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Abstract

In this paper we consider the problem of finding optimal population designs for discrimination between

two nested nonlinear mixed effects models which differ in their intra-individual covariance matrix. The

criterion proposed is a generalization of the T-optimality criterion. For this criterion an equivalence theorem

is provided. The application of the criterion is illustrated with an example in pharmacokinetic.
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Resumen

En este artículo se considera el problema de encontrar diseños poblacionales óptimos para dicriminar entre

dos modelos no lineales de efectos mixtos anidados, los cuales difieren en su matriz de covarianza intra-

individual. El criterio propuesto es una generalización del criterio de T-optimalidad; para él se proporciona

el respectivo teorema de equivalencia, y su aplicación se ilustra por medio de un ejemplo en farmacocinética.
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1 Introduction

In the application of optimal design theory one of

the basic assumptions is to assume that the model

used to describe a given phenomenon or process is

the correct model. However, in the practice there

may exist several candidate models. One way of to

select the most adequate model among several can-

didates is conducting an experiment designed so that

the observations obtained allow us to discriminate

between the models in the best way possible. This

leads to the problem of to find the optimal experi-

mental conditions using some optimality criterion

for discriminate between competing models.

In the case of fixed effects models a commonly

used criterion for discriminating between two com-

peting homoscedastic models is the T-optimality cri-

terion, which was proposed by [1]. Under normally

distributed observations, the T-optimal design pro-

vides the most powerful F-test for the lack of fit of
one model when the other is assumed to be true. The

criterion has been generalized for other fixed effects

models see [18, 19].

The nonlinear mixed effects models are particu-

larly useful in longitudinal studies such as popula-

tion pharmacokinetics experiments, assay analysis

and studies of growth, in which a limited number

of samples can be obtained from each individual.

These models distinguish two classes of variation:

the random variation among observations within a

given individual (intra-individual) and random varia-

tion among individuals (inter-individual) [3, 4]. This

separation of variability allows the estimation of

population characteristics from sparse samples per

individual in a set of subjects without requiring in-

dividual estimation of the parameters. Depending

of the application and nature of data, different co-

variance structures may be considered to model the

two class of variation. For example, in some situa-

tions it is common practice not to assume a particular

structure for the inter-individual variation, whereas

for intra-individual variation can be considered dif-

ferent structures, among them, the usual structure

which assume independent observations with con-

stant variance, compound symmetry and autoregres-

sive structures, constant coefficient variation struc-

ture, variance function which depends on the condi-

tional mean response, or combinations of these struc-

tures [7, 21, 12]. Under a nonlinear mixed effects

model, a population design is defined by the number

of individuals to study and the individual designs to

be performed in the individuals (number of samples

and the sampling times) [11]. Thus, assuming that

the response function and the inter-individual covari-

ance model have been correctly specified, it may be

of interest the problem of designing an experiment

in a group of individuals with sparse samples per

individual for discrimination between two compet-

ing intra-individual covariance models which may

be nested.

Although some approaches such as those de-

scribed below have been proposed for discriminate

between two nonlinear mixed effects models, these

may be inappropriate or less efficient in situations

involving nested models as the previously consid-

ered. Waterhouse et al. in [22] proposed the product

D-optimality criterion based on the product of the

determinants of the Fisher information matrices for

to find designs useful for both parameter estimation

and model discrimination. For nonlinear models,

such designs may be less efficient for discriminate

that the T-optimal designs. Vajjah and Duffull in [20]

proposed a robust T-optimal design method which

does not depend on a priori selection of the true

model. However, in the particular case of two nested

intra-individual variation models this methodology

can be not applied because the T-optimal designs

are based only on the fixed effects models without

residual error. Kuczewski et al. in [9] proposed

an extension of the T-optimality criterion for het-

eroscedastic models, for discriminate between two

multiresponse models. The criterion is derived in

the case of non-nested models and can be applied

directly when all individuals are observed under the

same experimental conditions. Therefore, alterna-

tive methods for discrimination in the case of nested

models are required. In this work, we consider the

problem of to find optimal population designs for

discrimination between two nested nonlinear mixed-

effects models which differ in their intra-individual

covariance matrix. We propose a generalization of

the T-optimality criterion for this case. Our approach

can be applied to population studies for groups of

individuals with different sampling scheme where

each sampling scheme is a multidimensional point

in a finite space of admissible sampling sequences.
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This paper is organized as follows. In Section 2

