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Resumen

En este articulo presentamos propiedades generales de un producto de anillos conmutativos con unidad.
Caracterizamos el espectro primo y maximal de una suma de anillos y probamos que el espectro de un
producto de cuerpos es Tj, o equivalentemente, que es Hausdorff. Por tltimo, estimamos el cardinal del
espectro maximal de un producto de cuerpos.
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Abstract

In this paper we show general properties of a product of commutative rings with unity. We obtain a
characterization of the prime spectrum of a sum of rings and if we consider a product of fields them
its spectrum is T, or equivalently, it is Hausdorff. Finally we estimate the cardinality of the maximal
spectrum of a product of fields.
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1. INTRODUCCION

Sean R; y R, anillos conmutativos con
unidades e; y e, respectivamente. El producto
cartesiano R X R, tiene estructura de anillo con
las operaciones suma y producto componente a
componente:

(f1, f2) + (91, 92) :== (f1 + g1, f2 + 92),

(f1, f2) - (91, 92) == (f191, f292)

Ademas, R;xR, es un anillo conmutativo con
unidad e = (e, ;). Todo producto cartesiano, R,
xR, tiene asociado sus proyecciones

T . R1 X RQ
(f1, f2)

—)Ri
= fi

coni=1,2.

Por otra parte, el producto cartesiano X; x X,
de los conjuntos X; y X, satisface la propiedad
universal: para todo conjunto Z y para todas
las aplicaciones ¢ : Z — X1y p2: Z — Xo,
existe una Unica aplicacion ¢ : 7 — X7 x X5
tal que o1 = m 0 @,y = 2 o ¢. El producto
cartesiano R| X R, de los anillos R; y R, satisface
la propiedad universal analoga en la categoria
de anillos conmutativos. Por tanto, el producto
cartesiano de anillos conmutativos es también
producto en el sentido de categorias (véase [6]).

Aligual que en conjuntos, podemos considerar
el producto cartesiano de una familia de anillos:
sea [ un conjunto arbitrario y { R; } ;< una familia
de anillos conmutativos con unidad, su producto
cartesiano | [;c; R; es un anillo conmutativo con
unidad con las operaciones suma y producto
componente a componente. El producto cartesia-
no [[;c; Ri satisface la propiedad universal del
producto.

En la categoria de anillos conmutativos se
tiene también un producto directo y una suma
directa de anillos. Es decir, dada la familia de
anillos {R;};c;, existe un anillo R = [[;c; R
junto con los homomorfismos de anillos
i; - R; — R, i € I, tal que para todo anillo S'y
para todos los homomorfismos ¢; : R; — S,

existe un tnico homomorfismo ¢ : R — S con
v; = p o1, (véase [1, 2, 6]).

La suma directa de la familia anterior es el
conjunto

@Ri = {(fl) € HRi : casi todos los f; = O}

i€l el

donde por “casi todos” queremos decir “todos,
excepto un numero finito”. La suma directa asi
definida no posee unidad, de tal forma que esta
suma no pertenece a la categoria de anillos con-
mutativos con unidad. En cambio, si se considera
el producto tensorial de anillos (vistos como alge-
bras sobre el anillo de los enteros), entonces este
producto tensorial si es el coproducto (también
llamado suma directa) en el sentido categorico
ademas las inyecciones canonicas son homomor-
fismos en la categoria de anillos conmutativos
con unidad.

Observe que si el conjunto de indices / es
finito, entonces

PR =]]r:

1€l 1€l

El producto de anillos es un tema de inves-
tigacion en la actualidad en el 4rea de algebra
conmutativa (véase [9, 10, 15, 19]). Nuestro
interés en este tema se basa en un problema
abierto de geometria proyectiva, el cual consiste
en caracterizar la recta proyectiva sobre anillos,
en particular sobre anillos totales de fracciones.
El producto de anillos conmutativos es un anillo
total de fracciones (véase [10]). Para alcanzar este
fin, en [11] hemos estudiado las K—algebras finitas
conmutativas con unidad, pues ellas también son
anillos totales de fracciones.

