Original Article

Clinical differences between children with asthma and rhinitis in rural and urban areas

Diferencias clínicas entre niños con asma y rinitis de áreas rurales y urbanas

Jorge Sánchez1,2, Andrés Sánchez1,3 Ricardo Cardona1

1 Group of Clinical and Experimental Allergy, IPS Universitaria, Universidad de Antioquia. Medellín, Colombia.
2 Fundación para el Desarrollo de las Ciencias Médicas y Biológicas. Cartagena, Colombia.
3 Medicine Department, Corporacion Universitaria Rafael Nuñez, Cartagena, Colombia.

DOI: 10.25100/cm.v49i2.3015

© 2018 Universidad del Valle. This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided that the original author and the source are credited.

Article history:
Received: 13 March 2017
Revised: 08 November 2017
Accepted: 18 February 2018

Keywords:
Asthma, children, diagnosis, treatment, rhinitis, rural, urban

Palabras clave:
Asma, niños, diagnóstico, tratamiento, rinitis, rural, urbano

Abstract

Background: Epidemiological studies have shown that children who grow up on traditional farms are protected from allergic diseases. However, less is known about if the environment influences the pharmacotherapy in these patients.

Objective: To compare the treatment of asthmatic and rhinitis children from urban and rural areas in Medellín, Colombia.

Methods: During one year, we follow up a group of children (6 to 14 years) with diagnostic of asthma or rhinitis living for more than five years in urban or rural area. A questionnaire with socio-demographic characteristics, pharmacotherapy treatments, was obtained each three months. Atopy evaluation, spirometry and clinical test for asthma and rhinitis severity were done at the beginning and one year later.

Results: Eighty six point four percent patients completed the follow up (rural n: 134, urban n: 248). Patients in rural location required less salbutamol (p: 0.01), visit to emergency department (p <0.01) and have a less number of patients with FEV1 <80% (p: 0.05). For clinical control rural children require less pharmacotherapy than urban children (p: 0.01) and more patients with rhinitis (18% vs 8% p: 0.03) and asthma (23% vs 12% p: 0.01) in the rural group could suspended pharmacotherapy. Atopy (p <0.07) and poli-sensitization (p: <0.08) was a little higher in urban than rural area. We observe that poverty/unhygienic indicators were risk factors for higher levels of specific IgE among patients from urban area.

Conclusion: Patients with respiratory allergies located in urban area require more pharmacotherapy and have less clinical response than rural children.

Resumen

Introducción: Los estudios epidemiológicos han demostrado que los niños que crecen en las granjas suelen tener menos frecuencia de enfermedades alérgicas. Sin embargo, se sabe menos si el tipo de ambiente (rural vs urbano) también puede influir en la respuesta clínica de a la farmacoterapia.

Objetivo: Comparar un grupo de niños localizados en área rural y área urbana de Antioquia, Colombia, en cuanto al tratamiento farmacológico recibido para el asma y/o la rinitis.

Métodos: Fueron incluidos niños con asma y/o rinitis que llevaran viviendo al menos 5 años en la misma zona rural o urbana con edades entre 6 a 14 años. A todos los pacientes se les realizó un seguimiento clínico cada 3 a 4 meses. La evaluación de la atopia, la espirometría y test para evaluar la gravedad del asma y la rinitis se realizaron al principio y al final del estudio.

Resultados: De los pacientes candidatos, 382 (86.4%) completaron el seguimiento (rural n= 134 urbano n= 248). Los pacientes en área rural requirieron menos salbutamol (p: 0.01), visitas al departamento de emergencias (p <0.01) y tenían un menor número de pacientes con FEV1 <80% (p <0.05). Para el control clínico, los niños en zonas rurales requirieron menos farmacoterapia que los niños en zona urbana (p: 0.01). Igualmente, para la rinitis (18% vs 8% p: 0.03) y el asma (23% vs 12% p= 0.01) un mayor número de los pacientes en zona rural pudieron suspender la farmacoterapia. La atopia (p <0.07) y la poli-sensibilización (p <0.08) fue mayor en las zonas urbanas que en las rurales. Se observó que los indicadores de pobreza y los servicios de aseo, eran factores de riesgo para mayores niveles de IgE entre los pacientes de área urbana.