we present the nonlinear mixed effects model consid-

ered in this work, optimal design concepts and the

model discrimination problem. In Section 3 a gen-

eralization of T-optimality criterion is defined and a

necessary and sufficient condition for optimality of

a design is given. In the section 4 we present an ex-

ample where the criterion is applied to discriminate

between two pharmacokinetic models. Finally, some

conclusions and further work are given.

2 Theoretical Background

2.1 Nonlinear Mixed Effects Model

We assume that for each individual i in a population

of N individuals the number of different observations

available is n. Let yi = (yi1, . . . ,yin)
T be the vector

of repeated measurements for the ith individual and
xi = (xi1, . . . ,xin)

T the n×1 vector of sampling times

where xi j belongs to a finite set X consisting of t
different measurement times. It is assumed that the

measurements made on different subjects are inde-

pendent. To model the relationship between yi and xi

we consider a nonlinear mixed effects model which

may be written as hierarchical two-stage model, see

[3]:

Stage 1. Intra-Individual Model

In this stage the variability among observations

within a given individual (intra-individual) is mod-

eled.

Suposse that

yi = f (xi,β i)+ ε i, i = 1, . . . ,N (1)

where β i is a (p× 1) vector of parameters for the

ith individual; f (xi,β i) is an n× 1 vector function,

f (xi,β i) = ( f (xi1,β i), . . . , f (xin,β i))
T where f is a

known nonlinear function of β i; and ε i is the n×1

random errors vector.

It is assumed that ε i|β i ∼ Nn(0,Cov(ε i|β i)) with

Cov(ε i|β i) = R(xi,β i,σ
2,λ ) (2)

where R(xi,β i,σ2,λ ) is an (n× n) matrix and is

called the intra-individual covariance matrix, which

depends on the parameters σ2 > 0 and λ ∈Ω⊂ R
d .

For a given individual, the matrix R takes into

account the nature of intra-individual variation and

may be choosen in such a way that reflects the het-

erogeneity of variance, and the correlation among

observations, or both. For example, in the case of

data from pharmacokinetic experiments and growth

studies a common model is

G(xi,β i,σ
2,θ)

= σ2 diag( f 2θ (xi1,β i), . . . , f 2θ (xin,β i))

and λ = θ . This matrix corresponds to uncorrelated

errors with variance proportional to a power of the

conditional mean. If the repeated observations are

taken over time, a model for serial correlation can

be considered, for example, the autoregressive (AR)

model of order one for equally spaced data in time.

Thus a model with this correlation structure and

constant variance is R(xi,β i,σ2,λ ) = σ2Γ(xi,β i,α)

where Γ(xi,β i,α) = {αιυ}n
ιυ=1, αιυ = α |ι−υ | and

λ = α . Also, we can consider the case where the

errors have nonconstant variance with correlation

structure by the specification

R(xi,β i,σ
2,λ ) =G1/2(xi,β i,σ

2,θ)Γ(xi,β i,α)

×G1/2(xi,β i,σ
2,θ)

with λ = (θ ,α)T .

For others structures of intra-individual correla-

tion see [12].

Stage 2. Inter-Individual Model

In model (1), the variation among individuals

(inter-individual) is modeled through the individ-

ual specific parameters β i. In order to account the

possible dependence of this variation on individual

characteristics, a model for β i is provided in this

stage.

Suposse that

β i = β +bi (3)

where β is a (p×1) vector of population parameters

and bi is a (p× 1) vector of random effects asso-

ciated with individual i. It is assumed that the bi

are independent and normally distributed with mean

0 and variance-covariance matrix D and that the bi

and ε i are independent. The matrix D is called the

inter-individual covariance matrix. The parameter

σ2 and the distinct elements of the covariance matrix

D can be arranged in a single vector ψ of covariance

parameters.
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First-order approximation model

An approximation to the marginal distribution of

yi can be derived taking a first-order Taylor series

expansion of the model (1) about E(bi) = 0. This

expansion yields to the linealized model given by

yi ≈ f (xi,β )+Z(xi,β )bi +R1/2(xi,β ,σ2,λ )ε∗i (4)

where Z(xi,β ) is the (n× p) matrix
∂ f T (xi,β i)

∂β i

∣∣∣
β i=β

and ε∗i ∼ i.i.d. Nn(0,σ2In).