Las rectas proyectivas sobre las R—algebras
bidi ionales 2l _Riz] R[z]
idimensionales >y, Gz ¥ (p7) generan
las tres geometrias cldsicas del plano, Moebius,
Laguerre y Minkowski (véase [12]). Existen
trabajos recientes sobre las rectas proyectivas
sobre anillos, pero en general es una teoria muy
incompleta. [13] es un trabajo sobre la geometria
correspondiente a la R—algebra tridimensional
% y [10] es un estudio inicial de las rectas
proyectivas sobre anillos totales de fracciones,
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sin embargo estudiar la geometria de la recta
proyectiva sobre anillos es un problema abierto.

Dado un anillo conmutativo con unidad R,
podemos asociar a R un espacio topologico

Spec(R) = {p : p es ideal primo de R}

llamado el espectro primo de R. El espectro
primo de un anillo conmutativo relaciona dos
areas de la matematica, el algebra conmutativa y
la topologia.

En la seccion dos se describe el conjunto de
ideales primos y maximales de un producto de
anillos, en particular, se muestra que en el caso de
productos finitos el espectro de un producto es el
producto de los espectros en el sentido topologico.
En la tercera seccion se estudia el caso particular
del producto directo de cuerpos donde usamos
el anillo de fracciones por un ideal maximal
m, R,,. Mostramos que si R = [[;c; Ri donde
R; es cuerpo, entonces los cuerpos R/my Ry,
m € Max(R), son isomorfos. Ademas, si
R = K! con K cuerpo e [ finito, entonces los
cuerpos R/my Ry, m € Max(R), son isomor-
fos a K. De igual forma se tiene este isomorfismo
si R = K con K un cuerpo finito e / un conjunto
arbitrario. En la seccion cuatro se alcanza el
objetivo principal del articulo, el cual consiste en
hacer una estimacion del cardinal del espectro
maximal de un producto infinito de cuerpos para
esto se estudian los filtros y ultrafiltros asociados
al espectro.

2. PRELIMINARES

Sean / un conjunto arbitrario y {R;}ic; una
familia de anillos conmutativos con unidad.
Consideremos el anillo producto R = [];c; R
con las operaciones suma y producto componente
a componente. Decimos que f € R es idempo-
tente si f2 = f.Seam; : R — R, la proyec-
cion i-ésima, es decir para f = (f(i))icr € R,

mi(f) = f(i).

Proposicion 2.1 Sean R = [[,.; Riy f € R.
Entonces

(I) f es inversible si y solo si, para todo
i € I,mi(f)= f(i)es inversible.
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(2) f es divisor de cero siy solo si existe
i € I tal que m;(f) = f(4)es divisor de cero.

(3) f es idempotente si y solo si, para todo
i € I,mi(f)= f(i)esidempotente.

Demostracion. Se sigue de las definiciones.

Corolario 2.2 Sean R = [[,c; Riy f € R.Si
paratodo € [, R;esun cuerpo, entonces

(1) f es inversible si y solo si f(i) # 0 para
todot € I.

(2) f es divisor de cero siy solo si existe? € [
tal que f (i) = 0.

(3) f es idempotente si y solo si f(i) es cero o
uno para todo @ € I.

Demostracion. Consecuencia de la Proposi-
cion 2.1 ya que R; es cuerpo para todo i € 1.

Para cada j € I definimose; € R = [[;c; Ri
como

sij=1

— 5. _J 1n
Trl(e])_(szj]‘Ri - { 0 Sl];él

donde 1, es la unidad en R; y d;; es la funcion
delta de Kronecker. En la proposicion siguiente
mostramos las propiedades elementales.

Proposicion 2.3 Sean R=[[,.;Riye; € R
cont¢ € I. Entonces

(1) e? =e.

