adjoint elliptic problem
Luis Eduardo Olivar Robayo, 1,∗, Héctor Andrés Granada Dı́az,1,∗∗

Abstract

When we use a discretization by finite differences, to solve differential equations we find problems at the border of the domain
of the solution. If the solution is also immersed in a ill-posed inverse problem; we can find very bad solutions. In this paper we
apply a discretization of two - sided difference quotients method to solve Ill-posed inverse self-adjoint elliptic problem [1].
Some numerical examples showing the effectiveness of this method and we will use mollification techniques to smooth the
solutions.
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Resumen

Cuando utilizamos una discretización por diferencias finitas para solucionar ecuaciones diferenciales, encontramos problemas
en la frontera del dominio de la solución; si además la solución esta inmersa en un problema inverso mal puesto, podemos
encontrar soluciones muy malas. En este artı́culo aplicamos una discretización del cociente de diferencias de dos lados para
resolver un problema elı́ptico autoadjunto inverso mal puesto [1]. Mostraremos algunos ejemplos numéricos que muestran la
efectividad de este método y usaremos técnicas de molificación para suavizar las soluciones
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1 Introduction
Identification problems in some basic differential equations
play an important role in many branches of science and
engineering. Several discretizations are reported to numer-
ically solve the elliptic problem. However, when it comes
to solving an inverse problem such as finding a coefficient,
numerical approximation schemes can give undesired results
and even more so when the information presented is con-
taminated with noise. The discretization of the problem is
done using two difference quotients which is a regulariza-
tion strategy (see [1]) can solve the problem and molification
smooth the desired result. Hinestroza and Murio introduced
a modification method for the identification of coefficients
(see [2]). In this paper we consider the inverse problem
of identifying the coefficient: find the thermal conductivity
a(x)> 0 in the parabolic equation:

ut = (a(x)ux(x, t))x +g(x, t),
(x, t) ∈ [0,1]× [0,1],

u(x,0) = ϕ(x),
u(1, t) = 0,
u(0, t) = 0.

(1)

in the (1) equation, g(x, t) and u(x, t) and ϕ(x) are given or
partly known, the subscript x denotes derivative with respect
to the variable x. In addition, a(x)> 0.

By these conditions, we will denote

u(x) =
∫ 1

0
u(x, t)dt, h(x) =

∫ 1

0
g(x, t)dt,

f (x) = h(x)−ϕ(x)+u(x,1).

Then, we reduce (1) to the elliptic equation as a inverse
steady heat conduction problem (2).

 (a(x)ux(x))x = f (x), x ∈ [0,1],
u(1) = 0,
u(0) = 0.

(2)

If ux does not vanish anywhere in (2) and a(0) = 0, we can
identify a explicitly as

a(x) =

∫ x

0
f (s)ds

ux
(3)

Therefore, it is determined uniquely. So, in order to calculate
a, one has to differentiate u, which is an Ill-posed problem
(see [1]).

Furthermore, there is another effect of instability from the
division by ux in (3): in regions where ux is small, errors, for
example, f can occur, which is not surprising since when ux
vanishes, a cannot be determined at all, so some instability

must be expected where ux is small. This is a nonlinear
effect, while pool conditions involved with differentiation
data derived from the fact that the linearized problem is too
bad. We emphasize that, in general, the parameter identifica-
tion is a nonlinear inverse problem, even if the underlying
equation is (for a known parameter) a linear equation. This,
coupled with inverse problems in heat conduction and in-
verse scattering problem (see [3]), are strong motivations for
the study of nonlinear inverse problems.

This paper is organized as follows: In section 2 we present
the Two different quotients method. In section 3 we will
show the modification method for the identification of coef-
ficients that would allow smoothing the estimate of the co-
efficient and show examples of parameter estimation under
conventional discretization methods and will be compared
with the double quotient discretization method. Then, the
estimate will be smoothed by mollification method.

2 The two different quotients discretization method
To reconstruct a in (2), we take into account temperature
measurements.

ui = u(xi), uδ (xi) = ui,+E(δ )

fi = f (xi), f δ (xi) = fi,+E(δ ).
(4)

where i = 1, · · · ,n and E(δ ) is noise, which depends of δ .

The discretization of the problem is done (2) using two dif-
ference quotients which is a regularization strategy (Rhy)(x)
(see [1]).

1
h

[
4y

(
x+

h
2

)
− y(x+h)−3y(x)

]
,0 < x <

h
2
,

1
h

[
y
(

x+
h
2

)
− y

(
x− h

2

)]
,

h
2
< x < 1− h

2
1
h

[
3y(x)+ y(x−h)−4y

(
x− h

2

)]
,1− h

2
< x < 1.

(5)

Where regularization parameter α = h is the step size in (5).
Having the problem written in this form

A(u)a = f , A ∈Rn×n, f ∈Rn. (6)

Where A(u) is non singular. The discretization equation (2)
can be taken to the form fi for i = 1, · · · ,n by equation (7).
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f1 =
1
h2 [(ui+1 −ui+2)ai

+(5ui+1 −2ui+2 −3ui)ai+1] ,

f2≤i≤n−1 =
1

2h2 [(ui−1 −ui)ai−1

+(ui+1 −2ui +ui−1)ai +(ui+1 −ui)ai+1] ,

fn =
1
h2 [(5ui−1 −2ui−2 −3ui)ai−1

+(ui−1 −ui−2)ai] .
(7)

3 Numerical calculations and examples
For the computations of examples 1 and 2 we use MATLAB
R2021a. In subsection 3.1 the methodology to introduce the
noise of the system Aa = f δ is presented, in section 3.2 the
procedure to smooth the solution.