Thus, under (4) the approximate marginal distri-

bution of yi is normal with approximate mean vector

and variance-covariance matrix given by

E(yi)≈ f (xi,β )

Cov(yi)≈ Z(xi,β )DZT (xi,β )+R(xi,β ,σ2,λ )

≡ Σ(xi,γ)

(5)

where γ = (β T ,ψT ,λ T )T ∈ Γ⊂R
q is the full vector

of unknown parameters.

2.2 Population Designs

For the given model, suppose that nk independent ob-

servations are taken at point xk ∈X n, and ∑s
k=1 nk =

N, where s is the number of distinct xk. For example,

consider a study in which nk individuals are observed

under the conditions vector xk = (xk1, . . . ,xkn), with

the total number of individuals N. Then the collec-

tion of xk and nk, represented by{
x1, . . . ,xs

n1, · · · ,ns

}
= {xk,nk}s

1,
s

∑
k=1

nk = N (6)

is called population design [11, 6]. The set X n is

called the design region and the points xk are called

design points. We will use the term group to denote

the individuals who are allocated to the same sam-

pling sequence xk. The collection ζN = {xk,ωk}s
1

where ωk =
nk
N is called normalized or exact popu-

lation design with weights vector ω = (ω1, . . . ,ωs).

For fixed values of the total number of individuals N
and the number of sampling times n, the population
optimal design problem consists in to find the de-

sign by a choice of distinct values for the sampling

times vector x ∈X n and values for the number sub-

jects assigned to vector x so that the resulting design

maximizes some optimality criterion which will de-

pend on the objective of experiment. The design

is said to be optimal with respect to that criterion

[5]. The most commonly used optimality criteria

usually depend on the unknown model parameter.

One approach is to construct locally optimal designs

which requires to specify a prior estimate of param-

eter and then address the optimization problem for

this specific value [5] .

Since finding an optimal exact design is a discrete

optimization problem which may be difficult from

both analytical and computational points of view, the

corresponding approximate design should be consid-

ered one in which the weights ωk may be any real

numbers from the interval [0,1]. Thus, the collection

ζ = {xk,ωk}s
1, 0≤ ωk ≤ 1,

s

∑
k=1

ωk = 1 (7)

is called approximate population design. The weight

ωk represents the proportion of total individuals that

should be observed at the point xk.

If r denotes the number of elements in the design

region X n then the design ζ can be specified by the

vector of weights ω = (ω1, . . . ,ωr) ∈ Ξ where Ξ =

{(ω1, . . . ,ωr)|ωk ≥ 0,k = 1, . . . ,r,∑r
k=1 ωk = 1}.

Under this representation, if ωk = 0 this means that

the corresponding design point is not used in the

experiment. The set of points xk in the design region

X n for which the design ω has nonzero weights

ωk is called the support set of ω and is denoted by

supp(ω).

After optimization, the number of individuals in

each group is obtained from the optimal weights by

using nk =N×ωk. This can yield noninteger number

and therefore a rounding procedure is applied [14].

In what follows, we adopt the approximate locally

optimal design approach and we use the approximate

design ω = (ω1, . . . ,ωr).

2.3 The Problem of Model Discrimination

In the case of fixed effects models, these are models

that do not contain the level of random effects, one

most commonly used criterion for model discrim-

ination is T-optimality proposed by Atkinson and

Fedorov in [1]. For two competing homoscedastic

models this criterion is based on the assumption of

one model ft(x) = f1(x,β 1) is the true model. The

T-optimal design is a design that maximizes

Δ(ξ ) =min
β 2

s

∑
k=1

ωk( ft(xk)− f2(xk,β 2))
2 (8)
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where ξ = {xk,ωk}s
1 such that 0 ≤ ωk ≤ 1 and

∑s
k=1 ωk = 1, and f2(x,β 2) is the rival model.