(2) e;-e; = 0paratodo j # i.

(3) f-e; = f(i)e; paratodo f € R.

4) (f — f(i)e;) - e; =0 paratodo f € R.

Demostracion. Son consecuencia directa de la
definicion de €;.

El lema siguiente muestra una equivalencia
para un producto finito de anillos. En ([2], pag.
98), podra encontrar una version del Lema 2.4
y otras equivalencias que no trataremos en este
trabajo.
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Lema 2.4 Sea R un anillo con unidad 1r- R es
producto de una familia finita de anillos si y solo
siexistenug, ..., u, € R idempotentes tales que

(D) w; - uj = diju,,

() Z?:1 u; = 1g.

El conjunto de idempotentes del lema anterior
es llamado conjunto ortogonal de idempotentes
(véase [2]). Para todos f,g € R idempotentes
se tiene que f - g es idempotente y que 1 — f es
idempotente.

2.1 Espectro primo y maximal

Exponemos a continuacion algunas definicio-
nes y resultados en el lenguaje de espectros que
usaremos mas adelante.

Un ideal p de un anillo R es primo si p # (1)
ysiab € pentoncesa € pob € p, y unideal m
de R es maximal si m = (1) y no existe ningin
ideal a tal que m C a C (1). Esto es equivalente
a decir:

p es primo si y solo si R/p es dominio entero,
m es maximal si y solo si R/m es cuerpo.

Por tanto un ideal maximal es primo pero el
reciproco no es cierto en general. El ideal cero es
primo si y solo si I? es un dominio entero. Cada
elemento de R que no es unidad esta contenido en
un ideal maximal (véase [4, 18]).

A cadaanillo R se asocia un espacio topologico
Spec(R) = {p : p es ideal primo de R}

dotado de la topologia de Zariski con base de
abiertos {D(f)} fer, donde

D(f) ={p € Spec(R) : f & p}.

El complemento de D( f) se llama variedad de

f;

V(f) = Spec(R)\ D(f) = {p € Spec(R) : f € p}.

Si a es un ideal de A4, entonces

V(a) = [\ V(f) = {p € Spec(R) : a C p}.

f€a
Se verifican las siguientes propiedades
(1) V(0) = Spec(R), V(R) = 0.
(2) Sia C bsonideales de R, V(a) D V(b).

(3) Sia,bson ideales de R, V(aNb)="V(ab) =
V(a) UV (b).

(4) Si {a}ier es una familia de ideales de R,
VUier i) = V(2ier %) = Nies V(ai).

Note que D(1) = V(0) = Spec(R) y también que
el espacio Spec(R) es compacto (véase [4, 8, 16,
21)).

En la proposicion siguiente vamos a caracterizar
el espectro primo y el maximal de una suma
directa de anillos conmutativos con unidad.

Proposicién 2.5 Sea R = [[,.; R; y considere-
mos la proyeccion i-ésima r; : R — R, definida

por ;i (f) = f(i).

(1) Si para cada p € Spec(R;) consideramos
M,; = 7, *(p), entonces M, ; es un ideal primo
de R dado por My, =
todo j # i, y m; = p.

m; — R.
jer conm; = R;para

(2) Si para cada m € Max(R;) consideramos
My; = m; '(m), entonces Mp; es un ideal
maximal de R dado por My = mMj con

m; :ijaratodoj %4,y M = . Jel

(3) Si P es un ideal primo de R y existe ¢ € I tal
que e; ¢ P entonces e; € P para todo j # iy
en consecuencia ; es tnico. Ademas si I es finito,
entonces existe 7 € [ tal quee; ¢ P.

(4) Sea P un ideal. Entonces, e; € P siy solo si
mi(P) = R;.

(5) Si [ es finito, entonces los ideales primos de R
son los My ; con p € Spec(R;).

(6) Si [ es finito, entonces los ideales maximales
de R son los My, ; con m € Max(R;).



