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Abstract

In this paper a detailed analysis of the performance of the modified Becke-Johnson potential (mBJLDA)

considering hydrostatic pressure effects is reported. The band gap was calculated for a set of semiconductors

using the mBJLDA potential. These results were compared with those obtained by other methods of

calculation, in order to have an objective judgement of this potential. It was found that the GW approximation

(GWA) gives the most accurate predictions. The mBJLDA potential is slightly less precise, in general. The

hybrid functionals are less accurate, on the overall. In 88% of the semiconductors considered the error

was less than 10%. Both, the GWA and the mBJLDA potential, reproduce the band gap of 15 of the 27

semiconductors considered with a 5% error or less. Next, the behavior the mBJLDA potential was analyzed

to describe the hydrostatic pressure effects. The pressure coefficients were calculated and also the volume

deformation potential for a set of semiconductors using this potential. The calculated values correlate quite

well with other theoretical reports. With these results, it was concluded that the mBJLDA potential performs

reasonable well in describing the hydrostatic pressure effects on the band gap of semiconductors.

Key words: Band Gap Problem, GW Approximation, Hybrid Functionals, Hydrostatic Pressure, mBJLDA

Potential, Wien2k Code.

Resumen

En este artículo se presenta un análisis detallado del rendimiento del potencial modificado de Becke-Johnson

(mBJLDA), considerando los efectos de la presión hidrostática. La brecha de energía prohibida fue

calculada para un grupo de semiconductores usando el potencial mBJLDA. Estos resultados se compararon

con los obtenidos por otros métodos de cálculo, para lograr un juicio objetivo de este potencial. Se encontró

que la aproximación GW (GWA) brinda las predicciones más precisas. El potencial mBJLDA es, en general,

un poco menos exacto. Los funcionales híbridos son menos precisos. En el 88% de los semiconductores

tenidos en cuentra, el error fue menor del 10%. Tanto GWA como el potencial mBJLDA reproducen la

brecha de energía prohibida de 15 de los 27 semiconductores considerados, con un error del 5% o menor.
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Enseguida, se analizó el comportamiento del potencial mBJLDA para describir los efectos de la presión

hidrostática. Se calcularon los coeficientes de presión y el potencial de deformación volumetrica para un

grupo de semiconductores utilizando este potencial. Los valores calculados se correlacionan muy bien con

otros informes teóricos. Con estos resultados se concluyó que el potencial mBJLDA opera razonablemente

bien en la descripción de los efectos de la presión hidrostática sobre la brecha de energía prohibida de los

semiconductores.

Palabras clave: Problema de la brecha de energía prohibida, Aproximación GW, Funcionales híbridos,

Presión hidrostática, Potencial mBJLDA, Código Wien2k.

1. Introduction

Khon-Sham equations [1] are central to the practi-

cal application of Density Functional Theory (DFT).

To solve them, an approximation to the exchange

and correlation energy is required from which an

exchange and correlation potential is derived. The

way in which this term is approximated is crucial

to the proper description of the band structure of

solids. The Local Density Approximation (LDA) [2],

the Generalized Gradient Approximation (GGA) [3 -

5] and the meta-GGA [3, 6], among others, descri-

be very well the electronic band structure of even

complicated metallic systems. They fail, neverthe-

less to account for the band gap value of semicon-

ducting systems, a short come known for several

years now [7]. Efforts to solve this problem were

done since long ago. Approximations as the “scissor

operator” [8], the Local Spin Density Approxima-

tion, LSDA+U [9] and methods based on the use of

Green’s functions and perturbation theory as the GW

approximation, GWA [10, 12], were proposed. In the

last ten years, these efforts gave rise to substantially

improved results. Some of the new proposals include,

the screened hybrid functional of Heyd, Scuseria and

Ernzerhof (HSE) [13 - 15] and the middle-range ex-

change and correlation hybrid functional of Hender-

son, Izmaylov, Scuseria and Savin (HISS) [16, 17].

Another recent proposal is an empirical potential the

modified Becke Jonhson potential (mBJLDA) pro-

posed by Tran and Blaha [18]. This potential was

introduced to the Wien2k code [19] in 2010.