If the functions f j(x,β j) depend linearly on the

parameter β j, j = 1,2, then the quantity Δ(ξ ) is

proportional to noncentrality parameter of the χ2

distribution of the residual sum of squares for the

second model. The T-optimal design provides the

most powerful F test for the lack of fit of the second

model when the first is true. For nonlinear models

this result is asymptotic.

For nonlinear mixed effects models, assuming

that the response function f and the inter-individual

model are correctly specified, we consider the

discrimination problem between two nested intra-

individual variation models. Specifically, let R1

and R2 be two alternative models to describe the

intra-individual variability. It is assumed that R2 is

nested within R1 in sense that both models involve

the same structure R(xi,β i,σ2,λ ) and with respect

to the parameter λ the parameter space Ω2 of R2 is

a subset of the parameter space Ω1 of R1 defined

by the imposition of κ equality constraints. That

is, Ω2 = {λ ∈ Ω1 | hτ(λ ) = 0,τ = 1, . . . ,κ} where
the functions hτ(λ ) are assumed to be continuously

differentiable.

The objective is to find the appropriate form of

the intra-individual covariance matrix R. This can
be achieved by performing an experiment designed

in such a way that observations obtained allow us to

discriminate between R1 and R2 in the best way pos-

sible. For to determine such experimental design, we

propose an optimality criterion which corresponds

to a generalization of the T-optimality criterion. This

design provides the most powerful likelihood ratio

test when the largest model is assumed to be the true

model. In the next section the criterion is derived.

3 Criterion for Discrimination Between Two
Intra-Individual Models

The discrimination between two nested intra-

individual variation models leads to the discrimi-

nation between two nested nonlinear mixed effects

models M1 and M2 such that the second stage is as

in (3) for both models and the first stage of each

model represents a different assumption about intra-

individual model, specifically:

M1: Model 1

ε i | β i ∼ Nn(0,R(xi,β i,σ
2,λ )), γ ∈ Γ1 ⊂ R

q

where γ = (β T ,ψT ,λ T )T

M2: Model 2

ε i | β i ∼ Nn(0,R(xi,β i,σ
2,λ )), γ ∈ Γ2 ⊂ Γ1

where Γ2 = {γ = (β T ,ψT ,λ T )T ∈ Γ1 | hτ(λ ) =
0,τ = 1, . . . ,κ}.
Assuming that the approximation (4) is exact,

these models can be represented as:

M1 : yi ∼ Nn( f (xi,β 1),Σ(xi,γ1))
M2 : yi ∼ Nn( f (xi,β 2),Σ(xi,γ2))

In order to discriminate between these models, as-

suming that the largest model is completely known,

we propose to find the approximate design ω∗

that maximizes the following generalization of T-

optimality criterion over the set Ξ:

TW(ω) = min
γ2∈Γ2

r

∑
k=1

ωkF(xk,γ2) (9)

with

F(xk,γ2) = logdet(Σ(xk,γ2))− logdet(Σ(xk))

+ tr(Σ(xk,γ2)
−1Σ(xk))−n+( f (xk)− f (xk,β 2))

T

×Σ(xk,γ2)
−1( f (xk)− f (xk,β 2))

where f (x) = f (x,β 0
1) and Σ(x) = Σ(x,γ01) for some

known value γ01. The design ω∗ be called TW-

optimal, where the letter W refers to the within-

individual variance-covariance matrix. This design

is locally optimal because it depends on the values

of γ1.

For this class of nonlinear mixed effects models,

this criterion may be considered as an extension of

proposed criterion by [9] for groups with different

designs and a single response.

The justification of criterion is follows.