3.1 Noise generation for the system A(u)a = f
For the Aa = f matrix system obtained under discretization
methods (7) that follows approximate the estimate of the
functional a(x) > 0 we introduce a noise of the order of
10−2:

f δ (x) = f (x)+E(δ ), (8)

where E is a noise vector whose entries are chosen from a
normal distribution with mean 0 and variance 1, so that:

∥E(δ )∥
∥ fi∥

=
∥ fi − f δ

i ∥
∥ fi∥

≤ δ = 0.01 (9)

3.2 Smooth by mollification
We use the Gaussian Kernel Ψh by

Ψh(x) =
1

h
√

π
exp

(
−x2/h2) (10)

and the convolution

(Ψh ∗a)(x) =
∞∫

−∞

Ψh(x− s)a(s)ds

=
∞∫

−∞

Ψh(s)a(x− s)ds, x ∈R.
(11)

For more information on the mollification method see [1].

3.3 Numerical examples
In the following examples, f (x), u(x) and a(x) are given
to satisfy problem (2). Therefore, we will denote the ex-
act solution as a, aδ

T is the approximation of a by using
trapezoidal-rule quadrature with n− 1 trapezoids that ap-
proximate the integral given in equation (3) whose integrand
is perturbed as shown in equation (8) to obtain the following
equation:

aδ
T (x) =

∫ x

0
f δ (s)ds

ux(x)
. (12)

Given n= 64 data that defines the problem, calculate the step
size h = 1/(n−1). We denote by aδ

R the solution of system
A(u)aδ

R = f δ which originates through the discretization of
equation (7). Finally, we denote by aδ

M the smoothing of the
approximation solution aδ

R by Mollification, see section 3.2.
We also note by Er as the relative error of approximating f
with f d , Erm as the relative error of approximating a with
aδ

M and the error EM as error by molification defined as:

Er =
∥E(δ )∥
∥ fi∥

, Erm =
∥aδ

M −a∥
∥a∥

,

EM =

√
n

∑
k=1

1
2n−1

(
aδ

M(k)−a(kh)
)2
.

exmp 1 Consider the functions f ,u and a given in the nu-
merical example 1 of ([5]).

f (x) =
40(1−40x2)

(40x2 +1)2 (sin(πx)+π cos(πx))ex

+
40x2 +40x+1

40x2 +1
(
(1−π

2)sin(πx)

+2π cos(πx))ex,

(13)

u(x) = ex sin(πx), a(x) =
40x

40x2 +1
+1. (14)

Figure 1 shows the graphs of f and f δ , where it can be seen
that the induced noise is less than 0.01 (Er = 0.01), zooming
allows you to see the difference between the two functions.
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Figure 1: Numerical f and f δ . Example 1.

Figure 2 shows Exact Solution a which is continuous for
all x ∈ [0,1] and numerical solution without regularizing
under the trapezoidal method aδ

T that presents an asymptotic
behavior at x = 0.598 when ux vanishes, see equation (12).
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Additionally, its approximation in its entire domain is not
good and for some values of x, the function a(x)< 0.
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Figure 2: Exact Solution a and numerical solution without regu-
larizing under the trapezoidal method aδ

T . Example 1.

Figure 3 shows that the discretization of equation (7) reg-
ularizes the problem and allows a good approximation of
a, note that the approximation does not have an asymptotic
behavior.
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Figure 3: Exact Solution and numerical regularized solution aδ
R.

Example 1.

Figure 4 shows aδ
M , the smoothing of the approximation

solution aδ
R by Mollification. where it is observed that the

solution aδ
R shown in Figure 3 is smoothed, and a good

approximation to the exact solution is obtained as indicated
by the respective errors Erm = 0.0124 and EM = 0.12825.
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Figure 4: Exact Solution and numerical regularized solution aδ
R

by Mollification. Example 1.

exmp 2 Consider the functions f ,u and a given in the nu-
merical example 1 of ([4]).

f (x) =
20ex(sin(πx)+π cos(πx))

(40x−24)2 +1

+
(tan−1(40x−24)+3)ex

2
(sin(πx)

+2π cos(πx)−π
2 sin(πx)

)
(15)

u(x) = ex sin(πx),
a(x) = 3/2+(1/2) tan−1(40(x−3/5)). (16)

Figure 5 shows graphs of f and f δ , in this example Er =
0.0097.
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Figure 5: Numerical f and f δ . Example 2.

In Figure 6 you can see again the asymptotic behavior where
by trapezoidal method make that for some values of x the
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function a is negative. It can also be seen that the regular-
ization method allowed us to approximate the functional
a.
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Figure 6: Exact Solution, a and numerical solution without regu-
larizing under the trapezoidal method aδ

T and numerical regular-
ized solution aδ

R. Example 2.

Finally, in Figure 7 it is smoothed by mollification to the
regularized solution and the errors Erm = 0.0419 and EM =
0.0583 were obtained.
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Figure 7: Exact Solution and numerical regularized solution aδ
R

by Mollification. Example 2.

4 Conclusions
The derivative regularization method proposed by Kirch
applied to self-adjoint elliptic equations to solve the ill posed

inverse problem of finding the conductivity coefficient; it
is easy to program and shows very good results compared
to the proposed methods and examples. In the examples,
mollification was used to smooth the graphs and not as
a regularization method. [4, 5]. It would be interesting
for the future, a comparison with other methods or at least
show the complexity of the proposed method compared to
traditional ones. Although due to space limitations it would
be interesting to see the convergence.
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