2. The Band Gap: Calculation Methods

Recently, a detailed analysis of the mBJLDA po-

tential was made based on the calculation of the

electronic band structure of 41 semiconductors [20].

This paper is a continuation of that work. It was

found an important improvement in the predictions

of the band gap as compared to the experiment. The

mBJLDA is an empirical potential that cannot be de-

rived from an exchange and correlation energy term

in the usual way. For that reason it requieres that the

lattice parameter is optimized with a previous pro-

cedure that considers LDA or GGA as the authors

advice [18]. The possibility of using the averaged

value as the lattice parameter, aAvg was used, whe-

re aAvg = (aLDA + aGGA)/2. Here aLDA(aGGA) is the

lattice parameter obtained from an LDA (GGA) opti-

mization procedure. When aAvg is used as input into

the Wien2k code implemented with the mBJLDA po-

tential, a better agreement of the band gap value with

experiment is obtained, as compared to the results

with either aLDA or aGGA. So this procedure turns out

to give better results than the one recommended by

Tran and Blaha [18] and its extra computational cost

is relatively low. A surprising result was, neverthe-

less, obtained when the experimental low tempera-

ture lattice parameter, aLT , was introduced instead.

Unexpected deviations of the band gap value from

experiment as big as 48% were obtained [20]. This

is a disturbing result since the lattice parameters ob-

tained from any optimization procedure, are judged

to be as good as the small deviation from the experi-

mental lattice parameter value, and so one expects

to get the best result (the minimum deviation of the

predicted band gap value from the experiment) when

the experimental lattice parameter is used. This is

not the case. This fact throws doubts on the meaning

of the optimization procedure altogether, when the

empirical mBJLDA potential is employed. Nevert-

heless, it is stressed that the results obtained for the

band gap value of semiconductors using the mBJL-

DA potential, represents a relevant improvement at

relatively low computational cost, a fact that we will

emphasize below.

Another methods to calculate the band structure

of semiconductors are the hybrid functionals which

are a linear combination of Hartree-Fock (HF), LDA
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and GGA terms, and were proposed initially with

the aim of improving LDA and GGA in the calcu-

lation of the energy bands of molecules [21, 22].

More recently, hybrid functionals were used as an

effort to improve the old-standing problem of the

band gap of semiconductors; they include among

others, the Heyd-Scuseria-Ernzerhof (HSE) functio-

nal [13] proposed in 2003. It combines a screened

short-range HF term and a screened short- and long-

range functional proposed by Perdew, Burke and

Ernzerhof (PBE) [4]. The functional form of HSE

is based on the hybrid functional of Perdew, Bur-

ke and Ernzerhof (PBEh) [23] (also known in the

literature as PBE1PBE and PBE0) [24, 25]. In the

literature, the functional HSE appears as HSE03 and

HSE06. The difference is in the choice of the para-

meter value a parameter. The HSE03 will be refered

simply as HSE, in this work. In 2005, Heyd et al.

[14] reported a study of the band gap and lattice

parameters of semiconductor compounds using the

HSE functional. Comments on these results will be

given below. Recently, Marques et al. [26] have pro-

posed to relate the mixing constant that appears in

the method, a, to dielectric properties of the solid.

They introduced this parameter into the hybrid fun-

ctionals PBE0 and HSE06, respectively, and got an

improved result. These proposals improve the perfor-

mance of the hybrid functionals at no extra cost, but

as will see below, their results are not the best ones

at the moment. Another kind of hybrid functional

is the middle-range hybrid exchange and correla-

tion Henderdon-Izmaylov-Scuderia-Savia functional

(HISS) [16, 17]. It also uses the PBE potential but in

a different way. In 2012, Lucero et al. [27] reported

their study of the band gap and lattice parameters of

some semiconductor compounds using HISS.

An alternative way to deal with the band gap

problem is the GW approximation (GWA). It is

derived from many-body perturbation theory [28].

