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Abstract

Based on the 3+1 formalism by which is possible the formulation of an arbitrary reference frame within the
General Relativity Theory, (GRT), we establish deep analogies between gravitational and electromagnetic
fields. To achieve it, new gravitational invariants expressions from the Bel Robinson tensors, and through
the Weyl’s quasi-electric and quasi-magnetic field’s tensors in gravitation, were obtained. Furthermore,
some theoretical consequences on the development implications of those analogies are established and
discussed within the context of the yet to be proved gravitational waves’ experimental reality.

Key words: TGR’s Interpretation, BR’s or Superenergy Tensor, Gravitoelectromagnetic Tensor, Stress-
Energy, Gravitational Waves.

Resumen

Basados en el formalism 3+1, con el cual es posible formular un sistema de referencia arbitrario en la
Teoría General de la Relatividad TGR, establecemos profundas analogías entre los campos gravitacional
y electromagnético. Para lograrlo se obtuvieron nuevas expresiones para los invariantes gravitacionales y
del tensor de Bel Robinson a través de los campos de los tensores cuasi-eléctricos y cuasi-magnéticos de
Weyl en gravitación. Adicionalmente, son brevemente discutidas algunas implicaciones teóricas de estas
analogías en el contexto de la aún no verificada realidad experimental de las ondas gravitacionales.
Palabras clave: Interpretación de la TGR, Tensor de superenergía o BR, Tensor gravitoelectromagnético,
Energía tensionada, Ondas gravitacionales.
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1. Introduction

Since the formulation of the General Theory of
Relativity (GTR) in 1916, as a relativistic theory of
gravitation, several analogies have been established
and discussed between gravitational and electromag-
netic fields, frantically searching for perspectives of
solution on the problem represented by the gravi-
tational energy definition. This problem is closely
related with that of gravitational waves, as well as
the problem of gravity quantization, symmetries, and
conservation laws, among other important problems
which remain open in contemporary physics. In this
article, emphasis is done on the theoretical signifi-
cance of the analogy between GTR and electromag-
netic theory.

In that spirit, Bel’s tensor was introduced in the
late 50’s as an attempt to formulate within gravi-
tational theory, what the energy-momentum tensor
represents to electromagnetic theory [1,2]. The un-
derlying idea consisted in taking the electromagnetic
energy-momentum field tensor and attempting to
successfully translate it into its gravitational counter-
parts by substituting Faraday’s tensor for Riemann’s.
The result is a fourth order tensor first studied by Bel,
which has mathematical properties similar compared
to those of the electromagnetic energy-momentum
field tensor. Now, when Riemann’s tensor is re-
placed by Weyl’s, BR’s tensor is obtained. BR’s
tensor represents a different energy, often referred to
as “super-energy”, which continues to be an object
of debate, due to the fact that there are no definite
conclusions on its physical meaning, though con-
sensus has been reached on the opinion it does not
represent the gravitational field’s energy, as well as
on the one regarding the term “super-energy” as a
hypothetical one [5, 8].

Consequently, one of the most remarkable theo-
retical aspects of GTR continues to be the difficulty
to define an adequate concept of gravitational energy
density. The origin of that difficulty lies on the equiv-
alence principle, because any geometrophysical ob-
ject representing gravitational energy-momentum,
can be made to vanish by adequately choosing the
reference frame employed. Such an object would not
be a tensor but a pseudo-tensor and will evidently
depend upon the reference frame selected. Several
expressions attempting to describe gravitational en-
ergy have been proposed, but no general satisfactory

formalism has emerged yet. (In other words, only
formalisms for particular cases have been discussed)
[16].

This is the general context in which the BR’s
tensor expression is proposed in this paper, and is de-
veloped by means of the electric and magnetic Weyl
tensors [3] and 3+1 formalism [13, 9]. It should be
noted that as a general context, it is of the most and
actual importance in theoretical physics, since the
existence of gravitational waves direct experimental
proof, remains prospective, up to the present day
[15].

2. Experimental

2.1. 3+1 Formalism

In our general relativistic approach and 3+1 for-
malism, a monad is a time-like vector field which
is interpreted as a fourth-velocity field τ , of local
observers equipped with all necessary measurement
devices. A congruency of integral lines of that vector
field, can be associated to the region of space-time
where the reference frame is located (i. e., timelines
of the particles forming the reference body).