Conclusión: Los pacientes con asma o rinitis localizado en el área urbana tienen síntomas más severos y refractarios al tratamiento farmacológico, por lo que requieren más farmacoterapia que los niños rurales. Algunos factores ambientales intra y extra domiciliarios propios de la zona rural y urbana podrían influir en estos resultados.

Corresponding author:
Jorge Sanchez. Cra 42 n 7 a Sur 92 Apto 1710, Universidad de Antioquia, Medellín. Phone 3003934000. E-mail: jorgem.sanchez@udea.edu.co
Introduction

Asthma and rhinitis are frequent respiratory diseases that affect all ages but with a marked predominance in children\(^1\). The increasing prevalence of atopic disorders has been documented in many studies\(^2\),\(^3\). Risk and protection factors have been studied, indicating that urbanized areas tend to have a higher incidence of disease compared to populations located in rural areas where prevalence is usually lower: In a population of Germany, the frequency of asthma and atopy was higher among patients living in the industrialized area than those who lived in less industrialized cities\(^4\),\(^5\). These and other studies support that the environment could influence the development of allergies\(^6\),\(^7\), but it has been less studied how urban environmental factors influence the severity of the clinical picture. Taking into account that people live in urban areas compared to those living in rural areas have a greater exposure to pro-inflammatory factors such as car smoke or chemical products from factories or processed foods\(^8\),\(^9\), it could be assumed that the population living in cities have severe respiratory symptoms than the rural population. Although there are no studies that directly evaluate this hypothesis, some indirect results support it\(^10\),\(^11\): high concentrations of \(O_3\), \(CO_2\), NOx, small carbon particles (PM <10) can cause hyperactivity in the respiratory tract inducing asthma or rhinitis, but also can alter the proteins of food and pollen grains\(^12\),\(^13\), generating allergenic proteins with greater capacity to induce the production of IgE and the activation of T lymphocytes.

Achieving adequate asthma and rhinitis diagnosis and treatment in pediatric patients has become a key point in control of symptoms to prevent complication in adulthood\(^14\). Treatment with regular inhaled corticosteroids, beta agonists, leukotrienes, and antihistamines are associated with improved control of symptoms. However, a greater severity of symptoms necessarily implies a greater dose of pharmacological treatment, a worse prognosis and an increased risk of adverse effects secondary to pharmacotherapy and lack of control of the disease. To our knowledge if the environmental conditions could change the treatment required for clinical control and the clinical consequences of this effect has not been studied. In this article, we evaluate if patients with asthma and/or rhinitis residents of urban and rural areas from Medellin, Colombia, have differences in the severity and treatment of asthma and rhinitis in terms of the dose required for the control. We also evaluate the evolution of patients over time focused on the response to treatment and the severity of respiratory diseases.

Materials and Methods

Population and geographic characteristics

We created a community cohort for a prospective follow up and collection of epidemiological data and biological samples (RATA: Research about Tropical Trends in Asthma). The population of this study was collected in Antioquia - Colombia. The genetic background of rural and urban populations is the same and results from a racial admixture between Native Americans, Spaniards, and (albeit less frequently) Africans (<10.9%)\(^15\),\(^16\). Antioquia is located in the Aburra Valley area (6°14'41'' North, 75°34'0''29'' West), 1,479 meters above sea level, with an average annual temperature of 22°C and RH: 66%. Children between 6 to 14 years old were randomly selected from December 2014 to January 2016 from two medical centers. Children living for more than 5 years in the same area (rural or urban) with a diagnosis of asthma or rhinitis according to GINA guideline\(^17\) or ARIA guideline\(^14\) without other respiratory or systemic were included. The study population was divided into “rural group” and “urban group” according to the census Bureau’s conditions\(^18\) (https://www.census.gov/geo/reference/urban-rural.html). A questionnaire based in the ISAAC initiative to identify socio-demographic characteristics was done at the beginning of the study. A medical doctor expert in allergy diseases recruited all patients. The previous diagnosis, medicine treatment, and control of symptoms were investigated through questionnaire surveys written by the investigators based in the ISAAC questionnaire used in Colombia\(^2\).

