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Abstract

Copulas have become a useful tool for modeling data when the dependence among random variables exists 
and the multivariate normality assumption is not fulfilled. The copulas have been applied in several fields. 
In finance, copulas are used in asset modeling and risk management. In biomedical studies, copulas are used 
to model correlated lifetimes and competitive risks [1]. In engineering, copulas are used in multivariate 
process control and hydrological modeling [2]. The interest in modeling multivariate problems involving 
dependent variables is generalized in several areas, making this methodology in a convenient way to model 
the dependence structure of random variables. However, in practice a first step before modeling phenomena 
through copulas is to assess whether there is dependence among the variables involved. In this paper some 
graphical methods to detect dependence are discussed and their performance will be evaluated through a 
simulation study. An application of graphical methods presented to insurance data is illustrated.
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Resumen

Las cópulas se han convertido en una herramienta útil para modelar datos cuando existe una dependencia 
entre las variables aleatorias y el supuesto de normalidad no se cumple. Las cópulas se han aplicado en 
diversos campos, tales como finanzas, estudios biomédicos y en ingeniería. El interés en modelar proble-
mas multivariados que involucran variables dependientes se generaliza en diversas áreas, haciendo de esta 
metodología una forma conveniente para modelar la estructura de dependencia entre las variables aleato-
rias. Sin embargo, en la práctica un primer paso antes de empezar a modelar fenómenos mediante cópulas 
es evaluar si existe dependencia entre las variables involucradas y en qué grado. En este artículo algunos 
métodos gráficos para detectar dependencia son discutidos y el desempeño de los mismos se evaluará a 
través de un estudio de simulación. Se ilustran los métodos gráficos presentados mediante una aplicación 
a datos de seguros.
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1. INTRODUCTION

In probability theory the functions called co-
pulas can to represent distribution functions  and  
they are a convenient way to model the dependen-
ce structure of random variables [1]. This concept 
allows  building  models  beyond the standards 
in the analysis of dependence among variables, 
further, allows to capture non-linear dependence 
relationships and only need to specify the copula 
and marginal function associated with the ran-
dom variables involved [3].

Before starting to fit models to a set of random 
variables, an analysis of the type and degree of 
dependence among them should be realized. In 
statistics, descriptive and graphical analysis plays 
an important role because it is the basis for reali-
ze and propose more complex models.

To study the dependence among variables 
some graphical methods like the -plot and the 
K-plot (Kendall plot) have been developed. The 
former was initially proposed by [4] and the latter 
was proposed by [5]. Some applications of these 
methods can be found in [6] where the relations-
hip between oil price variation and stock indices 
is measured, in [7] where the relationship be-
tween storm characteristics are analyzed, and in 
[8] where the dependence between the infiltration 
index and the maximum rainfall intensity in an 
hydrological application.

In this paper both graphical methods are 
analyzed and compared through a simulation 
study  with  the traditional scatter plot. In parti-
cular we study the effect of some factors that can 
affect the performance of the dependence graphs.

This paper is organized as follows. Section 2 
in- troduces the concept of copulas and the pa-
rameter of dependence used in this work, the 
Kendall’s t, its most relevant properties and its 
form according to the copula used. Section 3 pre-
sents the definitions of the graphical methods to 
detect dependence explored in this paper, -plot 
and K-plot. In section  4, a simulation studio to 
assess the behavior of methods to detect depen-
dence in comparison with the scatter plot is per-
formed. Section 5 presents an application of both 
methods to real data. Finally, section 6 concludes 
this paper.

2. COPULAS

Suppose that Cα is a distribution function with 
density cα over [0, 1]2 for . Denote (T1, T2) 
the failure times, and denote (S1, S2), ( f1, f2) the 
corresponding marginal survival and density 
functions. If (T1, T2) comes from a copula Cα, for 
any , the joint survival and density func-
tions of (T1, T2) are given by

where α represents the dependency parameter 
bet- ween T1 and T2. 

We introduce the Archimedean family of 
copulas, because is the most used copula fam-
ily. A bivariate distribution belonging to the 
family of Archimedean copula models has the 
representation(2)

where  is a convex and decreasing func-
tion such that  , f (1)= 0. The  
function is named generator of the Cα copula 
and the inverse of the generator, , is the La-
place transform of a latent variable denoted as 
, which induces the dependency α. Thus, the se-
lection of a generator results in several families 
of copulas. In table 1, we show the forms for bi-
variate survival functions in three Archimedean 
copula families. Additionally, in table 2, we show 
the generators and the Laplace transform for 
the considered families.

