Some Relations between N-Koszul, Artin-Schelter Regular and Calabi-Yau Algebras with Skew PBW Extensions

Algunas relaciones entre álgebras *N*-Koszul, Artin-Schelter regular y Calabi-Yau con extensiones *PBW* torcidas

H. Suárez^{a,*} O. Lezama^b A. Reyes^b

Recepción: 05-ene-15 Aceptación: 15-jun-15

Abstract

Some authors have studied relations between Artin-Schelter regular algebras, *N*-Koszul algebras and Calabi-Yau algebras (resp. skew Calabi-Yau) of dimension *d*. In this paper we want to show through examples and counterexamples some relations between these classes of algebras with skew *PBW* extensions. In addition, we also exhibit some examples of the preservation of these properties by Ore extensions.

Key words: Skew PBW extensions, Calabi-Yau algebras, N-Koszul algebras, AS-regular algebras, Ore extensions.

Resumen

Algunos autores han estudiado las relaciones entre las álgebras Artin-Schelter regular, las álgebras N-Koszul y las álgebras Calabi-Yau (resp. skew Calabi-Yau) de dimensión d. En este artículo queremos mostrar a través de ejemplos y contraejemplos algunos relaciones entre estas clases de álgebras y las extensiones PBW torcidas. Además, mostraremos algunos ejemplos de preservación de estas propiedades en las extensiones de Ore.

Palabras clave: Skew *PBW* extensions, Calabi-Yau algebras, *N*-Koszul algebras, *AS*-regular algebras, Ore extensions.

^aEscuela de Matemáticas y Estadística, Universidad Pedagógica y Tecnológica de Colombia, Tunja.

^{*}Autor de correspondencia: hector.suarez@uptc.edu.co

^bSeminario de Álgebra Constructiva - SAC², Departamento de Matemáticas, Universidad Nacional de Colombia, sede Bogotá.

1. Introduction

Recently there have been defined some special classes of algebras such as N-Koszul algebras, Calabi-Yau algebras and skew PBW extensions. Koszul algebras, which in this article are called 2-Koszul algebras were introduced by Stewart B. Priddy in [34]. Later in 2001, Roland Berger in [3] introduces a generalization of Kozsul algebras, which are then called generalized Koszul algebras or N-Koszul algebras. In [17] Victor Ginzburg defined d-Calabi-Yau algebras or Calabi- Yau algebras of dimension d (or simply Calabi-Yau algebras). Then in [6], Roland Berger and Rachel Taillefer introduced the definition of graded Calabi-Yau algebra. As a generalization of Calabi-Yau algebras, were also defined the skew Calabi-Yau algebras. On the other hand, the skew PBW extensions were introduced in 2011 by Oswaldo Lezama and Claudia Gallego in [16].

In the current literature, it has been studied certain relations between Artin Schelter regular algebras, N-Koszul algebras, Calabi-Yau algebras and skew Calabi-Yau algebras. Our aim is to show through a serie of examples some relationships between the above algebras and skew *PBW* extensions. Unless otherwise specified, throughout this article, \mathbb{K} will represent a fixed but arbitrary field.

2. Definitions and Elementary Properties

2.1. AS-Regular Algebras

Regular algebras were defined by Michael Artin and William Schelter in [2]. They studied the regular algebras of global dimension three which are generated by elements of degree one and classified into thirteen types.

Definition 1 ([2]). Let $A = \mathbb{K} \oplus A_1 \oplus A_2 \oplus \cdots$ be a finitely presented graded algebra over \mathbb{K} . The algebra *A* will be called **regular** if it has the following properties:

- (i) A has finite global dimension d: every graded A-module has projective dimension $\leq d$.
- (ii) *A* has finite Gelfand-Kirillov dimension (GKdim), i.e., *A* has polynomial growth.
- (iii) A is Gorenstein, i.e., $Ext_A^q(\mathbb{K}, A) = 0$ if $q \neq d$, and $Ext_A^d(\mathbb{K}, A) \cong \mathbb{K}$.

In the current literature these algebras are called Artin-Schlter regular algebras (*AS*-regular algebras).

Most of the authors do not consider the condition (*ii*) in the definition of *AS* -regular algebras. We say that *A* has *polynomial growth* if there exist $c \in \mathbb{R}^+$ and $r \in \mathbb{N}$ such that for all $n \in \mathbb{N}$, $dim_{\mathbb{K}}A_n \leq cn^r$.

2.2. N-Koszul Algebras

Koszul algebras were defined by Stewart B. Priddy in [34], later in 2001, Roland Berger in [3] introduces a generalization of Koszul algebras which are called *generalized Koszul algebras or N-Koszul algebras*. Koszul algebras defined by Stewart B. Priddy correspond to 2-Koszul algebras in this paper.

Definition 2 ([3]). The generalized Koszul algebras are graded algebras $A = \mathbb{K} \oplus A_1 \oplus A_2 \oplus \cdots$ which are generated in degrees 0 and 1 such that there is a graded projective resolution of \mathbb{K}

$$\cdots \to P^i \to P^{i-1} \to \cdots \to P^0 \to \mathbb{K} \to 0$$

such that for any $i \ge 0$, P^i is generated in degree $\delta(i)$, where

$$\delta(i) = \begin{cases} \frac{i}{2}N, & \text{if } i \text{ is even;} \\ \frac{i-1}{2}N+1, & \text{if } i \text{ is odd,} \end{cases}$$

for some $N \ge 2$.