C. Granados Pinzén et. al.

(7) Si [ es finito, entonces

Spec(R) ~ [ [ Spec(Ri).

iel
(8) Si I es finito, entonces

Max(R) ~ [ [ Max(R;).
i€l

(9) Si [ es infinito, entonces existen ideales maxi-
males y por tanto primos de 2 que no son de la
forma My, ;.

Demostracion. (1) Como 7; es un homomor-

fismo de anillos y p € Spec(R;), entonces

wi_l(p) = M, ; es un ideal primo de R.

(2) Puesto que i es sobreyectivay m € Max(R;),
1N . .

entonces 7, - (m) = My, ; es un ideal maximal de

R.

(3)Comoe; - ej = Oparatodoi # j, e; - e; € P
y si existe ; ¢ 1 tal que e; ¢ P entonces e; € P
para todo j # i luego €i es Unico. Ademads, si
I es finito y e¢; € P para todo ¢ € I entonces
> icr€ =1€ Py P = R.Portanto existe ¢ € [
tal que e; ¢ P.

(4) Sea P un ideal. Si € € P, entonces
1=mi(e;) € m(P) y como i es sobreyec-
tiva, m;(P) es un ideal, luego m;(P)= R;.

Reciprocamente, si m;(P) = R;, entonces
existe @ € P tal que m(a) =1 Iluego
mi(e;-a) =1y mj(e;-a) =0 para todo

j # i por tanto €; - @ = €;. Como a € P se
tiene que €i € P.

(5) Si P es un ideal primo de R se tienen dos
casos:

(a) existe @ € I tal que m;(P) # R;.
(b) m;(P) = R;,paratodoi € I.

Si se verifica (a), existe 7 € I tal que m;(P)# R;,
entonces P = 7; *(m;(P)).

Enefecto, P C m; '(mi(P))ysia € 7, ' (mi(P))
entonces 7;(a) € m;(P) luego existe b € P tal
que 7;(a) = m;(b)portanto(a — b) -e; =0 € P.
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Como e; ¢ P,a—be P y en consecuencia
ac Pyaquebe P.

Por el item (3), el caso (b) no puede darse si / es
finito.

(6)Si Mesunideal maximal de Rentonces Mes pri-
mo y por el item (5), M = M, ; con p € Spec(R;).

Si p no es maximal entonces existe m € Max(R;)
tal que p C m por tanto M & 7, ' (m) lo cual es
absurdo pues M es maximal de RR. Entonces p es
maximal.

(7) Si se considera en R = [ | R; los ideales
primos, M, ;. Por el item (2),

Spec(R) = [ [{My,i : p € Spec(R;)}.
=1

Para todo i se define X; = {M, ;: p € Spec(R;)}
se considera la aplicacion

¢; + X; — Spec(R;)

definida por ¢; (M, ;) = mi(My ;) = p. Asi, dies
inyectiva pues sip = qentonces My ; = My ;y ¢;
es sobreyectiva pues 7 es sobreyectiva, y ¢; es
continua ya que ¢; *(V(p))= {M,; € Spec(R):
pCat y {My; € Spec(R): p C q} =V (My,),
donde V'(p) denota el cerrado de Zariski del ideal
p. De igual forma, ¢¢_1 es continua y por tanto X;
es homeomorfo a Spec(R;). En consecuencia,

Spec(H

R;) ~ [ [ Spec(R).

i=1 i=1

(8) La demostracion es similar a la del item
(7), solo lo cambiamos p € Spec(R;) por
m € Max(R;)y Spec(R) por Max(R).