Severity of symptoms and clinical control

To evaluate the severity of symptoms of asthma according to the perception of patients, we use the Asthma Control Test (ACT) previously validated in Colombia\(^2\): this scale have five (For people over 12 years of age) or seven (For people between 6 to 11 years of age) questions about common symptoms and patient control perception of asthma, rated on a scale of 0 to 25 points (<12 years) or 0 to 27 points (<11 years), are assessed according to the intensity. Depending of the age ACT considered “complete control” 25 or 27 points, “good control” 20-25 or 20-26 points, and “not control” <20 points. A spirometry was done at baseline and after 1 year of follow-up. Number of exacerbations, use of albuterol per week, visits to the emergency department were collected at each medical appointment (each 3 to 4 months).

To evaluate the severity of rhinitis we use the Allergic Rhinitis Symptom Questionnaire (ARSQ); the seven most common symptoms of rhinitis, rated on a scale of 0 to 4 points, are assessed according to the intensity. Absent to very severe. It is considered mild if the patient scores with 9 points or less, moderate from 10 to 19 points and severe from 20 to 28 points\(^2\).

Pharmacotherapy evaluation

For asthma we register the pharmacotherapy require to clinical control in steps according to the GINA recommendations. Also, we assign for the therapy of each patient a score from 0 to 7 points according to the GINA steps (Supplement material, Table S1). For rhinitis, we register the pharmacotherapy requires to clinical control in agree to the ARIA steps recommendations. Also, we assign for the therapy of each patient a score from 0 to 4 points according to the ARIA steps (Table S2). During follow-up, patients without clinical control took an additional step in the management according to the medical criteria based on the GINA and ARIA guidelines. Patients with at least 3 months with clinical control had a reduction in the pharmacotherapy step according to the medical criteria. To avoid bias, physicians outside the study performed the medical evaluation of the patients.

Follow-up

A spirometry was done at baseline and after 1 year of follow-up. Number of exacerbations, use of albuterol per week, visits to the emergency department, pharmacotherapy evaluation ACT and ARSQ were collected at each medical appointment (each 3 to 4 months).
children’s asthma in Colombia 2, the mean prevalence of childhood data from a previous epidemiological survey and an analysis entered, categorized and analyzed using the Statistical Package Using double entry by three independent persons, all data were children under 10 years of age.

were minors, the parents gave written informed consent. According to the request of the ethics committee, children also gave their assent, which was supervised by a child psychologist in Medellín-Colombia approved this study. Because the participants Ethical considerations

The Ethic Committee of the University of Antioquia from Medellín-Colombia approved this study. This analysis and an survey of children’s asthma in Colombia², the mean prevalence of childhood asthma in Medellin urban areas was 11% and for rhinitis 23%. There was not available data for rural area. With a level of confidence of 95%, power of 80%, and tolerance error of 0.5%, we estimated that 201 children from urban and 128 from rural area would be a sufficient number to estimate population statistics for the principal aim: compare the treatment of asthmatic and rhinitis children from urban and rural areas in Medellin, Colombia.

The Chi-square test was used to compare prevalence rates of disease severity and treatment between groups. The Mann-Whitney U was used to compare the control of symptoms between groups for abnormal distribution. Results are presented as 95% confidence intervals where appropriate. A $p<0.05$ was considered significant.

Table 1. Socio-demographics characteristics.