In the region under consideration such monad
is introduced as time τµ = dxµ

ds in addition to fourth-
dimentional metric g, with τ · τ =+1 as its normal-
ization condition. Then the following symmetrical
tensor is the projector under the local orthogonal
subspace for τ:

b = g− τ⊗ τ (1)

With the properties:

bλ

λ
= 3, detbµν = 0, bµνbλν = bλ

µ (2)

As a result, b simultaneously plays both the role
of projector and metric in this subspace. In addi-
tion, it is worthy of notice that this three-dimentional
physical space defined by the reference frame, is
non-holonomic when the τ-congruence is rotating
[10].

On the other hand, in order to apply the 3+1 for-
malism in a way designed to serve our purposes, the
projection for an arbitrary four-(co)vector q onto the
monad is defined as the scalar:

(τ)
q := q · τ (3)
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Complementarily, the projection onto the three-
space of the reference frame is defined as the four-
dimensional (co)vector:

(3)
q := b(q, ·) (4)

Hence, q then can be decomposed as:

q =
(τ)
q τ +

(3)
q (5)

Operating equivalently, it can be shown that:

p ·q≡ g(p,q) =
(τ)
p

(τ)
q +

(3)
p·

(3)
q =:

(τ)
p

(τ)
q −

(3)
p•

(3)
q (6)

With p · q = ∗ [(τ ∧ p)∧∗(τ ∧q)]; notation intro-
duced by Mitskievich [9]. Thus, equations (3) to
(6) succinctly show how the 3+1 formalism allows
the spatial and temporal splitting of physical magni-
tudes.

2.2. The Energy-Momentum Electromagnetic
Field Tensor Trough 3+1 Formalism

The application of the 3+1 formalism requires
the introduction of the language of differential forms,
where the electromagnetic four-potential is repre-
sented by the 1-form:

A := aµdxµ (7)

Conversely, and the 2-form of the electromagnetic
field strength is:

F := dA =
1
2

Fµνdxµν (8)

Therefore electric and magnetic fields can be defined
as follows [10, 15]:

E = Fαβ τ
β dxα ; B =−F∗

αβ
τ

β dxα (9)

Which have the equivalent expressions:

E =∗ (τ ∧∗ F) ;B =∗ (τ ∧F) (10)

* being the Hodge operator. Let us now notice that
E and B generated in this fashion, are very simple
and applicable definitions for all reference frames
and gravitational fields of the electric field strength
and magnetic displacement vector, both orthogonal
to τ:

E · τ = B · τ = 0 (11)

In this way, definitions in equations (9) and (10) im-
ply the following decomposition:

dA = F = E ∧ τ +∗ (B∧ τ) (12)

And its dual:

∗F =−B∧ τ +∗ (E ∧ τ) (13)

The electromagnetic invariants can then be expressed
as follows:

I1 = FστFστ = 2(B•B−E •E) (14)

I2 = F∗στFστ = 4E •B (15)

Magnitudes (14) and (15) are invariants in any refer-
ence frame and gravitational field. Upon that obser-
vation, a very simple classification system in terms
of electric, magnetic and null field types has been
established [6], [12]:

Type A (electric): I1 < 0

Type B (magnetic): I1 > 0

Type C (null): I1 = 0

(16)

Invariant I2, or more precisely a pseudo-invariant,
allows the setting up of an additional classification;
I2 = 0 as pure and I2 6= 0 as impure electric or mag-
netic fields respectively. Being the previous an alge-
braic classification, the type of electromagnetic field
can vary from one point to another.

Now, to continue advancing along the main line
of this paper, an important object in electromagnetic
theory, is the energy-momentum electromagnetic
field tensor -which defines its energy density-, given
by [6], [9]:

T ν
emµ =− 1

8π

(
Fµλ Fνλ +F∗

µλ
Fνλ
∗

)
(17)

Which satisfies T ν
emν ≡ 0. In addition, from T ν

emµ

it can be obtained an identity in accordance with
Wheeler’s Geometrodynamics [14]:

T ν
emµT λ

emν =
1

(8π)2

(
B2−E2)

−4(E •B)2
δ

λ
µ u

(18)

Finally, in order to express the energy-momentum
electromagnetic field tensor using observable magni-
tudes, the 1-form T ν

emµτνdxµ must be considered. It
can be found that:

T ν
emµτνdxµ =

1
(8π)

∗ (E ∧∗ F +B∧F) (19)
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From which it can be obtained:

T ν
emµτνdxµ =

1
(8π)

[(
E2 +B2)

τ +2E×B
]
, (20)

completely in agreement with usual interpretation of
the first term; along the physical time of the reference
frame (τ), as the electromagnetic energy density, and
of the second one; in the three-space of the reference
frame, as the electromagnetic energy flux density
(Poynting’s vector magnitude).