If N = 2, N-Koszul algebras is usually called Koszul. In this situation, Definition 2 coincides with that given by Stewart Priddy in [34].

2.3. Calabi-Yau Algebras of Dimension d

Calabi-Yau algebras of dimension *d* or *d*-Calabi-Yau algebras were defined by Victor Ginzburg in [17].

Definition 3 ([17], Definition 3.2.4). A \mathbb{K} -algebra *A* is called a **Calabi-Yau algebra of dimension** *d* if

- (i) A is homologically smooth; that is, A has a finite resolution of finitely generated projective A-bimodules;
- (ii) $Ext_{A-Bin}^{i}(A, A \otimes A) \cong \begin{cases} A, & \text{if } i = d \\ 0, & \text{if } i \neq d, \end{cases}$ as *A*-bimodules.

The space $A \otimes A$ is endowed with two *A*-bimodule structures: the outer structure defined by $a \cdot (x \otimes y) \cdot b = ax \otimes yb$, and the inner structure defined by

 $a \cdot (x \otimes y) \cdot b = xb \otimes ay$. Consequently, the Hom spaces $Hom_{A-A}(M, A \otimes A)$ of A-bimodule morphisms from M to $A \otimes A$ endowed with the outer structure are again A-bimodules using the inner structure of $A \otimes A$, and the same is true for the Hochschild cohomology spaces $H^k(A, A \otimes A)$. For $A^e = A \otimes A^{op}$, the enveloping algebra of A, each A-bimodule M is a left A^e -module for the action $(a \otimes b).m = amb$ and right A^e -module for the action $m.(a \otimes b) = bma$.

Let $A = \bigoplus_{n \in \mathbb{Z}} A_n$ be a \mathbb{Z} -graded algebra, and $M = \bigoplus_{i \in \mathbb{Z}} M_i$ be a graded *A*-bimodule. For any integer *l*, M(l) is a graded *A*-bimodule whose degree *i* component is $M(l)_i = M_{i+l}$.

Definition 4. A graded algebra *A* is called a **graded Calabi-Yau algebra of dimension** *d* if

- (i) *A* has a finite resolution of finitely generated graded projective *A*-bimodules, and
- (ii) $Ext_{A^e}^i(A, A \otimes A) \cong \begin{cases} 0, & \text{if } i \neq d \\ A(l), & \text{if } i = d, \end{cases}$ as graded A-bimodules; for some integer *l*.

It follows from Definition 4 that every graded Calabi-Yau algebra of dimension d is Calabi-Yau of dimension d (see [6], Proposition 4.3).

Let *M* be an *A*-bimodule, $v, \mu : A \to A$ two automorphism, the *skew A*-bimodule ${}^{\nu}M^{\mu}$ is equal to *M* as a vector \mathbb{K} -space whit $a \cdot m \cdot b = v(a)m\mu(b)$.

Definition 5. Let *A* be a \mathbb{K} -algebra. *A* is called **skew Calabi-Yau** of dimension *d* if there exists an automorphism ν of *A* such that

- (i) A is homologically smooth; and
- (ii) $Ext_{A^e}^i(A, A^e) \cong 0$ when $i \neq d$ and $Ext_{A^e}^d(A, A^e) \cong {}^{1}A^{\nu}$ as A^e -modules.

In this case, v is called the *Nakayama Automorphism* of *A*. The Nakayama automorphism is unique up to an inner automorphism. A *v*-skew Calabi-Yau algebra *A* is Calabi-Yau in the sense of Ginzburg if and only if *v* is an inner automorphism of *A* (see [30], Definition 1.1). So every Calabi-Yau algebra is skew Calabi-Yau.

2.4. Skew PBW Extensions

Skew *PBW* extensions or σ – *PBW* extensions were defined in 2011 by Oswaldo Lezama and Claudia Gallego in [16].

Definition 6. Let *R* and *A* be rings. We say that *A* is a **skew** *PBW* **extension** of *R* if the following conditions hold:

- (i) $R \subseteq A$.
- (ii) There exist elements x_1, \ldots, x_n in A such that A is a left free *R*-module, with basis,

 $Mon(A) := \{ x_1^{\alpha_1} \cdots x_n^{\alpha_n} \mid (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n \}.$

(iii) For each $1 \le i \le n$ and any $r \in R - \{0\}$ there exists an element $c_{i,r} \in R - \{0\}$ such that

$$x_i r - c_{i,r} x_i \in R.$$

(iv) For any elements $1 \le i, j \le n$, there exists $c_{i,j} \in R - \{0\}$ such that

$$x_i x_i - c_{i,j} x_i x_j \in R + R x_1 + \dots + R x_n.$$

Proposition 1 ([16], Proposition 3). Let *A* be a skew *PBW* extension of *R*. Then, for every $1 \le i \le n$, there exist an injective ring endomorphism $\sigma_i : R \to R$ and a σ_i -derivation $\delta_i : R \to R$ such that

$$x_i r = \sigma_i(r) x_i + \delta_i(r),$$

for each $r \in R$.