(9) Sea I infinito y consideremos

Q={a:3JClI, J finitoymi(a)=0Vi ¢ J}

es decir, Q) = @ie 1 i Entonces () es un ideal
de R. En efecto, sean a, b € () entonces existen
J1, Jo C I finitos tales que mi(a) =0y 7;(b) =0
paratodosi ¢ Jyy j ¢ Jorespectivamente. Luego
paratodoi ¢ J; U Jo, mi(a 4+ b)= 0y J,U.J,es
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finito. Asi, a+b € Q. Ademas, si A € R, enton-
ces mi(A-a) = 0 para todo i ¢ J; y como J; es
finito, X - a € Q. Por otra parte, como todo ideal
esta contenido en un ideal maximal entonces
existe un ideal maximal M y por tanto un ideal
primo de R que contiene a () y que cumple que
mi(M)=m;(Q)=R; para todo ¢ € I. Lo que
contradice que M tiene la forma del item (6).

En la Proposicion 2.5(9) ) no es primo, por ejem-
plo, sea R = A" con A anillo. Sean a y b divi-
sores de cero de A tales que ab = 0. Si definimos
mi(a)= ay mi(b) =b para todo i = 1,...,n
entoncesa-b=0€ Qperoaa ¢ Qyb ¢ Q.

Proposicion 2.6 Si I es finito, entonces los idea-
les primos minimales de 12 son los My = HI m;
j€
conm; = Rjparatodo j # i, y m; = pdonde p
ideal primo minimal de R;.

Demostracion. Se tiene por la Proposicion
2.5(5).

3. PRODUCTO DE CUERPOS

Sean I un conjunto arbitrario y {R;};cs una
familia de cuerpos. Consideremos el anillo pro-
ducto de cuerpos R = [[;c; Ri.

La proposicion siguiente muestra que todo
elemento de un producto de cuerpos es producto
de un elemento idempotente y un elemento in-
versible. Esta propiedad también se puede probar
definiendo los anillos regulares (o anillos regu-
lares de von Neumann) ya que un cuerpo es un
anillo regular y un producto de anillos regulares
es anillo regular (véase [20]).

Proposicion 3.1 Para todo f € R, existen uy
inversible y ay idempotente tal que f = oy - uy.
Ademas, oy es Ginico y, ¢y = 1siy solo si f es
inversible.

Demostracion. Definimos la  aplicacion
up(i) = f(i)si f(i) # 0yuyp(i) = 1si f(i) = 0
ylaaplicacionaf(i) = 1sif(i) # Oyays(i) =0
sif(i) = 0.Asi,usesinversible, s es idempoten-
tey f = uy - ay.Note que ufno es tnico pues la
construccion es validaconus(i) # 0 si f(i) = 0.
Ademds, oy estd univocamente determinado por
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f. Enefecto, f(i) = us(i)ay(i)y uyr(i) # 0 para
todo ; pues uy es inversible. Luego f(i) = 0, en-
tonces oy (i) = 0y si f(i) # 0 entonces af(i) # 0
y por tanto a¢(i) = 1 ya que a s es idempotente.
En particular, ay =1 si y solo si f es inversible.

Para cada ideal a de I? definimos el conjunto
de idempotentes de a como

id(a) = {f € a: f es idempotente}.
En particular id(R) ={ f € R: f esidempotente}.
En la Proposicion 3.1, como ay € id(R) es

unico, se llama a oy el idempotente asociado a f
y es denotado por id( f). Se define asi la aplicacion

id: R — R

£ id(f)
y se tienen las propiedades siguientes:

Proposicion 3.2 (1) Sean f, g € R entonces

id(f - g) =1id(f) - id(g).
(2) Para todo ideal a se tiene que id(a) C a.

(3) Paratodo f€ R, fcasiysolosiid(f) e
id(a).

(4) Sean q, b ideales de R. a = b siy solo si
id(a) = id(b).

Demostracion. (1) Por la Proposicion 3.1,

f-g=id(f) us-id(g)-u,

ademas el producto de idempotentes es idem-
potente y el de inversibles es inversible luego

frg=(d(f)-id(g)) - (us-uy) =
id(f-g) upy

dondeid(f-g) = id(f)-id(g)ya que el idem-
potente es nico.

(2) Paratodo f € R, f = oy - uy. Luego, si
f € aentonces ay = f - u;l € a.