Let γ0 denote the true value but unknown of pa-

rameter γ . To discriminate between the alternative

models M1 and M2 we consider the likelihood ra-

tio test for the model selection. Since M2 is nested

within M1, the testing problem can be formulated

as:

H0 : γ0 ∈ Γ2 against H1 : γ0 ∈ Γ1 (10)
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where Γ2 = {γ = (β T ,ψT ,λ T )T | γ ∈ Γ1,hτ(λ ) =
0,τ = 1, . . . ,κ}.
The following assumptions will be required:

(A1) Γ1 is a compact set,

(A2) f (x,β ) is a continuous and twice continuously

differentiable function in Γ1,

(A3) Σ(x,γ) is a continuous and twice continuously

differentiable function in Γ1.

Let yk1, . . . ,yknk
be the independent observations vec-

tors of individuals with sampling times vector xk,

k = 1, . . . ,s. Assuming that the approximation (4)

is exact, yk1, . . . ,yknk
, are Nn( f (xk,β ),Σ(xk,γ)) ran-

dom vectors (k = 1, . . . ,s).

For the testing problem (10), the likelihood func-

tion based on the s independent samples is

L(γ) =
s

∏
k=1

(2π)−nkn/2(detΣ(xk,γ))−nk/2

× etr

[
−1

2
Σ(xk,γ)−1Ak

]
exp

[
−1

2
nk(yk− f (xk,β ))T

×Σ(xk,γ)−1(yk− f (xk,β ))
]

where yk = n−1k ∑nk
m=1 ykm, Ak = ∑nk

m=1(ykm −
yk)(ykm− yk)

T and etr(·) = exp[tr(·)].
The log of the likelihood function is

�(γ) =
s

∑
k=1

nk

[
−n
2
log2π

−1

2
logdet(Σ(xk,γ))− 1

2
tr(Σ(xk,γ)−1Sk)

−1

2
(yk− f (xk,β ))T Σ(xk,γ)−1(yk− f (xk,β ))

]
where Sk = n−1k Ak. If γ̂1 and γ̂2 are the maximum

likelihood estimators over Γ1 and Γ2 respectively,

the likelihood ratio test of H0 against H1, reject H0

for large values of

−2log λ̂N =−2{�(γ̂2)− �(γ̂1)}

=
s

∑
k=1

nk{F(yk,Sk, f̂ 2k, Σ̂2k)−F(yk,Sk, f̂ 1k, Σ̂1k)}

with

F(y,S, f̂ j, Σ̂ j) = logdet(Σ̂ j)+ tr
[
Σ̂
−1
j S

]
+(y− f̂ j)

T Σ̂
−1
j (y− f̂ j)− logdet(S)−n

(11)

where f̂ j = f (x, β̂ j) and Σ̂ j = Σ(x, γ̂ j), j = 1,2.

Under H0, the test statistic −2log λ̂N has asymp-

totically a central χ2 distribution with κ degrees of

freedom. Therefore, an approximate test of size α
of H0 is to reject H0 if −2log λ̂N > cκ(α), where

cκ(α) denotes the upper 100α% point of the χ2
κ dis-

tribution.

In analysis of mean and covariance structure mod-

els, the function F(y,S, f j,Σ j) is known as the max-

imum likelihood discrepancy function which mea-

sures the discrepancy between the sample moments

and the moments based in the model which depends

on the parameter γ (see [16]). The minimizing of this

function leads to the maximum likelihood estimator

for ith group. Extensions of discrepancy function to

more than one group is straightforward [2]. Specifi-

cally, the discrepancy function for s groups is defined
as

F(γ) =
s

∑
k=1

nk

N
F(yk,Sk, f jk,Σ jk), j = 1,2 (12)

Thus, the test statistic (11) can be written as

−2log λ̂N = N(F(γ̂2)−F(γ̂1)) (13)

Now, the power of this test, P(−2log λ̂N > cκ(α) |
γ ∈ Γ1), is a function of the alternative parameter

value γ . Given a specific value of N denoted by N0

and a specific alternative parameter value γ01 ∈ Γ1

close to Γ2, this probability can be approximated by

considering the asymptotic distribution of −2log λ̂N

under a sequence {γ0N} of local alternatives converg-
ing to a point γ02 in Γ2 (see [17]). It is assumed that

γ02 is an interior point of Γ1. The parameter value γ01
is identified then with γ0N0

. Since F(γ) in (12) is a dis-
crepancy function, under assumptions (A1)-(A3) and

regularity conditions, this asymptotic distribution is

the noncentral Chi-square distribution χ2
κ(δ ) with κ

degrees of freedom and noncentrality parameter δ ,
which can be approximated by the value:

δ̃ = N min
γ2∈Γ2

s

∑
k=1

nk

N
F( f 01k,Σ

0
1k, f (xk,β 2),Σ(xk,γ2))

= N× min
γ2∈Γ2

s

∑
k=1

nk

N
F(xk,γ2)

= N×TW(ζN)

(14)

where f 01 = f (x,γ01) and Σ0
1 = Σ(x,γ01), see [16].