The form of the self-energy in the GWA is the sa-

me as in the Hartree-Fock Approximation (HFA)

but the Coulomb interaction is dynamically scree-

ned remedying the most serious deficiency of the

HFA. The corresponding self-energy is therefore

non-local and energy dependent. The Green fun-

ction is obtained from a Dyson equation of the

form G =G0+G0ΣG whereG0 describes the direct

propagation without the exchange and correlation

interaction and Σ contains all possible exchange and

correlation interactions with the system that an elec-

tron can have during its propagation. The GWA may

be regarded as a generalization of the HFA but with

a dynamically screened Coulomb interaction. For de-

tails see ref. [11]. In 2005, Rinke et al. [29] using the

so called OEPx(cLDA)+GW approximation obtai-

ned a reasonable agreement with experiment when

calculating the band gap of a certain number of

semiconductors. In 2007, Shishkin et al. [30, 31]

using a self-consistent GWA (GWA + DFT), and

the self-consistent GW approximation with attracti-

ve electron-hole interaction, scGW(e-h) accounted

quite well for the experimental band gap of several

semiconductors.

Now an analysis on some of the different offers in

the literature, in what the calculation of the band gap

of semiconductors is concerned, is the procedure to

follow and a comparison of their results among them-

selves and with experiment. The goal is to have an

objective judgment of the improvement represented

by the mBJLDA empirical potential.

3. Analysis

In Table 1, in the first column, the semiconductor

and its crystal structure are identified. The next two

columns refer to our calculation using the Wien2k

code with LDA and mBJLDA potential. In this last

calculation, the average of the values obtained from

an LDA and a GGA optimization was used as lattice

parameter, which gives the best results for the gap

[20]. In the next columns, the values obtained with

the hybrid functional HISS, HSE06 [27], HSE [13,

14] and GWA are reported. The column denoted as

GWA includes the most precise predictions for the

gap reported in the literature, using either the self

consistent GW (scGWA) [31 - 38] or the scGWA

with attractive electron-hole interaction, scGW(e-h)

[30].

The results of the predictions obtained with the

GWA are the most accurate with an averaged error

of 5,7%. The mBJLDA potential produces results

with an averaged error of 8,4%. Next, the errors ob-

tained with the HSE functional result in an averaged

error of 10,2%, HSE06 (11.5%) and HISS (34,1%).

The GWA, the mBJLDA potential, and HSE functio-

nal have the better agreement than the ones reported

by Marques et al. [26]. They get results with avera-

ged errors 16,5%, 14,4% y 10,4% using the hybrid
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functional PBE0 ǫ∞, PBE0 mix and HSE06 mix,

respectively. Notice that this last result compares

well with the one reported by Marques et al. with

the HSE functional which we consider the third best

method of calculation. The performance of the GWA

is highly accurate, 88% of the calculated results re-

corded here show less than 10% error. This is to be

compared to the one obtained when using mBJLDA

(74%), HSE (54%), HSE (42%), HISS (35%). On

the other hand, more than a 20% deviation from

experiment occurs when using mBJLDA in 7% of

the cases, and with the GWA in 8% of the semi-

conductors studied, which is to be compared with

HSE (15%), HISS (46%). All together, the best re-

sults are obtained when using the GWA; mBJLDA

is next, but also HSE gives results with acceptable

accuracy. A special case is the very-low-gap InSb.

In this case none of the methods give less than a

20% error although it would be more reasonable to

judge these results from the absolute deviation in

electron-volts rather than from the percent deviation

(see Table 1). It is important for the overall pictu-

re, to stress that the GWA and our calculations with

the mBJLDA potential present deviations are less

than 5% in 15 of the 27 semiconductors considered.

When the HSE functional is considered, 12 of the 27

semiconductors present deviations are less than 5%.

Another remark. In the previous analysis only low

temperature band gap data was taken into account. In

Table 1, some calculations are presented, for which

no experimental reports at low temperature were

found. Since the calculations are done at 0 K, room

temperature measurements require extrapolation eit-

her using Varshni’s law or a quadratic fit or any other

suitable method which, in any case, generates an ex-

tra incertitude in the obtained 0 K data. If the high

temperature data is rather used, the HSE functional

gives a better agreement with experiment. But the

theoretical calculations are done at 0 K.