In this case we write $A := \sigma(R)\langle x_1, \ldots, x_n \rangle$.

We say that *A* is a *bijective* if σ_i is bijective for each $1 \le i \le n$ and $c_{i,j}$ is invertible for any $1 \le i < j \le n$ (see [16], Definition 4).

3. Relations, Examples and Counterexamples

Some authors have found some interesting relations between AS-regular algebras, N-Koszul algebras and Calabi-Yau algebras. Some examples of these relations are the following:

(i) Roland Berger and Nicolas Marconnet in Proposition 5.2 of [8] show that if $A = T(V)/\langle R \rangle$ is a connected graded K-algebra such that the space *V* of generators is concentrated in degree 1, the space *R* of relations lives in degrees ≥ 2 , the global dimension *d* of *A* is 2 or 3, and that *A* is *AS*-regular (the polynomial growth imposed by Artin and Schelter is often removed and in fact, it is not necessary), then *A* is *N*-Koszul if d = 3, and 2-Kozul if d = 2.

(ii) Roland Berger y Rachel Taillefer in Proposition 4.3 of [6] show than if A is a connected \mathbb{N} -graded

Calabi-Yau algebra then *A* is *AS*-regular algebra, and in Proposition 5.4 they prove that if *A* is *AS*-regular \mathbb{C} -algebra of global dimension 3 (with polynomial growth), then *A* is Calabi-Yau if and only if *A* is of type A in the classification of Artin and Schelter given in [2].

(iii) Let \mathbb{K} be of characteristic zero, V be an ndimensional space with $n \ge 1$, w be a non-zero homogeneous potential of V of degree N + 1 with $N \ge 2$, and A = A(w) be the potential algebra defined by w(so that the space of generators of A is V); Roland Berger and Andrea Solotar in Theorem 2.6 of [4] prove that if the space of relations R (i.e. the subspace of $V^{\otimes N}$ generated by the relations $\partial_x(w)$, $x \in X$) of A is n-dimensional, then A is 3-Calabi-Yau if and only if A is N-Koszul of global dimension 3 and $dimR_{N+1} =$ 1, where $R_{N+1} = (R \otimes V) \cap (V \otimes R) \subseteq V^{\otimes (N+1)}$.

(iv) Manuel Reyes, Daniel Rogalski and James Zhang in Lemma 1.2 of [37] show that if A is a connected graded algebra, then A is graded skew Calabi-Yau if and only if A is AS-regular.

3.1. Examples

In the current literature there are not explicit relations between skew PBW extensions with ASregular algebras, N-Koszul algebras or Calabi-Yau algebras. Next we will show some examples of algebras that are AS-regular, or N-Koszul, or Calabi-Yau, or a combination of these types, that are skew PBW extensions.

3.1.1. AS-regular + N-Koszul + Calabi-Yau

Below are some examples of algebras that are ASregular, N-Koszul and Calabi-Yau, and in addition, they are also skew PBW extensions.

- 1. The polynomial algebra $A = \mathbb{K}[x,y]$ is a connected graded Noetherian algebra of global dimension 2. It follows that *A* is AS-regular with *GKdim*(*A*) = 2 (see [40], Theorem 3.5), *A* is 2-Koszul algebra (see [8], Proposition 5.2). Moreover, *A* is Calabi-Yau of dimension 2 (see [28]), and *A* is a skew *PBW* extension (see [16], Example 5).
- Let A = K[x₁,...,x_n] be the polynomial algebra in *n* variables. Then A is a 2-Kozsul algebra (see [31], Example 1.6), A is a skew *PBW* extension (see [16], Example 5), A is Calabi-Yau

of dimension *n* (see [9], page 18) and therefore, *AS*-regular (see [6], Proposition 4.3).

- Let A = K⟨x, y, z⟩/⟨yz zy, zx xz, xy yx + z²⟩ which is of type S'₁ in the classification of three-dimensional AS-regular algebras given in [2]. According to [8], A is 3–Calabi-Yau (see [45], Example 3.6), and by Proposition 5.2 of [8] A is 2-Koszul. We note that A ≅ σ(K[z])⟨x, y⟩ and therefore A is a skew PBW extension.
- 4. For any n ≥ 2, let A be a non-degenerate non-commutative quadric graded algebra in n variables x₁,..., x_n of degree 1. Let z be an extra variable of degree 1. Let B be an algebra defined by a non-zero cubic potential w in the variables x₁,..., x_n, z. Assume that the graded algebra B is isomorphic to a skew polynomial algebra A[z; σ; δ] over A in the variable z, defined by a 0-degree homogeneous automorphism σ of A and a 1-degree homogeneous σ-derivation δ of A. Then B is 2-Koszul and 3-Calabi-Yau (see [4], Proposition 4.1). B is a skew PBW extension.

3.1.2. AS-Regular + N-Koszul

The following are some examples of *AS*-regular *N*-Koszul algebras which are skew *PBW* extensions. It is not clear if these algebras are Calabi-Yau or not, since we have no clear criteria for making claims in this regard.