(3) Inmediato.
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4) Por el item (3).

Proposicion 3.3 Sea f € R, f no es inversible
siysolosiexisteg # Otalque f -g=0y f+g
es inversible.

Demostracion. Si f no es inversible, por la
Proposicion 3.1, f = id(f) - uyy 1—id(f) # 0.
Entonces se define g = us-(1—id(f))y de esta
forma, g # 0,

frg=uj-id(f) (1—id(f)) =0

y f+ g = uy es inversible. Reciprocamente
como f-g=0yg # 0, f esno inversible.

Proposicion 3.4 Seanm € Max(R)y f € R.
Entonces f € msiy solo siexiste h ¢ m tal que
f-h=0.

Demostracion. Si existe h ¢ m tal que
f+h = 0entonces f € m pues m es primo. Reci-
procamente, si f € m, f no es inversible y por la
Proposicion 3.3, existe h 2 O tal que f-h=0Yy
f +hes inversible entonces h ¢ myaque f € m
yf+hd¢m

La proposicion siguiente muestra un isomor-
fismo entre el cuerpo R/m, m € Max(R) y el
anillo de fracciones o localizacion R,,.

Proposicién 3.5 Para todo m € Max(R), los
cuerpos R/my Ry, son candnicamente isomorfos.

Demostracion. Consideremos el homomorfis-
mo canonico

R
I
1

p: R —
f =

Veamos que paratodo f € R, f € msiy solo
si { — 0. En efecto, si f € m entonces f no es
inversible y por la Proposicion 3.3, existe g # 0
talque f-g =0y f+g = 1.Portantog ¢ m
y 7 = 0. Reciprocamente, si T = 0, entonces
existe g ¢ mtalque f-g=0.Luego f-gem
y por tanto f € m. En consecuencia, ¢ induce un
homomorfismo inyectivo
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Yv: R/m — Rn

bi
f4+m — 7

Veamos ahora que 1) es sobreyectivo. Es decir,
si para todo f ¢ R y para todo g ¢ m existe
h € R tal queg By esto es equivalente a que
existe ¢ ¢ m tal que (f —g-h)-t =0 pero
por la Proposicion 3.4, f — g - h € m. Por tanto,
hay que demostrar que para todo f € Ry para
todo g ¢ mexisteh € Rtalque f —g-h € m.
Como g ¢ m, entonces g + m # 0 en el cuerpo
R/m luego existe s + m € R/mtal que (g + m) -
(s+m)=1-+m y esto es equivalente a que
1-g-scm.Portanto, f —g-(f-s) € m.

Proposicion 3.6 Si p es un ideal primo de R
entonces p es maximal.

Demostracion. Supongamos que p es un
ideal primo contenido estrictamente en un ideal
maximal m, entonces existe f ¢ m tal que f ¢ p.
Como f no es inversible, por la Proposicion 3.3,
existe g # O tal que f - g = 0y f + g es inversi-
ble. Por tanto, f - g € py como f ¢ p, g € p.Pero
p C mentonces f + g € my f + g es inversible,
entonces m = R.

En consecuencia, si I? es un producto de cuer-
pos, entonces

Max(R) = Spec( R).

Es decir, el espectro de un producto de cuerpos
es T, equivalentemente, es Hausdorff. Por otra
parte, se puede afirmar que R tiene dimension de
Krull cero (véase [2, 4, 5, 7, 17]).

La Proposicion 3.6 también se puede demos-
trar utilizando herramientas de anillos con di-
mension de Krull cero o anillos 0—dimensionales
ya que un cuerpo es O—dimensional y el producto
de cuerpos es 0—dimensional (véase [3]). Ademas
el resultado de la Proposicion 3.6 no es cierto
para el producto de anillos conmutativos, para
estudiar este caso se puede ver [9].