4. The Hydrostatic Pressure Effects

The mBJLDA potential performs well as compa-

red to other methods as were just described. Now,

its ability to describe the hydrostatic pressure effects

need to be further explored. These effects can be

quantified by calculating the pressure coefficients

and the volume deformation potential, whose expe-

rimental values have been reported extensively in

the literature [39, 49]. The pressure coefficient, ap,

of an interband transition (e.g., Γv → Γc, Γv → Lc,

Γv → Xc) is:

ap =
dEg

dp
, (1)

where Eg is the band gap of an interband transition

and p is the pressure. The volume deformation po-

tential, aV , of an interband transition is:

av =
dEg

d lnV
, (2)

where V is the volume. These parameters are related

through the relation:

ap = −
1

B0

aV , (3)

where B0 is the bulk modulus.

The band-gap pressure coefficients and the volume

deformation potential calculated using the mBJLDA

potential, are presented for a set of semiconductors.

To obtain these parameters, the equilibrium structu-

ral properties of the system are first calculated, also,

the minimum of the total energy, E0, the Bulk mo-

dulus B0, its derivative with respect to pressure, B′
0
,

and the equilibrium volume at zero pressure, V0, by

fitting the calculated total energy to the Murnaghan

equation of state [50]:

E(V) = E0+
B0V

B′
0

×

[

1

(B′
0
−1)

(

V0

V

)B′
0

+1

]

−
B0V0

(B′
0
−1)

(4)

With these parameters, the pressure is determi-

ned using the corresponding Murnaghan equation of

state:

p(V) =
B0

B′
0

[

(

V0

V

)B′
0

−1

]

(5)

This calculation was done using the local density

approximation, LDA. These parameters cannot be

obtained via the empirical mBJLDA potential [18 -

20]. At low pressure, Eg(p) can be fit to a quadratic

function [51]:

Eg(p) = Eg(0)+ ∝ p+βp2, (6)

where Eg(0) is the band gap at zero pressure, α and

β are the pressure coefficients of an interband tran-

sition. They can be determined as α = ap = dEg/dp
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Table 1. The results for the gap (eG), in eV, that were obtained with the Wien2k (LDA) code, are compared with mBJLDA

potential with the hybrid functionals HISS, HSE06, HSE and with the GWA (see text). the crystal structure and percentage

difference with respect to the experiment is shown in parenthesis. the minus sign means that the calculation underestimates

the experimental value. the experimental data are from refs. [39, 47].

Gap

Solid ELDA
g EmBJLDA

g EHIS S
g EHS E06

g EHS E
g EGWA

g E
Exp
g

The experimental band gap at Low temperature

C(A1) 4,16(-24%) 4,95(-9,7%) 6,11(11,5%) 5,42(-1,1%) 5,49(0,2%) 5,6a(2,2%) 5,48

Si(A1) 0,45(-62%) 1,17(0,0%) 1,45(23,9%) 1,22(4,3%) 1,28(9,4%) 1,24†(6,0%) 1,17

Ge(A1) 0,00(-100%) 0,80(8,1%) 1,08(45,9%) 0,54(-27,0%) 0,56(-24,3%) 0,75a(1,4%) 0,74

MgO(B1) 5,00(-36%) 7,22(-7,1%) 7,87(1,3%) 6,40(-17,6%) 6,50(-16,3%) 7,7b(-0,9%) 7,77

AlAs(B3) 1,32(-41%) 2,17(-2,7%) 2,40(7,6%) 2,16(-3,1%) 2,24(0,4%) 2,18c(-2,2%) 2,23

SiC(B3) 1,30(-46%) 2,26(-6,6%) 2,74(13,2%) 2,32(-4,1%) 2,39(-1,2%) 2,53†(4,5%) 2,42

AlP(B3) 1,43(-42%) 2,33(-4,9%) 2,71(10,6%) 2,44(-0,4%) 2,52(2,9%) 2,57†(4,9%) 2,45

GaN(B3) 1,90(-46%) 2,94(-10,9%) 4,05(22,7%) 2,97(-10,0%) 3,03(-8,2%) 3,27†(-0,9%) 3,30

GaAs(B3) 0,47(-69%) 1,56(2,6%) 1,86(22,4%) 1,18(-22,4%) 1,21(-20,4%) 1,52‡(0,0%) 1,52