1. The algebra $A = \mathbb{K}\langle x, y, z \rangle / \langle \alpha \beta xy + \alpha \alpha \beta yx, \alpha zx + \alpha xz, yz + \alpha \beta zy \rangle$ is *AS*-regular of global dimension 3 of type *S*₁ (see [2], Theorem 3.10). Moreover, *A* is 2-Koszul (see [8], Proposition 5.2), and *A* is a skew *PBW* extension.

A may be or not Calabi-Yau, depends on the coefficients a, α and β (see [6], Proposition 5.4).

- The quantum plane A = K⟨x,y⟩/⟨yx cxy⟩ (c ≠ 0) is an AS-regular algebra of global dimension 2 (see [2], page 172), Moreover A is a skew PBW extension as well as 2-Koszul (see [8], Proposition 5.2). For example, if c = 1 then the quantum plane A is a 2-Calabi-Yau algebra.
- The Jordan plane A = K⟨x,y⟩/⟨yx xy x²⟩ is an AS -regular algebra of global dimension 2 (see [2], page 172). Since A is a quadratic algebra and ⟨yx - xy - x²⟩ is a principal ideal, it

follows that *A* is 2-Koszul (see [15], page 7), $A \cong \sigma(\mathbb{K}[x])\langle y \rangle$ and therefore *A* is a skew *PBW* extension. The Jordan plane *A* is not Calabi-Yau (see [30]).

3.1.3. Skew Calabi-Yau algebras

The following is an example of skew Calabi-Yau algebra that is skew *PBW* extension. Multiparameter quantum affine *n*-spaces $O_{\mathbf{q}}(\mathbb{K}^n)$ can be obtained by iterated Ore extensions. Let $n \ge 1$ and \mathbf{q} be a matrix $(q_{ij})_{n \times n}$ whit entries in a field \mathbb{K} where $q_{ii} = 1$ y $q_{ij}q_{ji} = 1$ for all $1 \le i, j \le n$. Then quantum affine *n*-space $O_{\mathbf{q}}(\mathbb{K}^n)$ is defined to be \mathbb{K} -algebra generated by x_1, \dots, x_n with the relations $x_j x_i = q_{ij} x_i x_j$ for all $1 \le i, j \le n$. The \mathbb{K} -algebra $O_{\mathbf{q}}(\mathbb{K}^n)$ is skew Calabi-Yau whit the Nakayama automorphism ν such that $\nu(x_i) = (\prod_{j=1}^n q_{ji})x_i$ (see [30], Proposition 4.1). This \mathbb{K} -algebra is a skew *PBW* extension (see [29]).

The Jordan plane $A = \mathbb{K}\langle x, y \rangle / \langle yx - xy - x^2 \rangle$ is skew Calabi-Yau, but not Calabi-Yau (see [30]).

3.1.4. The universal enveloping algebra and the Sridharan enveloping algebra of Lie algebra

Let \mathcal{G} be a finite dimensional Lie algebra over \mathbb{K} with basis $\{x_1, \dots, x_n\}$. The universal enveloping algebra of \mathcal{G} , denoted $\mathcal{U}(\mathcal{G})$, is a *PBW* extension of \mathbb{K} since $x_ir - rx_i = 0$, $x_ix_j - x_jx_i = [x_i, x_j] \in \mathcal{G} =$ $\mathbb{K} + \mathbb{K}x_1 + \dots + \mathbb{K}x_n$, $r_i \in \mathbb{K}$, for $1 \le i, j \le n$. Ji-Wei He, Fred Van Oystaeyen and Yinhuo Zhang showed that for the 3-dimensional Lie algebra \mathcal{G} with basis $\{x, y, z\}$, $\mathcal{U}(\mathcal{G})$ is a Calabi-Yau algebra if and only if the Lie bracket is given by [x, y] = ax + by + wz, [x, z] = cx + vy - bz, [y, z] = ux - cy + az, where $a, b, c, u, v, w \in \mathbb{K}$; and if \mathcal{G} is a finite dimensional Lie algebra, $\mathcal{U}(\mathcal{G})$ is Calabi-Yau of dimension 3 if and only if \mathcal{G} is isomorphic to one of the following Lie algebras (see [22], Proposition 4.5 and Proposition 4.6):

- (i) The 3-dimensional simple Lie algebra *sl*(2, 𝔅);
- (ii) *G* has a basis $\{x, y, z\}$ such that [x, y] = y, [x, z] = -z and [y, z] = 0;
- (iii) The Heisenberg algebra, that is; \mathcal{G} has a basis $\{x, y, z\}$ such that [x, y] = z and [x, z] = [y, z] = 0;
- (vi) The 3-dimensional abelian Lie algebra.

We note that if \mathcal{G} is a finite dimensional Lie algebra over a field \mathbb{K} and $\mathcal{U}(\mathcal{G})$ is the universal enveloping algebra of \mathcal{G} , then $\mathcal{U}(\mathcal{G})$ is a skew *PBW* extension (see [16]); in particular, universal enveloping Calabi-Yau algebra $\mathcal{U}(\mathcal{G})$ of dimension 3 is a skew *PBW* extension.

Let \mathcal{G} be a finite dimensional Lie algebra, and let $f \in Z^2(\mathcal{G}, \mathbb{K})$ be an arbitrary 2–*cocycle*, that is, $f : \mathcal{G} \times \mathcal{G} \to \mathbb{K}$ such that f(x, x) = 0 and

$$f(x, [y, z]) + f(z, [x, y]) + f(y, [z, x]) = 0$$

for all $x, y, z \in \mathcal{G}$.