 

Table 1. Common Archimedean copulas.



Julieth V. Guarín-Escudero et. al.

73

Table 2. Generators and their Laplace Transforms.

In this work several copulas of the archimedian 
class are used. This class groups a large number 
of copula families with simple analytical proper-
ties [9]. Archimedian copulas also can describe a 
great diversity of dependency structures [10]. In 
addition, Gaussian copula is included as an alter-
native frequently used in literature. The Gaussian 
copula is a one-parameter family for pairs of ran-
dom variables (u; v). It takes the form [11]:

where  is the correlation coefficient ,  
 is the bivariate normal distribu-

tion function and    is the univariate normal 
distribution function.

2.1. Kendall’s 

The Kendall’s  is perhaps the best alternative  
to use instead of linear correlation coefficient as 
a measure of dependence for variables that do not 
belong to the elliptical family [12].

Let (X1,Y1) and (X2,Y2) be a bivariate random 
sample of a joint and continuous distribution 
function H(X,Y ). Then Kendall’s  is defined as 
the probability of concordance less the probabili-
ty of discordance [3]:  

Theorem 2.1. [13] Property of invariance of 
Kendall’s . Let (X1,Y1) y (X2,Y2) be a bivariate 
random sample of a joint and continuous 
distribution function, H(X,Y), let g and h two 
increasing functions, then  [g(X),h(Y)] = (X,Y). 
In [13] can be seen the proof of this theorem.

As Kendall’s  is invariant to strictly increas-
ing transformations, the following theorem pro-
vides an expression of this parameter in terms of 
copulas.

Theorem 2.2. [14] Let X, Y continuous ran-
dom variables whose copula is C. Then Kend-
all’s   for X and Y ,  (X,Y ) is given by:

3. GRAPHICAL METHODS FOR 
DETECTING DEPENDENCE

In this section both graphical methods that 
will be seen throughout this work are defined.

3.1. -plot

The -plot was originally proposed by [4]. Its 
construction is based on the -square statistic for 
independence.

Let (X1,Y1) ,..., (Xn,Yn) be a bivariate random 
sample of a joint and continuous distribution 
function, H (X,Y ), and let I (A) be the indicator 
function of the event A. For each observation (xi, 
yi) the following procedure is performed: [15]

None of these quantities exclusively depend 
of the observations ranks. [4] proposed to plot the 
pairs , where:

and  for 

 is a measure of distance from the observa-
tion (Xi,Yi) to data center [15].
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All values of  must be in the interval [−1;1]
[14]. The -plot is a scatter-plot of the pairs , 
i = 1,...,n. If the data constitute a bivariate sample 
with independent continuous marginals, the val-
ues of  will be evenly distributed. However, if 
X and Y are associated, the values of  will tend 
to form groups, in particular, positive values of 
 indicate that Xi and Yi are relatively larger 

or smaller (at the same time) than the median, 
while negative values  of   correspond  to  Xi 
and  Yi located  on opposite sides with respect to 
their median [15].

The horizontal lines on the graph are given 
by  and  where  cp is  
selected so that approximately 100p % of the 
pairs  are  between  the  two  horizontal  
lines.  For p = 0.90, 0.95, 0.99 the values of cp 
are 1.54, 1.78 y 2.18, respectively [4]. Using the 
Monte Carlo method you can calculate other cp 
values. It is recommended to draw only those 
pairs such that  in order to 
avoid misleading observations [14].

3.2 K-plot

The K-plot (Kendall-plot) was created by [5]. 
This tool is based on the ranks of observations 
using the integral transformation of multivariate 
probabilities, producing a similar graph to 
conventional Q-Q plot [15].

Let (X1,Y1),..., (Xn,Yn) be a random sample of a 
joint and continuous distribution function, H (X,Y ). 
To build the K-plot we proceed as follows:

1. For each 1  i  n compute Hi (as in the 
- plot).

2. Sort the Hi values such that H(1) · · ·  H(n).

3. Plot the pairs (Wi:n , H(i)), where Wi:n is the 
expectation of the ith order statistic in a sample of 
size n, which is calculated as follows:

with

When the scatter plot of H(i) against Wi:n mo- 
ves away from the diagonal, then there is an in-
dication of a functional dependence between the 
two variables involved.