Since the power of test is a monotonically increasing

function of the noncentrality parameter, from (14)
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the power is an increasing function of TW(ζN) and

hence can be maximized by the choice of design ζN .

Finally, the exact design ζN can be replaced by

the corresponding approximate design ζ which is

represented by ω . Thus we obtain the TW-criterion

defined in (9).

A Necessary and Sufficient Condition for TW-
Optimality

The following definition is fundamental for charac-

terizing of TW-optimal designs.

Definition 1. A design ω is called a regular design

if the following set

Γ2(ω) =

{
γ̃2 : γ̃2(ω) = arg min

γ2∈Γ2

r

∑
k=1

ωkF(xk,γ2)

}
is singleton, otherwise it is called singular design.

Hence, if ω is a regular design and γ̃2 ∈ Γ2(ω),

then γ̃2 is the unique solution of the equation
r

∑
k=1

ωkF(xk, γ̃2) = min
γ2∈Γ2

r

∑
k=1

ωkF(xk,γ2)

The following theorem is the equivalence theorem

for TW-criterion which provides precise conditions

for checking whether a particular design is TW-

optimal.

Theorem 1. Let ω∗ be a regular design. Under the
assumptions (A1)-(A3):

(i) A necessary and sufficient condition for the
design ω∗ to be TW-optimal is F(x,γ∗2) ≤
TW(ω∗), ∀x ∈X n, where γ∗2 ∈ Γ2(ω∗).

(ii) The function F(x,γ∗2) achieves its maximum
value at the support points of the optimal de-
signs ω∗.

Proof. The proof of this theorem is similar to the

proof of Theorem 1 in [9].

(i) First, we prove that the criterion TW is a con-

cave function. To this end, suposse ω1, ω2 ∈ Ξ
and α ∈ [0,1]. It is clear that Ξ is a convex set.

Let ω = (1−α)ω1+αω2, then

TW(ω) = min
γ2∈Γ2

[
(1−α)

r

∑
k=1

ω1kF(xk,γ2)

+ α
r

∑
k=1

ω2kF(xk,γ2)

]

≥ (1−α) min
γ2∈Γ2

r

∑
k=1

ω1kF(xk,γ2)

+α min
γ2∈Γ2

r

∑
k=1

ω2kF(xk,γ2)

= (1−α)TW(ω1)+αTW(ω2)

Now, the directional derivative of TW at ω in

the direction of δω̄ = ω̄ −ω where ω̄ is any

design, is given by

∂TW(ω, ω̄) = lim
λ→0+

TW(ω +λδω̄)−TW(ω)

λ

Let g(ω,γ2) = ∑r
k=1 ωkF(xk,γ2). Then

TW(ω) = min
γ2∈Γ2

g(ω,γ2)

Since f (x,β ) and Σ(x,γ) are continuous and

twice continuously differentiable in Γ1, it

follows that g(ω + αδω̄ ,γ2) is a continu-

ous function at α and in Γ2. Additionally,
∂g(ω +αδω̄ ,γ2)

∂α
exists and is also continuous

at α and in Γ2. Hence, applying the Theorem

3.3 of [13], we get

∂TW(ω, ω̄) = min
γ2∈Γ2(ω)

∂g(ω,γ2, ω̄)

where ∂g(ω,γ2, ω̄) in the direction derivative

of g at ω in direction of δω̄ .