<table>
<thead>
<tr>
<th>Socio-demographics characteristics</th>
<th>Rural n (%)</th>
<th>Urban n (%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population n = 382</td>
<td>134 (35.1)</td>
<td>248 (64.9)</td>
<td>>0.10</td>
</tr>
<tr>
<td>Males n = 236 (61.7%)</td>
<td>80 (59.7)</td>
<td>156 (62.9)</td>
<td>>0.10</td>
</tr>
<tr>
<td>Age mean (range)</td>
<td>8 (6-14 SD 4)</td>
<td>7 (6-14 SD 5)</td>
<td>>0.10</td>
</tr>
<tr>
<td>Asthma</td>
<td>80 (59.7)</td>
<td>186 (75)</td>
<td>0.07</td>
</tr>
<tr>
<td>Rhinitis</td>
<td>112 (83.5)</td>
<td>224 (90.3)</td>
<td>0.09</td>
</tr>
<tr>
<td>Atopy</td>
<td>329 (86.1)</td>
<td>351 (91.8)</td>
<td>0.07</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>120 (89.5)</td>
<td>234 (94.3)</td>
<td>>0.10</td>
</tr>
<tr>
<td>Electricity</td>
<td>124 (92.5)</td>
<td>248 (100)</td>
<td>0.08</td>
</tr>
<tr>
<td>Trash burning at home</td>
<td>24 (19.3)</td>
<td>10 (4)</td>
<td>0.04</td>
</tr>
<tr>
<td>Passive exposure to trash</td>
<td>28 (20.8)</td>
<td>20 (8)</td>
<td>0.05</td>
</tr>
<tr>
<td>Tap water</td>
<td>124 (92.5)</td>
<td>238 (95.9)</td>
<td>>0.10</td>
</tr>
<tr>
<td>Sewage</td>
<td>112 (83.5)</td>
<td>351 (91.8)</td>
<td>0.08</td>
</tr>
<tr>
<td>Houses of material</td>
<td>120 (89.5)</td>
<td>238 (95.9)</td>
<td>0.09</td>
</tr>
<tr>
<td>Covered floor</td>
<td>114 (85.0)</td>
<td>234 (94.3)</td>
<td>0.06</td>
</tr>
<tr>
<td>Socioeconomic strata (low 1 to 3)</td>
<td>130 (97.0)</td>
<td>218 (87.9)</td>
<td>0.05</td>
</tr>
<tr>
<td>ACT baseline</td>
<td>18 (2-27 sd: 8)</td>
<td>15 (2-27 sd: 14)</td>
<td>0.06</td>
</tr>
<tr>
<td>ARSQ baseline</td>
<td>12 (0-20 sd: 7)</td>
<td>16 (0-28 sd 12)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

ACT: Asthma Control Test. ARSQ: Allergy Rhinitis Symptoms Control. $p<0.05$ was statistically significant. The percentages are presented in parentheses. sd: Standard deviation.

Analysis of data

Using double entry by three independent persons, all data were entered, categorized and analyzed using the Statistical Package for Social Sciences software (SPSS version 21, USA). Based on the data from a previous epidemiological survey and an analysis of children’s asthma in Colombia², the mean prevalence of childhood asthma in Medellin urban areas was 11% and for rhinitis 23%. There was not available data for rural area. With a level of confidence of 95%, power of 80%, and tolerance error of 0.5%, we estimated that 201 children from urban and 128 from rural area would be a sufficient number to estimate population statistics for the principal aim: compare the treatment of asthmatic and rhinitis children from urban and rural areas in Medellin, Colombia.

The Chi-square test was used to compare prevalence rates of disease severity and treatment between groups. The Mann-Whitney U was used to compare the control of symptoms between groups for abnormal distribution. Results are presented as 95% confidence intervals where appropriate. A $p<0.05$ was considered significant.

Results

Characteristics of the population

From 467 patients that consult during the period of recruitment, 442 patients were selected and 382 (86.4%) finish the follow-up (Fig. 1 and Table 1): 134 from rural area and 248 from urban area. Reasons for drop-out were: moving out of study area ($n=11$), loss of contact by inaccessible addresses ($n=23$), lack of telephones ($n=16$), social conflicts ($n=3$), other reasons ($n=7$). Families were lost in the interval of 0 to 6 months (Rural $n=20$ and Urban $n=40$). Dermatophagoides spp (83%), were the most important sensitizers followed by Dog (28%) and insects (24%). Sensitization to milk and egg were below 5%. Atopy ($p<0.07$) and poli-sensitization ($p<0.08$) was a little higher in urban than rural area, but it was not statistically significant.