Corolario 3.7 Sean K un cuerpo, [ un conjunto
finito y R = KI. Entonces
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DS R)=M R)= il dond i
{f(G)Rl?e]gEi)): 0}le( ) ={m;}ic; donde m

(2) R/m; ~ Ry, ~ K para todo i.

Demostracion. (1) Es inmediato ya que, por
la Proposicion 2.5 (6), todos los ideales maxi-
males de R son de la forma {m; };c; donde m;,

{(f € R: f(i)=0}.

(2) Por la Proposicion 3.5, basta mostrar que
para todo m € Max(R), R/m ~ K. Pero para
todo ¢ € I el homomorfismo : R — K definido

por ¢)(f) = f(i)es sobreyectivoy Ker(¢) = m;
entonces
J+my

- K
= f(0)

(Vo

es un isomorfismo.

Proposicion 3.8 Sean K un cuerpo finito,
I un conjunto arbitrario y R = K! . Para todo
m € Max(R),

Ry~ R/m~ K.

Demostracion. Por la Proposicion 3.5,
basta demostrar que R/m ~ K para todo
m € Max(R). Sean K = {ag,...,ay} y consi-
deremos la aplicacion

¢p: K - R/m
a — al+m

¢ es inyectiva ya que sia € K y al €m
entonces & = 0 pues si « # 0, por la Proposicion
2.1, al es inversible en R. Veamos que ¢ es
sobreyectiva. Sea f € R, para todo i € I, f(i) €

{ag,...,anty
(f = aol) -+ (f =~ an1) = 0
yaqueparatodo; ¢ rexistej € {0,1,...,n}

tal que f(i) = o, es decir (f —a;1)(i) =0.
Entonces

y por tanto existe j € {1,...,n} tal que
f—a;1€ m. Asi ¢ es sobreyectiva.
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En la siguiente seccion se muestra que el
resultado anterior no es cierto si K es un cuerpo
infinito, I un conjunto infinito y R = KI.

4. FILTROS Y ULTRAFILTROS DE 1

Hemos visto en la Proposicion 2.5(9) que exis-
ten ideales maximales de KI, con I arbitrario, que
no son de la forma m; Sobre estos ideales hay
mucha literatura (véase [15, 19]), pero aqui nos
limitaremos a estimar el cardinal del conjunto
que forman usando filtros y ultrafiltros.

Sean R = KI, I'un conjunto arbitrario y K un
cuerpo. Para todo C' C I, definimos la aplicacion

I - K
i ec(i):{

e :
si ieC
si i ¢ C

0,
L

Proposicion 4.1 Sean B, C' C I. Entonces se
tiene que:

(1) er=0, gy = 1.

(2) ep +ec =epnc + epuc-
(3) ep-ec =epnc.

4) e =ec.

Demostracion. Consecuencia directa de la
definicion de ec .

Veamos que existe una correspondencia
biunivoca entre el conjunto de partes de I, P(I),
y el conjunto de los elementos idempotentes de
R,id(R).

Proposicion 4.2 Sean I un conjunto arbitrario
y R=KI . Entonces la aplicacion

P(I) — id(R)
C — ec

v

es una biyeccion.

Demostracion. ~ es inyectiva pues si eg = ec
entonces eg (i) =ec (i), paratodo s € I.Luego eg())
=0conj € Bsiysolosiec(j) = 0conj € C.
Por tanto B = C. Ademads, - es sobreyectiva pues
si f € id(R), f(i) =0 o f(i) =1, para todo
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i€, entonces C'={iecl: f(i) =0} cumple
que y(C) = f.

Definicién 4.3 Un filtro § sobre un conjunto I
es una familia no vacia de subconjuntos no vacios
de I, que satisfacen:

(D) SiB,C € Fentonces BN C € g,

(2)ysiC eZy(C c Dentonces D € 3.

Proposicion 4.4 Si a es un ideal propio de R,
entonces

F(a)={CC I:ec€a}l =7"(id(a)) es un
filtro en 1.