InP(B3) 0,45(-68%) 1,52(7,0%) 2,23(57,0%) 1,61(13,4%) 1,64(15,5%) 1,44d(1,4%) 1,42

AlSb(B3) 1,14(-32%) 1,80(7,1%) 2,05(22,0%) 1,85(10,1%) 1,99(18,5%) 1,64d(-2,4%) 1,68

GaSb(B3) 0,07(-91%) 0,90(9,8%) 1,31(59,8%) 0,70(-14,6%) 0,72(-12,2%) 0,62d(-24,4%) 0,82

GaP(B3) 1,39(-41%) 2,24(-4,7%) 2,67(13,6%) 2,42(3,0%) 2,47(5,1%) 2,55d(8,5%) 2,35

InAs(B3) 0,0(-100%) 0,55(31,0%) 0,93(121,4%) 0,36(-14,3%) 0,39(-7,1%) 0,40d(-4,8%) 0,42

InSb(B3) 0,0(-100%) 0,31(29,2%) 0,80(233,3%) 0,28(16,7%) 0,29(20,8%) 0,18d(-25%) 0,24

CdS(B3) 0,93(-63%) 2,61(5,2%) 2,72(9,7%) 2,10(-15,3%) 2,14(-13,7%) 2,45e(-1,2%) 2,48

CdTe(B3) 0,49(-69%) 1,67(4,4%) 2,00(25,0%) 1,49(-6,9%) 1,52(-5,0%) 1,76f(10,0%) 1,60

CdSe(B3) 0,38(-79%) 1,87(5,6%) 1,90(7,3%) 1,36(-23,2%) 1,39(-21,5%) 2,01f(13,6%) 1,77

ZnS(B3) 2,08(-45%) 3,70(-2,9%) 4,12(8,1%) 3,37(-11,5%) 3,42(-10,2%) 3,86‡(1,3%) 3,81

ZnSe(B3) 1,19(-58%) 2,74(-2,8%) 2,93(3,9%) 2,27(-19,5%) 2,32(-17,7%) 2,84f(0,7%) 2,82

ZnTe(B3) 1,20(-50%) 2,38(-0,4%) 2,77(15,9%) 2,16(-9,6%) 2,19(-8,4%) 2,57f(7,5%) 2,39

MgS(B3) - 5,18(-4,1%)* 5,17(-4,3%) 4,48(-17,0%) 4,78(-11,5%) - 5,40

MgTe(B3) - 3,59(-2,2%)* 3,91(6,5%) 3,49(-4,9%) 3,74(1,9%) - 3,67

GaN(B4) 2,06(-41%) 3,13(-10,6%) 4,23(20,9%) 3,14(-10,3%) 3,21(-8,3%) 3,5g(0,0%) 3,50

InN(B4) 0,03(-96%) 0,82(15,5%) 1,51(112,7%) 0,66(-7,0%) 0,71(0,0%) - 0,71

AlN(B4) 4,11(-34%) 5,53(-10,7%) 6,62(6,9%) 5,50(-11,2%) 6,45(4,2%) 5,8g(-6,3%) 6,19

ZnO(B4) 0,76(-78%) 2,76(-19,8%) - - - 3,2†(-7,0%) 3,44

∆(%) 60,2% 8,4% 34,1% 11,5% 10,2% 5,7% -

The experimental band gap at room temperature

BP(B3) 1,15(-43%) 1,83(-8,5%) 2,43(21,5%) 2,21(10,5%) 2,16(8,0%) - 2,00

BN(B3) 4,39(-29%) 5,85(-5,6%) 6,69(7,90%) 5,90(-4,8%) 5,99(-3,4%) 7,14(15,2%) 6,20

MgSe(B1) 1,71(-31%) 2,89(17,0%) 3,05(23,5%) 2,58(4,5%) 2,62(6,1%) - 2,47

BaS(B1) 1,93(-50%) 3,31(-14,7%) 3,61(-7,0%) 3,21(-17,3%) 3,28(-15,5%) 3,92(1,0%)h 3,88

BaSe(B1) 1,74(-51%) 2,87(-19,8%) 3,14(-12,3%) 2,80(-21,8%) 2,87(-19,8% - 3,58

BaTe(B1) 1,37(-56%) 2,24(-27,3%) 2,48(-19,5%) 2,22(-27,9%) 2,50(-18,8%) - 3,08

BAs(B3) 1,23(-16%) 1,72(17,8%) 2,14(46,6%) 1,89(29,5%) 1,92(31,5%) - 1,46

*with mBJ(aLDA). †scGW(h-e) in Ref. [30]. ‡scGW in Ref. [31].aRef. [32]. bRef. [33]. cRef. [34].
dRef. [35]. eRef. [36]. fRef. [37]. gRef. [38]. hRef. [48].