The *Sridharan enveloping* algebra of \mathcal{G} is defined to be the associative algebra $\mathcal{U}_f(\mathcal{G}) = T(\mathcal{G})/I$, where *I* is the two-side ideal of $T(\mathcal{G})$ generated by the elements

$$(x \otimes y) - (y \otimes x) - [x, y] - f(x, y)$$
, for all $x, y \in \mathcal{G}$.

For $x \in \mathcal{G}$, we still denote by x its image in $\mathcal{U}_f(\mathcal{G})$. $\mathcal{U}_f(\mathcal{G})$ is a filtered algebra with the associated graded algebra $gr(\mathcal{U}_f(\mathcal{G}))$ being a polynomial algebra.

Let \mathbb{K} be a field and algebraically closed whit characteristic zero. If \mathcal{G} is a Lie \mathbb{K} -algebra of dimension three then, the Sridharan enveloping algebra $\mathcal{U}_f(\mathcal{G})$, for $f \in Z^2(\mathcal{G}, \mathbb{K})$, is isomorphic to one of ten following associative \mathbb{K} -algebras, defined by three generator x, y, z and the following commutation relations (see [32], Theorem 1.3):

Туре	[<i>x</i> , <i>y</i>]	[<i>y</i> , <i>z</i>]	[z, x]
1	0	0	0
2	0	x	0
3	x	0	0
4	0	αy	-x
5	0	у	-(x+y)
6	z	-2y	-2x
7	1	0	0
8	1	x	0
9	x	1	0
10	1	у	x

where $\alpha \in \mathbb{K} - \{0\}$. Therefore the Sridharan enveloping algebra $\mathcal{U}_f(\mathcal{G})$ is a skew *PBW* extension.

Let \mathcal{G} be a finite dimensional Lie algebra. Then for any 2–cocycle $f \in Z^2(\mathcal{G}, \mathbb{K})$, the following statements are equivalent (see [22], Theorem 5.3).

- (i) The Sridharan enveloping algebra \$\mathcal{U}_f(\mathcal{G})\$ is Calabi-Yau of dimension \$d\$.
- (ii) The universal enveloping algebra $\mathcal{U}(\mathcal{G})$ is Calabi-Yau of dimension d.

Let $\mathcal{U}_f(\mathcal{G})$ be a Sridharan enveloping algebra of a finite dimensional Lie algebra \mathcal{G} . Then $\mathcal{U}_f(\mathcal{G})$ is Calabi-Yau of dimension 3 if and only if $\mathcal{U}_f(\mathcal{G})$ is isomorphic to $\mathbb{K}\langle x, y, z \rangle / \langle R \rangle$ with the commuting relations *R* listed in the following table (see [22], Theorem 5.5):

Case	${x,y}$	${x,z}$	$\{y,z\}$
1	z	-2x	2у
2	у	-z	0
3	z	0	0
4	0	0	0
5	у	-z	1
6	z	1	0
7	1	0	0

where $\{x, y\} = xy - yx$.

From the above discussion we have the following result.

Proposition 2. Let $\mathcal{U}_f(\mathcal{G})$ be a Sridharan enveloping algebra of a finite dimensional Lie algebra \mathcal{G} . If $\mathcal{U}_f(\mathcal{G})$ is Calabi-Yau of dimension 3 then $\mathcal{U}(\mathcal{G})$ is a skew PBW extension.

The Sridharan enveloping algebra of an n-dimensional abelian Lie algebra is n-Calabi-Yau; in particular the Weyl algebra A_n is 2n-Calabi-Yau (see [9], Theorem 6.5) as well as a skew *PBW* extension (see [16], Example 5).

3.2. Counterexamples

Next we will show some examples of algebras that are AS-regular, or N-Koszul, or Calabi-Yau, but are not skew PBW extensions.

- 1. $A = \mathbb{K}\langle x, y, z \rangle / \langle xy yx z^2, yz z x^2, zx xz y^2 \rangle$ is *AS*-regular of global dimension 3 of type A (see [2], page 173). *A* is 2-Koszul (see [8], Proposition 5.2) and Calabi-Yau of dimension 3 (see [6], Proposition 5.4).
- 2. $A = \mathbb{K}\langle x, y \rangle / \langle x^3 + xy^2 + y^2x + yxy, x^2y + yx^2 + xyx + y^3 \rangle$ is *AS*-regular of global dimension

3 of type A (see [2], Theorem 3.10), *A* is 3-Koszul (see [8], Proposition 5.2) and Calabi-Yau of dimension 3 (see [6], Proposition 5.4).