4. SIMULATION STUDY

In this section we present a simulation study to 
evaluate the development of the proposed graph-
ical methods. In particular, we want to study the 
effect of some factors that can affect the perfor-
mance of the dependence graphs such as: depen-
dence level, sample size and the chosen copula 
to construct the bivariate function. In addition, 
we show the implementation of -plot and K-plot 
through the package CDVine of R [16].

The scope of the study is intended to cover 
several scenarios, where the scatter plot is com-
pared with the -plot and K-plot, for which the 
sample size in 20, 50, 100 and 200 is varied, and 
the dependence parameter values (  Kendall) of 
0.3, 0.5 and 0.8 were considered. In addition, for 
the data generation Clayton, Frank, Gaussian, 
Gumbel and Joe copulas were used.

In total 60 simulation scenarios were obtained, 
which are summarized in the following table:

Table 3. Simulation Scenarios

Copula n Copula n
Clayton 0.3 20 Clayton 0.3 50
Clayton 0.5 20 Clayton 0.5 50
Clayton 0.8 20 Clayton 0.8 50
Frank 0.3 20 Frank 0.3 50
Frank 0.5 20 Frank 0.5 50
Frank 0.8 20 Frank 0.8 50
Gaussian 0.3 20 Gaussian 0.3 50
Gaussian 0.5 20 Gaussian 0.5 50
Gaussian 0.8 20 Gaussian 0.8 50
Gumbel 0.3 20 Gumbel 0.3 50
Gumbel 0.5 20 Gumbel 0.5 50
Gumbel 0.8 20 Gumbel 0.8 50
Joe 0.3 20 Joe 0.3 50
Joe 0.5 20 Joe 0.5 50
Joe 0.8 20 Joe 0.8 50
Clayton 0.3 100 Clayton 0.3 200



Julieth V. Guarín-Escudero et. al.

75

Copula n Copula n
Clayton 0.5 100 Clayton 0.5 200
Clayton 0.8 100 Clayton 0.8 200
Frank 0.3 100 Frank 0.3 200
Frank 0.5 100 Frank 0.5 200
Frank 0.8 100 Frank 0.8 200
Gaussian 0.3 100 Gaussian 0.3 200
Gaussian 0.5 100 Gaussian 0.5 200
Gaussian 0.8 100 Gaussian 0.8 200
Gumbel 0.3 100 Gumbel 0.3 200
Gumbel 0.5 100 Gumbel 0.5 200
Gumbel 0.8 100 Gumbel 0.8 200
Joe 0.3 100 Joe 0.3 200
Joe 0.5 100 Joe 0.5 200
Joe 0.8 100 Joe 0.8 200

4.1 Analysis of Results

In the following section the results of the simu- 
lation study are presented. The main objective is 
to evaluate the performance of graphics to detect 
dependence under the scenarios described in the 
previous section.

4.1.1 Sample size n = 20

Figures 1 to 5 show the graphics performance 
when the sample size is n = 20 and varying the 
parameter dependence , under the considered 
copula families. 

In figures 1 to 5 with n = 20, the behavior of 
graphics to detect dependence is similar in all 
simulated copulas. When  = 0.3, the -plot and 
K-plot provide similar results to the traditionally 
used graph: the scatter plot. In this case the three 
graphics fail to detect dependencies between 
variables. When the dependence parameter  in-
creases to values of 0.5 and 0.8, again the three 
graphs behave similarly, all fail to detect such 
dependence between variables for all simulated 
copulas. In the case of the -plot with  = 0.5 and 
 = 0.8, most points fall outside the bands in all 

simulated copulas, indicating a clear dependence 
between variables. In the case of the graph K-plot, 
for  = 0.5 and  = 0.8 the points consistent-
ly fall away from the diagonal, which indicates 
dependence.

Figure 1. Scatter-plot (left), -plot (center) and K-plot (right) for n = 20 using the Clayton 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 2. Scatter-plot (left), -plot (center) and K-plot (right) for n = 20 using the Frank Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)

Figure 3. Scatter-plot (left), -plot (center) and K-plot (right) for n = 20 using the Gaussian 
Copula with  =0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 4. Scatter-plot (left), -plot (center) and K-plot (right) for n = 20 using the Gumbel 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom) 

Figure 5. Scatter-plot (left), -plot (center) and K-plot (right) for n = 20 using the Joe Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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4.1.2 Sample size n = 50

Figures 6 to 10 show the graphics performance 
when the sample size is n = 50 and varying the 
parameter dependence , under the considered 
copula families. 