∆(%) is the average of the absolute percent deviations.

We calculate the percent deviation as follows Error(%) = (ETeo
g −E

Expt
g )∗100/E

Expt
g .

and β= d2Eg/dp2. The experimental values for these

parameters are known [39, 49].

In Table 2, the calculations of the volume defor-

mation potential, aV, the pressure coefficienst ap and

β using the mBJLDA, and experimental values for

10 semiconductors with zinc blende structure are

reported. The experimental values were obtained at

room temperature and pressures for which the zinc

blende phase was maintained (see refs. [39, 49]). In

Column 1 the semiconductor compounds and their

respective interband transition are shown. Columns

2-5 show results of this work and in columns 6-9

the experimental values. From this Table it can be

seen that, as a general trend, the calculation with the

mBJLDA potential gives values in the right order

of magnitude, as compared with the experimental

values for all the calculated parameters. The pressure
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Table 2. Calculations of the volume deformation potential, av, the pressure coefficients ap and β, and the band gap at zero

pressure, Eg(0), of an interband transition (e.g., Γv→ Γc, Γv→ Lc, Γv→ Xc) using the mBJLDA potential. the experimental

values were taken from refs. [39, 49].

Solid Thiswork Experiments

av Eg(0) ap β av Eg(0) ap β

(eV) (eV) (10−2eV/GPa) (10−4eV/GPa2) (eV) (eV) (10−2eV/GPa) (10−4eV/GPa2)

C Γv → Γc -2,957 6,654 0,636 -0,234

Γv → Xc -1,934 4,976 0,416 -0,146 0,597

Si Γv → Γc -0,336 3,107 0,395 -2,161 5,0†

Γv → Lc -3,300 2,223 3,384 -8,258 -3,8†

Γv → Xc 2,048 1,126 -2,129 2,686 1,11 -1,5,-1,41 0,0

Ge Γv → Γc -9,837 1,123 13,84 -34,660 -9† 0,82,0,795 12,1,15,3 -45,-2

Γv → Lc -3,177 0,907 4,447 -10,870 4,8, 5,0

Γv → Xc 1,642 1,002 -2,299 3,383 -1,5 0,0

GaAs Γv → Γc -7,975 1,836 10,72 -35,66 -7-(-9) 1,514-1,427 12,2-10,4 -40-(-14)

Γv → Lc -2,892 1,877 3,888 -11,60 1,708 5,5

Γv → Xc 1,745 1,958 -2,345 1,715 1,93-2,01 -2,8-(-1,34)

SiC Γv → Γc -11,95 7,074 5,037 -4,435

Γv → Xc 0,977 2,212 -0,412 2,366 -0,34 10,6

CdS Γv → Γc -2,020 2,680 2,969 -13,38 4,4,4,6

Γv → Lc -1,157 4,322 1,700 -12,36

Γv → Xc 2,337 4,651 -3,435 5,439

CdTe Γv → Γc -3,044 1,804 6,530 -23,78 -2,74,-3,1 1,594-1,483 6,5-8,57 -29-(-47,8)

Γv → Lc -0,816 2,620 1,750 -9,993

ZnTe Γv → Γc -4,589 2,520 8,227 -18,97 -5-(-5,5) 2,255-2,394 9,3-11,5 -20-(-50)

Γv → Lc -0,895 2,677 1,604 -4,736

Γv → Xc 2,320 2,778 -4,160 4,808

ZnSe Γv → Γc -3,522 2,903 4,857 -8,048 -4,37-(-6,8) 2,688-2,822 6,3-7,2 -14,4-(-7,7)