Demostracion. Veamos que §(a) cumple las
condiciones de filtro. Puesto que e; = 0 € a,
entonces I € F(a)y por tanto §(a) es no vacio.
Ahora si B, C € F(a) entonces ep, ec € a
y como a es ideal, eg+ec— ep-ec =
€BnC € a, por tanto B N C € F(a). Por ulti-
mo, si C' € §(a) y C C D entonces €C - €p =
ecup = ep € a.Luego D € §(a).

Lema 4.5 Sean a y b ideales de R. Entonces
a C bsiysolosiF(a) C F(b).

Demostracion. Sea C' C I tal que C € §(a)
entonces €c € a C b, luego €c € b por tanto
C € §(b). Reciprocamente, si €C € @ entonces
C € F(a) C F(b),luego C € F(b)y por tanto
ec €b.

Ahora se muestra que existe una correspon-
dencia biunivoca entre el conjunto de ideales de
R, ideal (R), y el de los filtros en 1, fil(I).

Proposicion 4.6 Sean R = KI con I un conjun-
to arbitrario. Entonces la aplicacion
ideal(R) —  fil(I)
a = §(a)

e

Demostracion. Porel Lema4.5,a = bsiysolo
si §(a) = F(b). Por tanto, y esta bien definida y
es inyectiva. Veamos que ;. es sobreyectiva. Dado
un filtro § de I, el ideal propio de R asociado a &
es
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a(§) = ({ecteoes) R

= ({ec}coes) R = ({ecteced) R
({a})R = a.

Definiciéon 4.7 Un ultrafiltro es un filtro maxi-
mal con respecto a la relacion de contenido.

Proposicion 4.8 La correspondencia

w:ideal(R) — fil(I)

relaciona biunivocamente los ideales maxima-
les de R con los ultrafiltros de I.

Demostracion. Por la Proposicion 3.6, todo
ideal primo de R es maximal. Ademas, por el
Lema 4.5 y la Proposicion 4.6, 1. es una aplicacion
biyectiva que preserva la relacion de contenido,
por tanto los ideales maximales de R son envia-
dos en los ultrafiltros de /.

Lema 4.9 (1) Si {§a}acr es una familia no
vacia de filtros de I, entonces ﬂaeT S esun filtro
de I

(2) Si C = {Fi}ien es una cadena, es decir,
{Fi}ien es una familia no vacia de filtros de I tal
que §; C Fiy1, entonces |JC = U;en i es un
filtro de L

Demostracion. (1) Se deduce de la Proposicion
4.6 y el hecho que la interseccion de ideales es un
ideal.

(2) Veamos que J;cnSi cumple las con-
diciones de un filtro de I U;cn8i # 0 ya que
{SitieN es una familia no vacia. Ademds si
B,C € U;en i, como i C Tit1. existe i tal
que B,C € §; y por tanto BN C € F;, luego
BN Ce€ UjenSi Por tltimo, si C€U;jenSi y
C c D, existe i tal que C €8iy ¢ c D, luego
De §;y por tanto D € Uien Si-

Lema 4.10 Todo filtro puede extenderse a un
ultrafiltro.
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Demostracion. Sea F, un filtro en I. Supon-
gamos P el conjunto de todos los filtros § en I
tales que § O o y consideremos el conjunto
parcialmente ordenado (P, C). SiC es una cadena
en P, por el Lema 4.9(2), | JC es un filtro y por
tanto una cota superior de C en P. Por el lema de
Zorn existe un elemento maximal 4 en P y por
definicion, 4l es un ultrafiltro.

Proposicion 4.11. [14, Theorem 7.6] Existen
exactamente 22#(D ultrafiltros de I.

Ejemplo 4.12. Si I = N y K = Z/(2), por las
Proposiciones 4.8 y 4.11,

#(Max(KT)) = 22",

Como 22" ~ N1, hay una cantidad de ideales
maximales de KI que no se pueden describir pero
hay una cantidad numerable de la forma m,.
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