In figures 6 to 10 with n = 50, -plot and 
K-plot provide slightly different results when  = 
0.3 compared to the previous case with n = 20. 
In this case, with the Clayton, Frank, Gumbel and 
Joe copulas in -plot about half of the points are 
outside the bands and around the half of the data 
is within the bands which indicate a low depen-
dence between the random variables. The K-plot 
for Clayton and Gaussian copulas does not detect 
dependence between the variables because the 
points are very close to the diagonal. In the case 

of the Frank, Gumbel and Joe copulas is observed 
that at the beginning, the points are near the diag-
onal but the rest of points are consistently going 
away which it would be a sign of low dependence 
between the variables. With  = 0.3 scatter plot 
does not detect dependence between the vari-
ables in any of the cases. When the parameter 
of dependence  increases to values of 0.5 and 
0.8 the three graphs behave similarly, all fail to 
detect such dependence between variables for all 
simulated copulas. Notice that in the -plot with

 = 0.5 and  = 0.8 most points fall outside the 
bands in all simulated copulas, which indicates a 
clear dependence between the variables, while in 
the K-plot with  = 0.5 and  = 0.8 the points 
consistently fall away from the diagonal, which 
indicates dependence.

Figure 6. Scatter-plot (left), -plot (center) and K-plot (right) for n = 50 using the Clayton 
Copula with  = 0.3 (top),  = 0.5  (medium) and  = 0.8 (bottom)
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Figure 7. Scatter-plot (left), -plot (center) and K-plot (right) for n = 50 using the Frank Copula 
with  = 0.3 (top), = 0.5  (medium) and  = 0.8 (bottom)

Figure 8. Scatter-plot (left), -plot (center) and K-plot (right) for n = 50 using the Gaussian 
Copula with = 0.3 (top), = 0.5 (medium) and = 0.8 (bottom)
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Figure 9. Scatter-plot (left), -plot (center) and K-plot (right) for n = 50 using the Gumbel 
Copula with = 0.3 (top),  = 0.5 (medium) and = 0.8 (bottom)

Figure 10. Scatter-plot (left), -plot (center) and K-plot (right) for n = 50 using the Joe Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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4.1.3 Sample size n = 100

Figures 11 to 15 show the graphics perfor-
mance when the sample size is n = 100 and vary-
ing the parameter dependence , under the con-
sidered copula families.

The case with n = 100 is presented in figures 
11 to 15. In the -plot with  = 0.3, for all simu-
lated copulas, about half of the points remain out-
side the bands and about half of the data is within 
the bands, which indicates a low dependence be-
tween the random variables. The K-plot for Clay-
ton copula does not detect dependence between 
the variables because the points are very close to 
the diagonal. In the Frank, Gumbel, Gaussian and 

Joe copulas is observed that at the beginning, the 
points are near the diagonal but the rest of points 
are consistently going away which it would be a 
sign of a low dependence between the variables. 
With  = 0.3 the scatter plot does not detect de-
pendence between the variables in any of the cas-
es. When the parameter of dependence increases 
to values of 0.5 and 0.8 the three graphs behave 
similarly and all of them fail to detect such depen-
dence between the variables for all simulated cop-
ulas. In the case of the -plot with  = 0.5 and  
= 0.8 most points fall outside the bands in all sim-
ulated copulas, which indicates a clear dependence 
between the variables. In the case of K-plot with  

 = 0.5 and  = 0.8 the points consistently fall away 
from the diagonal, which indicates dependence.

Figure 11. Scatter-plot (left), -plot (center) and K- plot (right) for n = 100 using the Clayton 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 12. Scatter-plot (left), -plot (center) and K-plot (right) for n = 100 using the Frank Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)

Figure 13. Scatter-plot (left), -plot (center) and K- plot (right) for n = 100 using the Gaussian 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 14. Scatter-plot (left), -plot (center) and K- plot (right) for n = 100 using the Gumbel 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)

Figure 15. Scatter-plot (left), -plot (center) and K-plot (right) for n = 100 using the Joe Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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4.1.4. Sample size n = 200

Figures 16 to 20 show the graphics perfor-
mance when the sample size is n = 100 and vary-
ing the parameter dependence , under the con-
sidered copula families.