It also can be useful for the purposes of this
paper the following classical 3-dimensional electro-
magnetic stress tensor expression [7]:

T αβ =
1

(4π)

[
−
(

EαEβ +BαBβ

)
+

1
2

δ
αβ
(
E2 +B2)], (21)

because of its purely spatial meaning.

2.3. Weyl’s Tensor Trough 3+1 Formalism

It is known that in the space-time vacuum
(Rαβ = 0 and R = 0) Weyl’s tensor behaves as the
curvature tensor. In these conditions Weyl’s tensor
is conformally defined as follows:

Cαβ µν = Rαβ µν −Rν [αgβ ]µ +Rµ[αgβ ]ν

+
1
3

Rgν [αgβ ]µ (22)

Hence, Cαβ µν = Rαβ µν . Historically, while re-
searching the problem of radiation within TGR, the
first attempt to split the curvature tensor in the sense
of a reference frame decomposition was performed
by Matte in 1953, and further developed by Za-
kharov in 1973 [15]. Afterward, Bel and Robinson
[11] proposed a local energy density definition for
the gravitational field trough the following tensors
in monad terms:

Xβ µ = R∗
αβλ µ

τ
α

τ
λ ;

Yβ µ = Rαβλ µτ
α

τ
λ ;

Zβ µ =−R∗
αβλ µ

τ
α

τ
λ

(23)

Resulting the scalar:

V =
1
4

(
Xβ µXβ µ +Yβ µY β µ +2Zβ µZβ µ

)
(24)

Where it can be shown that if Rαβλ µ 6= 0; then V > 0
in all circumstances.

In analogy with electromagnetic theory’s electric
and magnetic fields, the following notation -using
the 3+1 representation as well- was introduced [16]:

εαβ =Cαβ µντ
µ

τ
ν ; Bαβ =−C∗

αβ µν
τ

µ
τ

ν (25)

Where εαβ , and Bαβ are symmetric and trace-
less. These tensors are called electric and magnetic
Weyl tensors (also called quasi-electric and quasi-
magnetic fields or tensor fields), respectively, and
play the role of electric and magnetic tension in the
electromagnetic theory.

Therefore, also in close analogy with what hap-
pens to the energy-momentum electromagnetic field
tensor, we propose that Weyl’s tensor can be defined
using the quasi-electric and quasi-magnetic fields
[4]:

Cαβ µν := 4τ[αεβ ][ντµ]

+2εα[νbµ]β −2εν [β bµ]α

−2Eαβω∈

(
τ

ωB∈[ντ µ]+Bω

[νb∈µ]

)
−2Eνµω∈

(
τ

ωB∈[β τ α]+Bω

[β b∈α]

) (26)

Aided by the Hodge operator (∗), its dual can be
obtained:

C∗
αβ µν

:=−4τ[αBβ ]ντ µ

−2Bα[νbµ]β +2Bβ [νbµ]α

+2Eαβω∈

(
τ

ω
ε
∈
[ντ µ]+ ε

ω

[νb∈µ]

)
+2Eνµω∈

(
τ

ω
ε
∈
[β τ α]+ ε

ω

[β b∈α]

) (27)

Where Eαβνµ =
√
−g ∈αβνµ is the Levi-Civita’s

tensor. Weyl’s tensor defined this way has the same
symmetry properties of Riemann’s tensor, i. e.:

Cαβ µν =Cµναβ =C[αβ ][µν ]

Cα[β µν ] = 0 (28)

gανCαβ µν = 0

Brackets [...] meaning anti-symmetry properties for
those indexes contained by them.