- A = K⟨x,y⟩/⟨yx⟩ is not AS-regular algebra. A is the only graded algebra of global dimension 2 and *GK*-dimension 2 which is not Noetherian (see [2], page 172). A is 2-Koszul (see [15], page 7), A is not 2-Calabi-Yau (see [6], Proposition 4.3)
- 4. The exterior algebra $A = \mathbb{K}\langle x_1, \dots, x_n \rangle / \langle x_k^2, x_i x_j + x_j x_i \rangle_{k,i < j}$ in *n* variables is an 2-Koszul algebra (see [31], Example 1.6).
- If A = K⟨x₁,...,x_n⟩/I is an quadratic algebra and *I* is principal, then *A* is 2-Koszul (see [15], page 7). It depends on the ideal *I* whether *A* is Calabi-Yau or not.
- 6. Consider *V* of dimension 1, $V = \mathbb{K}x$ and $w = x^{N+1}$. Then, $dimR = dimR_{N+1} = 1$, A(w) is *N*-Koszul (since the global dimension of A(w) is infinite, and A(w) is not 3-Calabi-Yau (see [4], Example 2.12).

4. Some Properties Preserved by Ore Extensions

Suppose $\sigma : A \to A$ is a graded algebra automorphism and $\delta : A(-1) \to A$ is a graded σ -derivation. If $B := A[z; \sigma, \delta]$ is the associated Ore extension, then *B* is a skew *PBW* extension. In this case we have $B = A[z, \sigma; \delta] = \sigma(A) \langle x \rangle$ (see [16], Example 5).

Below we list some properties that are preserved by Ore extensions:

- 1. If *A* is a connected graded algebra then *B* is a connected graded algebra.
- 2. If *A* is homologically smooth, then so is *B* (see [30], Proposition 3.1).
- 3. *B* is 2-Koszul if and only if *A* is 2-Koszul (see [33], Corollary 1.3).
- 4. Let $A = \mathbb{K}\langle x_1, ..., x_n \rangle / \langle f \rangle$ where $f = (x_1, ..., x_n)M(x_1, ..., x_n)^t$ and *M* is an $n \times n$ matrix. Then *A* is Calabi-Yau of dimension 2 if and only if *M* is invertible and anti-symmetric (see [24], Corollary 1).

Let δ be a graded derivation of the free algebra $\mathbb{K}\langle x_1, \dots, x_n \rangle$ of degree 1. If $\delta(f) = 0$, then δ

induces a graded derivation $\overline{\delta}$ on *A*. Let $B = A[z;\overline{\delta}]$ be the Ore extension of *A* defined by the graded derivation $\overline{\delta}$. Then *B* is a graded Calabi-Yau algebra of dimension 3 (see [21], Proposition 1.3).

- 5. If *A* is *v*-skew Calabi-Yau projective \mathbb{K} -algebra of dimension *d*, then *B* is skew Calabi-Yau of dimension *d* + 1 and the Nakayama automorphism ν' of *B* satisfies that $\nu'_{|A|} = \sigma^{-1}\nu$ and $\nu'(z) = uz + b$, with $u, b \in A$ and *u* invertible (see [30], Theorem 3.3).
- Let *A* be a 2-Koszul *AS*-regular algebra of global dimension *d* with the Nakayama automorphism *ξ*. Then *B* = *A*[*z*,*ξ*] is a Calabi-Yau algebra of dimension *d* + 1 (see [25], Theorem 3.3).
- 7. Let A be a v-skew Calabi-Yau algebra of dimension d and σ ∈ Aut(A), then A[x;σ] and A[x^{±1};σ] are Calabi-Yau algebras of dimension d + 1 (see [18], Theorema 1.1). Furthermore, if A[x;σ] is Calabi-Yau, then A[x^{±1};σ] is Calabi-Yau.
- 8. Now we present an example of skew Calabi-Yau algebra that is not Calabi-Yau (see [30]), and then, we consider the corresponding Ore extension. Let $A = \mathbb{K}\langle x, y \rangle / \langle yx - xy - x^2 \rangle$ be the Jordan plane, A is AS-regular algebra of dimension 2 and therefore A is 2-Koszul, A = $\mathbb{K}[x][y, \delta_1]$ with $\delta_1(x) = x^2$. It follows that A is skew Calabi-Yau but not Calabi-Yau. A has Nakayama automorphism given by v(x) = x and v(y) = 2x + y, B = A[z; v] is an Ore extension of Jordan plane. Then B is skew Calabi-Yau with the Nakayama automorphism ν' such that v'(x) = x and v'(y) = y. $B = \mathbb{K}[x, z][y; \delta]$ where δ is given by $\delta(x) = x^2$ and $\delta(z) = -2xz$. So, v'(z) = z. It follows that *B* is Calabi-Yau, which was already proved by Berger and Pichereau in [5].
- 9. In [44], AS-regular algebras of dimension 5 generated by two generators of degree 1 with three generating relations of degree 4 are classified under some generic condition. There are nine types such AS-regular algebras in this classification list. Among them, the algebras **D** and **G** are given by iterated Ore extensions (see [44], Section 5.2).

The algebra **D** is skew Calabi-Yau with the Nakayama automorphism v given by $v(x) = p^{-3}q^4x$; $v(y) = p^3q^{-4}y$. **D** is Calabi-Yau if and only if that p, q satisfy the system of equations (see [30], Theorem 4.3):

$$\left\{ \begin{array}{l} p^3=q^4,\\ 2p^4-p^2q+q^2=0. \end{array} \right.$$

The algebra **G** is skew Calabi-Yau with the Nakayama automorphism v given by v(x) = gx; $v(y) = g^{-1}y$. **D** is Calabi-Yau if and only if g = 1.