Note that if Γ2(ω) = {γ̃2}, then

∂TW(ω, ω̄) = ∂g(ω, γ̃2, ω̄) (15)

and using the definition of directional deriva-

tive

∂g(ω, γ̃2, ω̄)

=
r

∑
k=1

ω̄kF(xk, γ̃2)−
r

∑
k=1

ωkF(xk, γ̃2)

=
r

∑
k=1

ω̄kφ(xk,ω)

where φ(x,ω) = F(x, γ̃2)−TW(ω).

As ω∗ is a regular TW-optimal by assumption,

we have Γ2(ω∗) = {γ∗2} and from (15) it fol-

lows that

∂TW(ω∗,ω) =
r

∑
k=1

ωkφ(xk,ω∗) (16)

where ω is any design.
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Since TW(ω) is a concave function of ω , then

the nonpositivity of the directional derivative

at ω∗ is a necessary and sufficient condition

for the optimality of ω∗. From this fact and by

(16), it follows that a necessary and sufficient

condition for the optimality of ω∗ is that ω∗

fulfills the inequality

max
ω∈Ξ

[
r

∑
k=1

ωkφ(xk,ω∗)

]
≤ 0

Consequently

max
x∈X n

φ(x,ω∗)≤ 0

which yields to

φ(x,ω∗)≤ 0, ∀x ∈X n

(ii) We assume the contrary, this mean there is

a set {x∗1, . . . ,x∗s1} ⊂ supp(ω∗) and a scalar

a such that ∑s1
k=1 ω∗k φ(x∗k ,ω

∗) ≤ a < 0 and

φ(x∗,ω∗) = 0 for x∗ ∈ supp(ω∗)\{x1, . . . ,xs1}.
Then

s

∑
k=1

ω∗k φ(x∗k ,ω
∗)≤ a < 0 (17)

where s is the number of elements in supp(ω∗).
From (15) taking ω = ω̄ = ω∗, we have

s

∑
k=1

ω∗k φ(x∗k ,ω
∗) = 0 (18)

This contradiction proves the assertion.

4 An Example

In this section we present an example to illustrate

the use of the criterion proposed. This is a theorical

pharmacokinetics example described by [8] in a sim-

ulation study and used by [10] in the application of

methods to find optimal population designs to esti-

mate population characteristics of the pharmacoki-

netics of a drug in sparse-sampling experiments. We

reproduce the models and parameters values from

the second study.

The pharmacokinetic studies seek to understand

the process of drug absortion, distribution and elimi-

nation using for example kinetic models to describe

the plasma concentration as a function of time. The

simplest compartmental model assumed for such a

relationship is the nonlinear model given by,

plasma concentration=
Dose

V
exp

(
−Cl

V
× time

)
whereV is the volume of distribution,CL is the clear-

ance and Cl/V represents the rate of elimination; V
andCL are the parameters of model which vary from

individual to individual across the population under

study. Suposse that the objective is to design an ex-

periment for discriminate between two alternative

models for variation within individuals. The model

M1 assumes uncorrelated errors with variance pro-

portional to a power of mean response and the model

M2 also assumes uncorrelated errors but constant

variance. The models are as follows.

The nonlinear mixed effects model can be written

as

Stage 1. (Intra-Individual Variation)

yil = f (xil,β i)+ εil

f (xil,β i) =
D
Vi

exp

(
−Cli

Vi
xil

)
ε i | β i ∼ Nn(0,R(xi,β i,σ

2,λ )) (19)

where, for the subject i, yil represents the lth con-

centration measurement taken at time xil , Cli is

the clearance, Vi is the volume of distribution and

β i = (Cli,Vi)
T . The dose D = 1 is fixed for all indi-

viduals.

Stage 2. (Inter-Individual Variation)

β i = β +bi, bi ∼ N2(0,D), D =

[
ψCl 0

0 ψV

]
(20)

where β = (Cl,V )T is the mean values vector.

The two alternative models for the within-

individual covariance matrix R(xi,β i,σ2,λ ) are:

M1. Variance proportional to a power of mean
response and uncorrelated errors

ε i | β i ∼ Nn(0,R(xi,β i,σ
2,λ ))

R(xi,β i,σ
2,λ ) = σ2G(xi,β i,θ)

where

G(xi,β i,θ) = diag( f 2θ (xi1,β i), . . . , f 2θ (xin,β i))
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M2. Constant variance and uncorrelated errors

ε i | β i ∼ Nn(0,R(xi,β i,σ
2,λ ))

R(xi,β i,σ
2,λ ) = σ2In

It is assumed that the variance σ2 is a fixed constant

equal to 0.15 for both models.