3. Invariants and Quasi-Electric/magnetic Fields

Now, within TGR’s context, the system of in-
variants for Weyl’s tensor is composed of fourteen
elements [10]. Taking into account the correspon-
dence between Weyl’s tensor and Riemann’s in
space-time vacuum, there are only four relevant in-
dependent invariants. They are:
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I1 =Cαβ µνCαβ µν ;

I2 =C∗
αβ µν

Cαβ µν

I3 =Cαβ µνCαβγδCµν

γδ
;

I4 =C∗
αβ µν

CαβγδCµν

γδ

(29)

The result of calculating these invariants with Weyl’s
tensor written in terms of quasi-electric and quasi-
magnetic fields is [4]:

First invariant:

Ig1 =Cαβ µνCαβ µν = 8
(

εαβ ε
αβ −Bαβ Bαβ

)
(30)

This result is very similar to the first electromagnetic
invariant (14).

Second invariant:

Ig2 =C∗
αβ µν

Cαβ µν =−16εαβ Bαβ (31)

In its turn being very similar to the second electro-
magnetic invariant (15).

Third invariant:

Ig3 =CαβλρCαβστCστ

λρ
=−16Bαβ Bαω

ε
β

ω (32)

Fourth invariant:

Ig4 =Cνµλρ
∗ CνµστCστ

λρ
= 16εαβ ε

αωBβ

ω (33)

Is important to note that these last two invariants
do not possess electromagnetic counterparts to be
compared. The theoretical relevance of invariants
(30) to (33) consists mainly, in them being capable
of expressing Bel’s second criterion for the existence
of gravitational waves, since:

Ig1 = Ig2 = Ig3 = Ig4 = 0 (34)

For any isotropic gravitational field [15].

In this context we can propose, similarly as done
in (16), some necessary conditions –though probably
not sufficient– for the classification of quasi-electric
and quasi-magnetic fields:

Ig1 6= 0; Ig2 = Ig3 = Ig4 = 0 (35)

Where if Ig1 > 0, the field will have quasi-electric na-
ture; and if Ig1 < 0, the field will have quasi-magnetic
nature [4].

3.1. BR’s “Super-Energy” Tensor Through 3+1
Formalism

Replacing (23) into (24) for a vacuum space-
time it is obtained the following scalar:

V = 4πTαβ µντ
α

τ
β

τ
µ

τ
ν (36)

Magnitude Tαβ µν being called BR’s tensor or “super-
energy” tensor [5], [8], referring to a fourth rank
tensor with the form:

Tαµλρ =
1

8π

(
Rαβ µνRβ

λ
ρ

ν +R∗
αβ µν

R∗β
λ

ρ
ν

)
(37)

Comparing (37) with (17) the analogy between both
expressions becomes noticeable, despite their differ-
ence in tensorial rank. The role played by the field
intensity in expression (17) is in equation (37) per-
formed by Riemman’s space-time curvature tensor
(relativistic intensity). Like the energy-momentum
electromagnetic field tensor, the “super-energy” ten-
sor is symmetric for all indexes and its contractions.
For instance, also in vacuum space-time conditions,
it can be shown that T αµν

α = 0. Finally, in absence of
non-gravitational fields, the covariant conservation
law T µνλρ ;ρ = 0 is observed as a consequence of
Bianchi’s identities and the vanishing of Einstein’s
tensor.

Always in vacuum space-time conditions, where
Weyl’s tensor behaves as Riemann’s, it can be pro-
posed that:

Cαβ µν = Rαβ µν (38)

Hence, BR’s tensor becomes the following tensor:

Tαµλρ =
1

8π

(
Cαβ µνCβ

γ ρ
ν +C∗

αβ µν
C∗βγ ρ

ν

)
(39)

Now, a new explicit expression for this last tensor
can be obtained by writing Weyl’s tensor in terms
of quasi-electric and quasi-magnetic fields. Oper-
ating in the same way previously used to find the
invariants, the following expression is proposed as a
new and original expression for BR’s tensor (another
name could be posited for it):

Tαµλρ =
1

8π

[(
εβνε

βν +BβνBβν

)
×
(
16τατµτλ τρ −24τλ τρbαµ +8bµαbρλ

)
+24εeρε

e
ατµτλ +24BeρBe

ατµτλ

+8ε
ν

λ
εανbµρ +8Bν

λ
Bανbµρ

]
(40)
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Now, regarding its physical meaning, in first instance,
the scalar