They study and classification of AS-regular algebras of dimension five with two generators under an additional \mathbb{Z}^2 -grading uses Gröbner basis computations (see [48]).

10. Let \mathbb{K} be a field, let *n* be an even natural number ≥ 2 , and let *A* be the associative \mathbb{K} -algebra defined by generators x_1, \ldots, x_n subject to the single relation

$$\sum_{1\leq i\leq \frac{n}{2}} [x_i, x_i + \frac{n}{2}] = \nu + \lambda,$$

where the bracket stands for the commutator, v is a linear combination of the x_i 's, and $\lambda \in \mathbb{K}$. Then the filtered algebra *A* is 2-Koszul. Furthermore *A* is 2-Calabi-Yau if and only if v = 0 (see [9], Theorem 6.4). So, if $\sigma_2 = i_{\mathbb{K}[x_1]}$ and $\delta_2(\mathbb{K}[x_1]) \subseteq \mathbb{K}$, then the skew *PBW* extension $\sigma(\mathbb{K})\langle x_1, x_2 \rangle \cong \mathbb{K}[x_1][x_2; \sigma_2, \delta_2]$ is 2-Calabi-Yau.

References

- J. P. Acosta, C. Chaparro, O. Lezama, I. Ojeda and C. Venegas, "Ore and Goldie theorems for skew PBW extensions", *Asian-European J. Math.*, vol. 6 (4), pp. 1350061-1 - 1350061-20, 2013.
- [2] M. Artin and W. F. Schelter, "Graded algebras of global dimension 3", *Adv. Math.*, vol. 66, pp. 171-216, 1987.
- [3] R. Berger, "Koszulity for nonquadratic algebras", J. Algebra, vol. 239, pp. 705-734, 2001.
- [4] R. Berger and A. Solotar, "A criterion for homogeneous potencials to be 3-Calabi-Yau", *ar-Xiv:1203.3029*, 2013.

- [5] R. Berger and A. Pichereau, "Calabi-Yau algebras viewed as deformations of Poisson algebras", *Algebr. Represent. Theory*, vol. 17 (3), pp. 735-773, 2014.
- [6] R. Berger and R. Taillefer, "Poincare-Birkhoff-Witt deformations of Calabi-Yau algebras", J. Noncommut. Geom., vol. 1, pp. 241-270, 2007.
- [7] R. Berger and V. Ginzburg, "Higher Symplectic Reflection Algebras and Non-homogeneous N-Koszul Property", J. Algebra, vol 304, pp. 577-601, 2006.
- [8] R. Berger and N. Marconnet, "Koszul and Gorenstein properties for homogeneous algebras", *Algebr. Represent. Theory*, vol. 1, pp. 67-97, 2006.
- [9] R. Berger, "Gerasimov's theorem and N-Koszul algebras", *J. London Math. Soc.*, vol. 79, pp. 631-648, 2009.
- [10] R. Bocklandt, "Graded Calabi Yau algebras of dimension 3 (with an appendix by M. Van den Bergh)", *J. Pure Appl. Algebra*, vol. 212, pp. 14-32, 2008.
- [11] R. Bocklandt, "Calabi Yau algebras and weighted quiver polyhedra", *Math. Z.*, vol. 273, pp. 311-329, 2013.
- [12] K. A. Brown, I. G. Gordon and C. H. Stroppel, "Cherednik, Hecke and quantum algebras as free Frobenius and Calabi-Yau extensions", *J. Algebra*, vol. 319 (3), pp. 1007-1034, 2008.
- [13] T. Cassidy and B. Shelton, "Generalizing the notion of Koszul algebra", *Math. Z.*, vol. 260, pp. 93-114, 2008.
- [14] G. Floystad and J. E. Vatne, "PBW-Deformations of N-Koszul Algebras", J. Algebra, vol. 302, pp. 116-155, 2006.
- [15] R. Fröberg, "Koszul Algebras", Matematiska institutionen Stockholms Universitet 10691 Stockholm Sweden, 1998.
- [16] C. Gallego and O. Lezama, "Gröbner bases for ideals of σPBW extensions", *Comm. Algebra*, vol. 39, pp. 1-26, 2011.
- [17] V. Ginzburg, "Calabi-Yau algebras", *ar-Xiv:math.AG/0612139v3*, 2006.
- [18] J. Goodman, and U. Krähmer, "Untwisting a twisted Calabi-Yau Algebra", *J. Algebra*, vol. 406, pp. 271-289, 2014.