Γv → Lc -3,299 3,758 4,550 -3,564

Γv → Xc 2,721 3,739 -3,752 5,002

ZnS Γv → Γc -4,579 3,857 5,310 -12,60 -4,0-(-6,4) 3,837, 3,666 6,35,6,38 -15,-13,1

Γv → Lc -1,558 4,659 1,807 -7,438

Γv → Xc 3,314 4,274 -3,844 6,303
†Ref. [49].

coefficient, ap, is calculated with one absolute diffe-

rence from the experimental values of 0,1 - 2x10−2

eV/GPa, for β of 0,3 - 3x10−4 eV/GPa2 and the Eg(0)

present differences between 0,02 - 0,3 eV.

The calculated volume deformation potentials, aV,

are in good agreement with experiment for all but

Si, ZnTe and ZnSe which are about 0,5 eV below

the experimental values. The calculated values in

this work correlate, in general, quite well with other

theoretical reports [39, 51]. In the ref. [51], the aut-

hors used the Linear Density approximation (LDA)

which deviates sometimes strongly, from the experi-

mental values of the band gap at zero pressure [21].

It is concluded from the above work, that the mBJL-

DA potential performs reasonable well in describing

the hydrostatic pressure effects, on the band gap of

semiconductors.

5. Conclusions

The accurate calculation of the band gap of semi-

conductors, is a difficult task that has been the object

of intense research, with the result of important pro-

gress during the last approximately ten years. As a

continuation of our previous work [20] an objective

judgment of the quite improved performance of the

mBJLDA potential by comparing it, to other met-

hods in the literature was intended. A group of 27

semiconductors (see Table 1) for which low tempe-

rature data was found on the band gap value were

considered. The results of the GWA, the Wien2k co-

de implemented with the mBJLDA potential, and

codes using a hybrid functional, HSE, and HISS we-

re taken into consideration. The results reported by

Marques et al. [26] were found to be less accurate

than the ones just mentioned. The GWA was found

to give, all together the best results. The mBJLDA

potential produces results slightly less accurate and

HSE comes next. The two first methods give qui-

te good results (prediction better than 5% for 15

of the 27 semiconductors studied). It is important

to stress the empirical character of the mBJLDA

potential, because it prevents the consistent defini-

tion of the optimization procedure, which contrasts

with the sound theoretical bases of the GWA. Even

with the several theoretical non-properly solved
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issues, the mBJLDA potential gives rise to accep-

table predictions of the band gap value, as compared

to experiment. An extra factor to be taken into ac-

count is the computational cost. If one would seek

for precision without taking this factor into account,

the GWA is the method to use. If one would prefer

to sacrifice a little the precision obtained against the

savings in computational cost, the mBJLDA poten-

tial seems the appropriate method. In conclusion, the

state of matters with respect to the calculation of

the band gap of semiconductors can be typified as

follows. A quite precise method does exist, the GWA

approximation. Its computational cost is higher. A re-

latively quicker code, the Wien2k implemented with

the mBJLDA potential, gives somehow less accurate

results, but quite acceptable at lower computational

cost. Other methods do exist but are less accurate.

Very recently, the new approximation announced in

the ref [52] was implemented in the Wien2k 12.1

code implemented for public use. The new hybrid

functional YS-PBE0 is “equivalent” to the HSE one,

according to the authors.

Based on the conclusions just presented, the beha-

vior of the mBJLDA potential was analyzed to des-

cribe the hydrostatic pressure effects (see Table 2).

The volume deformation potential was calculated, al-

so the pressure coefficients and the band gap at zero

pressure for a set of semiconductors. As a general

trend, the calculation in this work gives values in

the right order of magnitude as compared with the

experimental values. The pressure coefficient, ap, is

calculated with absolute differences below to 2x10−2

eV/GPa with experiment, which is an acceptable re-

sult. The calculated volume deformation potentials,

aV, are in good agreement with the experiment; our

calculation gives values with differences below 0,5

eV. These results agree, in general, quite well with

other theoretical reports [39, 51]. From this analy-

sis it was concluded that the mBJLDA potential can

account for the hydrostatic pressure effects in semi-

conductors reasonably well.
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