(
εβνεβν +BβνBβν

)
could be called local

gravitational “super-energy density”. Is clear that
the third, sixth, and seventh terms would allow us to
identify a gravitational analogue to the electromag-
netic stress tensor, which could be called the “gravi-
tational stress tensor”. Remaining terms would then
represent an analogue of the electromagnetic energy
flux, which could be in its turn called -rather awk-
wardly, we are afraid- “gravitational super-energy
flux”. Let us mention again that, although inter-
esting and colorful, in all these cases the referred
analogies are somewhat liberal, considering we are
comparing quantities with different tensorial ranks.
All this adding to the point we would want to stress
with this article: Given the fact that the existence of
gravitational waves has not been directly proven yet,
new expressions of BR’s tensor such as the proposed
here, as well as all the sort of related subjects on
these matters appearing in articles similar to this one
should be examined and discussed thoroughly, since
there is the possibility that usual interpretations on
the physical meaning of main TGR’s entities could
have been over optimistic.

With that we mean that rather than trying to en-
force the parallelism between TGR and electromag-
netic theory, as an obvious and settled argument in
favor of the existence of gravitational waves, perhaps
it could be interesting to inquire on its differences
(non analogical properties). Even in the case that the
existence of gravitational waves became undoubt-
edly proven in the near future, considering the math-
ematical differences among them, from a theoretical
viewpoint, it would be clear that the analogy is con-
sistent and fruitful only to a certain extent, and that
the differences in the sake of theoretical openness
and completion need not to be put under the carpet,
but, on the contrary, assimilated in a proper fashion
(developing interpretations for them).

In other words, when choosing at all costs to
interpret TGR’s entities in a fashion compatible with
the existence of gravitational waves, in the sense of
electromagnetic theory, a wealth of prospective re-
alities could be bluntly dismissed, i. e., related to
interpretations of TGR’s entities which could open
up new and interesting theoretical perspectives if
properly inquired. On these lines, a new expression
for BR’s tensor such as the one proposed here, helps

to bring the subject out of the shadows, since the
analogy between TGR and electromagnetic theory
via BR’s tensor, is only straightforward for the case
of the equally troublesome local gravitational “super-
energy density and “gravitational stress tensor”. Ad-
ditional analogies are even more troublesome, as
shown.

4. Conclusions

• Original expressions for BR’s and Weyl’s
tensors in terms of quasi-electric and quasi-
magnetic fields were proposed (40).

• Using the 3+1 formalism, explicit expressions
for the fundamental invariants (29) of gravita-
tion in a curved space, were found by means
of a Riemann’s tensor decomposition, through
the conformal Weyl’s tensor via quasi-electric
and quasi-magnetic fields (25).

• The new expression for BR’s tensor can con-
tribute to the clarification of the “super-energy”
concept meaning, within the actual context of
TGR. From the perspective of theoretical cri-
teria for the existence of gravitational waves,
Bel’s second criterion is reaffirmed by the
present treatment, relating quasi-electric (εαβ )
and quasi-magnetic (Bαβ ) tensors with the
prospective reality of gravitational radiation, in
close analogy to electromagnetism. Moreover,
an alternative classification for those fields is
proposed, remarking the elegant isomorphism
between electromagnetism and gravitation.
Analogies between gravitational and electro-
magnetic fields and their invariants, became
noticeable when comparing the “super-energy”
tensor with the energy-momentum electromag-
netic field tensor. Interestingly but not unex-
pectedly, the “super-energy” tensor exhibits
all physical quantities as composed by sep-
arated quasi-electric and quasi-magnetic ele-
ments. The scalar

(
εβνεβν +BβνBβν

)
is iden-

tified as local gravitational “super-energy den-
sity”. Third, sixth, and seventh terms of “super-
energy” tensor are associated to a “gravitational
stress tensor”. Remaining terms can be imag-
ined to represent a “gravitational super-energy
flux”. These analogies are not as straightfor-
ward as desirable, because of the gravitational
field’s complex nature and other circumstances.
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• The analogy between TGR and electromag-
netic theory via BR’s tensor and similar pro-
cedures, show to us that from a purely theoret-
ical (mathematical-physics) standpoint, analo-
gies can be reasonably argumentative; but from
a science viewpoint philosophy, the initiative
could be considered exclusive and limiting to-
wards the true theoretical possibilities of TGR’s
mathematical formalism.
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