Figures 16 to 20 show the case of n = 200, in 
Joe copula the -plot with  = 0.3 about half of 
the points are outside bands and about half of the 
data is within the bands, which indicates a low 
dependence between the random variables. With 
the Clayton, Frank, Gumbel and Gaussian copu-
las -plot detects dependence between the vari-
ables since most points fall outside the bands. The 
K-plot with all simulated copulas is observed that 
at the beginning, the points are near the diagonal 

but the rest of points are consistently going away, 
which it would be a sign of a low dependence 
between the variables. With  = 0.3 scatter plot 
does not detect dependence between the variables 
in any of the cases, which makes the -plot and 
K-plot good alternatives for detecting dependen- 
ce when n is large even when the dependence 
is low. When the parameter of dependence  in-
creases to values of 0.5 and 0.8 the three graphs 
behave similarly and all fail to detect such depen-
dence between the variables for all simulated cop-
ulas. In the case of -plot with  = 0.5 and  = 0.8 
most points fall outside the bands in all simulated 
copulas, which in- dicates a clear dependence be-
tween the variables. In the case of K-plot for  = 
0.5 and  = 0.8 points are consistently away from 
the diagonal, which indicates dependence.

Figure 16. Scatter-plot (left), -plot (center) and K- plot (right) for n = 200 using the Clayton 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 17. Scatter-plot (left), -plot (center) and K-plot (right) for n = 200 using the Frank Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)

Figure 18. Scatter-plot (left), -plot (center) and K- plot (right) for n = 200 using the Gaussian 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)
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Figure 19. Scatter-plot (left), -plot (center) and K- plot (right) for n = 200 using the Gumbel 
Copula with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom)

Figure 20. Scatter-plot (left), -plot (center) and K-plot (right) for n = 200 using the Joe Copula 
with  = 0.3 (top),  = 0.5 (medium) and  = 0.8 (bottom) 
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5. APPLICATION TO REAL DATA

In this section, we present an application of 
graphical methods to detect dependence previ-
ously shown to insurance data [17], comparing 
the results obtained with the traditional scatter 
plot. A random sam Application to real data

Figure 21. Scatter-plot (top), -plot (medium) and K- plot 
(bottom) using financial data.

In this section, we present an application of 
graphical methods to detect dependence previ-
ously shown to insurance data [17], comparing 
the results obtained with the traditional scatter 
plot. A random sam ple of size 100 of the data 
was used, consisting of payments and expenses 
of claims (in millions of pesos) in property insur-
ance policies [17]. The results are shown below:

In figure 5 it can be observed that the Chip-
lot and the K-plot are able to detect dependence 
between the two variables used (payments and 
expenses of claims), in particular, the Chi-plot 
shows a clear dependence, since most of the ob-
servations are outside of the bands. In addition it 
can be affirmed that the parameter of dependence 
is high, due to the form of the graphs obtained. In 
this case the scatter plot is not as clear and precise 
as the proposed methods.

6. CONCLUSIONS

Graphical methods for detecting dependency 
studied in this work provide a useful alternative 
tool to scatter plot traditionally used, since they 
are simple to interpretate and clearly show if there 
is dependence between the variables studied.

In simulated scenarios with a small sample 
size (n = 20) the -plot and the K-plot achieve the 
same results as the scatter plot, that is, when the 
parameter of dependence is low the three meth-
ods fail to detect dependence, while under mod-
erate or high dependence the three methods can 
detect such dependences.

In the simulated scenarios with sample sizes 
moderate to large (n ≥ 50) and under low depen-
dence, the -plot and the K-plot detect such de-
pendence in at least some of the studied copulas 
families while the scatter plot does not in any of 
the cases. On the other hand when the parameter 
of dependence is moderate to high the three meth-
ods can detect such dependences. 

In general, the Chi-Plot and K-Plot graphs 
have the advantage that by increasing the sample 
size, their performance improves and they manage 
to detect dependence even when the dependency 
parameter is  = 0.3, a result that is not achieved 
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with the scatter plot, since it can not detect de-
pendence when the dependency parameter is low 
even if the sample size is large. Additionally, the 
archimedian copulas have a better behavior than 
the Gaussian copula to detect dependence when 
the sample sizes are small.

In the application to real data presented in sec-
tion 5, it can be observed that the -Plot and the 
K-plot have a better performance than the scatter 
plot, since they could detect the dependence be-
tween the variables, which was not clear in the 
scatter plot analysis.
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