- [19] E. L. Green and E. Marcos, "d-Koszul algebras, 2-d determined algebras and 2-d-Koszul algebras", *J. Pure Appl. Algebra*, vol. 215 (4), pp. 439-449, 2011.
- [20] E. L. Green, E. Marcos, R. Martínez-Villa and P. Zhang, "D-Koszul algebras", *J. Pure Appl. Algebra*, vol. 193 (1-3), pp. 141-162, 2004.
- [21] J. W. He, F. Van Oystaeyen and Y. Zhang, "Graded 3-Calabi-Yau Algebras as Ore Extensions of 2-Calabi-Yau Algebras", ar-Xiv:1303.5293v1, 2013.
- [22] J. W. He, F. Van Oystaeyen and Y. Zhang, "Cocommutative Calabi-Yau Hopf Algebras and Deformations", *J. Algebra*, vol. 324, pp. 1921-1939, 2010.
- [23] J. W. He, F. Van Oystaeyen and Y. Zhang, "Hopf algebra actions on differential graded algebras and applications", *Bull. Belg. Math. Soc. Simon Stevin*, vol. 18, pp. 99-111, 2011.
- [24] J. W. He, F. Van Oystaeyen and Y. Zhang, "Calabi-Yau algebras and their deformations", *Bull. Math. Soc. Sci. Math. Roumanie*, Tome 56 (104), no. 3, pp. 335-347, 2013.
- [25] J. W. He, F. Van Oystaeyen and Y. Zhang, "Skew polynomial algebras with coeficients in Koszul Artin-Schelter regular algebras", J. Algebra, vol. 390, pp. 231-249, 2013.
- [26] J. W. He, F. Van Oystaeyen and Y. Zhang, "Deformations of Koszul Artin-Schelter Gorenstein algebras", *Manuscripta Math.*, *Doi:* 10.1007/s00229-012-0580-z, 2012.
- [27] O. Iyama, I. Reiten, "Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras", *Am. J. Math.*, vol. 130, pp. 1087-1149, 2008.
- [28] P. Le Meur, "Crossed productd of Calabi-Yau algebras by finite groups", arXiv:1006.1082, 2010.
- [29] O. Lezama and A. Reyes, "Some Homological Properties of Skew PBW Extensions", Comm. Algebra, vol. 42, pp. 1200-1230, 2014.
- [30] L. -Y. Liu, S. Wan and Q. -S Wu, "Twisted Calabi-Yau property of Ore extensions", J. Noncommut. Geom., vol. 8 (2), pp. 587-609, 2014.
- [31] R. Martínez-Villa, "Introduction to Koszul Algebras", *Rev. Un. Mat. Argentina*, vol. 48 (2), pp. 67-95, 2007.

- [32] P. Nuss, "L'homologie cyclique des algèbres enveloppantes des algèbres de Lie de dimension trois", *J. Pure Appl. Algebra*, vol. 73, pp. 39-71, 1991.
- [33] C. Phan, "The Yoneda algebra of a graded Ore extension", *Comm. Algebra*, vol. 40, pp. 834-844, 2012.
- [34] S. Priddy, "Koszul Resolutions", *Trans. Amer. Math. Soc.*, vol. 152, pp. 39-60, 1970.
- [35] A. Reyes, "Uniform Dimension over Skew PBW Extensions", *Rev. Colombiana Mat.*, vol. 48, pp. 79-96, 2014.
- [36] A. Reyes, "Gelfand-Kirillov Dimension of Skew PBW Extensions", *Rev. Colombiana Mat.*, vol. 47 (1), pp. 95-111, 2013.
- [37] M. Reyes, D. Rogalski and J. Zang, "Skew Calabi-Yau Algebras and Homological Identities", arXiv:1302.0437v2 [math.RA], 2013.
- [38] B. Shelton and C. Tingey, "On Koszul algebras and a new construction of Artin-Schelter regular algebras", *J. Algebra*, vol. 241 (2), pp. 789-798, 2001.
- [39] S. P. Smith, "A 3-Calabi-Yau algebra with G₂ symetry constructed from the octonions", ar-Xiv:1104.3824v1, 2011.
- [40] D. R. Stephenson and J.J. Zhang, "Growth of graded Noetherian rings", *Proc. Amer. Math. Soc.*, vol. 125, pp. 1593-1605, 1997.
- [41] M. Suárez-Alvarez, "Untwisting algebras with van den Bergh duality into Calabi-Yau algebras", *arXiv:1311.3339v1*, 2013.

- [42] M. Van den Bergh, "Introduction to Super Potentials (informal evening talk)", Oberwolfach Report 6, 2005.
- [43] M. Van den Bergh, "Calabi-Yau algebras and superpotentials", Sel.Math.New Ser DOI 10.1007/s00029-014-0166-6, 2014.
- [44] S. -Q Wang and Q. -S Wu, "A class of ASregular algebras of dimension five", *J. Algebra*, vol. 362, pp. 117-144, 2012.
- [45] Q. -S. Wu and C. Zhu, "Skew group algebras of Calabi-Yau algebras", *J. Algebra*, vol. 340, pp. 53-76, 2011.
- [46] Q. -S. Wu and C. Zhu, "Poincaré-Birkhoff-Witt Deformation of Koszul Calabi-Yau Algebras", *Algebr. Represent. Theory*, vol. 16, pp. 405-420, 2013.
- [47] X. Yu and Y. Zhang, "Calabi-Yau pointed Hopf algebras of finite Cartan type", *J. Noncommut. Geom.*, vol. 7 (4), pp. 1105-1144, 2013.
- [48] G. -S. Zhou and D. -M Lu, "Artin-Schelter regular algebras of dimension five with two generators", *J. Pure Appl. Algebra*, vol. 218, pp. 937-961, 2014.
- [49] C. Zhu, F. Van Oystaeyen and Y. Zhang, "Calabi-Yau extensions and localization of Koszul regular algebras", arXiv:1401.0330v1, 2014.