Since the model M2 is nested within M1, the true

model is M1 with the population parameter vector

given by

γ01 = (Cl1,V1,ψCl1 ,ψV1
,θ)T

where Cl1 = 0.5, V1 = 0.2, ψCl1 = 0.01, ψV1
=

0.0016 and θ = 1.

For the alternative model M2 the population pa-

rameter vector is

γ2 = (Cl2,V2,ψCl2 ,ψV2
) (21)

The set of possible sampling times considered is

X = {0.05,0.15,0.3,0.6,1} hours after administra-

tion. We assume that three observations are avail-

able for each patient, n = 3, without replicates at

an identical time point, which in a pharmacoki-

netic study is a sparse sampling situation. There-

fore, the design region is given by the set of com-

binations of three sampling times from X , that

is, X 3 = {x = (x1,x2,x3);x j ∈X , j = 1,2,3} con-
taining 10 elements. The sequences are:

x1 = (0.05,0.15,0.3), x2 = (0.05,0.15,0.6),

x3 = (0.05,0.15,1), x4 = (0.05,0.3,0.6),

x5 = (0.05,0.3,1), x6 = (0.05,0.6,1),

x7 = (0.15,0.3,0.6), x8 = (0.15,0.3,1),

x9 = (0.15,0.6,1), x10 = (0.3,0.6,1).

To find the locally TW-optimal design we used

the nominal values of parameters defined previously

like the local parameters and the design region X 3.

The optimal design was calculated optimizing the

TW-criterion implemented through an algorithm in

R [15]. The function nlminb was used for the

optimization in the design region X 3.

The local TW-optimal design obtained is a two-

point design

ζ ∗ =
{

(0.05,0.15,0.3) (0.05,0.15,0.6)

0.82 0.18

}
(22)

and the parameter vector for the M2 model obtained

in the optimization procedure is

γ∗2 = (Cl∗2 ,V
∗
2 ,ψ

∗
Cl1 ,ψ

∗
V1
)T

= (0.6287,0.1998,1.4059,0.0027)T

Thus, if the objective is to design a new experiment

with sparse sampling for discriminate between the

M1 and M2 models then for about a 82% of the

patients, blood samples should be taken at 0.05, 0.15

and 0.3 hours, and for about 18% blood samples

should be taken at 0.05, 0.15 and 0.6 hours.
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Figure 1. Sensitivity function for sampling sequences.

To check that the design obtained is TW-optimal

we use the equivalence theorem. First, we enumer-

ate all candidate sampling sequences, that is, the

elements of X 3 and calculate the sensitivity func-

tion F(xi,γ∗2)−TW(ζ ∗) for each sampling sequence.

Then plot the sensitivity function as a function of in-

dex i. The resulting plot is shown in Figure 1. From

this plot it is clear that the design ζ ∗ consisting of

the x1 and x2 sequences is TW-optimal.

5 Conclusions

A generalization of T-optimality criterion has been

proposed for discriminate between two nested non-

linear mixed effects models. The first stage of each

model represents a different assumption about intra-

individual random variation and the second stage

is the same for both models. Assuming that the re-

sponse function is common for both models and it

is correctly specified, we observe that the criterion

development in this paper may be considered an ex-

tension of the proposed criterion by [9] for groups

with different designs and a single response.

In the case of nested models an alternative cri-

terion for discriminate between models is the DS-
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criterion which is appropiate when interest is in es-

timating a subset of s parameters. Since the rival

models considered in this paper are nested this crite-

rion may be applied. The comparison between the

performances of TW- and DS-optimal designs will

be studied in future papers.

Another future work involve the study of designs

with multiple objectives as the compound design.

For example, the compound criteria for parame-

ter estimation and for discrimination between mod-

els using D-optimality with TW-optimality and D-

optimality with DS-optimality.
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