Most inhabitants living in urban and rural area were poor according to governmental indexes but most of them had assessed to basic services (Table 1). Trash burning at home was significantly most frequented in rural than in urban group. We did not observe that poverty/unhygienic indicators were risk factors for a higher severity of asthma or rhinitis, but it was associated with higher levels of specific IgE among patients from urban area and poli-sensitization (Urban $n=43$ sIgE Der p 131 kUA/ml + 62 Vs. Rural $n=34$ sIgE Der p 131 kUA/ml + 62 p 0.02). There were not significant differences between patients who finish the study and those who drop out.

ACT and ARSQ control

At the baseline, patients in urban area had worse control of asthma and rhinitis according to ACT ($p<0.06$) and ARSQ ($p<0.04$) (Table 1). The clinical control according ACT for asthma was similar in both groups without significant differences, but there was a tendency of better clinical control in rural group (3 months $p<0.07$, 6 months $p<0.08$, 9 months $p<0.08$, 12 months $p<0.07$) (Fig. 2A). After 3 months, between 60 to 70% of patients present a complete or good control in both groups with a little increase over time but 30% of patients present not control even with an increase pharmacotherapy.

After 6 months and for the rest of the follow-up, there was a reduction in salbutamol requested and medical consultation in the emergency department (Table 2). This reduction was higher in the rural group. There was not significant difference between groups according mean FEV1 or FEV1/FVC ratio, but there were more patients in urban area with FEV1 lower than 80% in spirometry results (Table 2).

Similar results were presented according ARSQ for rhinitis, was similar in both groups with a tendency of better control in rural area.
group but it was not statistically significant (3 Months \(p: 0.06 \), 6 months \(p: 0.08 \), 9 months \(p: 0.06 \), 12 months \(p: 0.8 \)) (Fig. 2B). A large group of patients achieved adequate control for rhinitis than for asthma during follow-up and less than 12% in both rhinitis groups did not reach control at the end of the study.

Pharmacotherapy response

At the baseline, patients in urban area had higher severity than patients in rural area and requiring a higher dose of pharmacotherapy for asthma (Fig. 3): Rural group mean 2.5 (SD 2) points vs. Urban group mean 3.2 (SD 3) points respectively (\(p: 0.03 \)). During the follow-up both groups have a reduction in pharmacotherapy being higher in the group of rural area: Rural area mean 1.6 (SD 2) points vs. mean 2.8 (SD 3) points respectively (\(p: 0.03 \)).

Also, after 12 months patients in rural area had a higher suspension of all drugs due to a complete clinical control for asthma (Fig. 3).

For rhinitis after 6 months there was also a reduction maintained until the end of the study in pharmacotherapy been higher in rural group (baseline/12 months): Rural 2/1.6 (-20%) points and Urban 2.4/2.1 (-12.5%) points (Fig. 3). Suspension of rhinitis (18% vs 8% \(p: 0.03 \)) and asthma (23% vs 12% \(p: 0.01 \)) pharmacotherapy was also higher in rural group.

The usage of alternative therapy, specific immunotherapy, antibiotics and Chinese medicine, were not significantly different between groups and had little change over time (\(p: 0.18 \)).

Table 2. Spirometry was done at the beginning and after 12 months. Salbutamol and emergency department frequency was obtained in the first and the last medical visit. the percentages are presented in parentheses.

<table>
<thead>
<tr>
<th></th>
<th>Rural n = 80 (59.7%)</th>
<th>Urban n = 186 (75%)</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Days with Salbutamol per month: baseline/12months</td>
<td>4.8/2.4 (-50)</td>
<td>63/4.5 (-28.5)</td>
<td>0.01</td>
</tr>
<tr>
<td>Days in Emergency department: baseline/12months</td>
<td>14/0.4 (-71.4)</td>
<td>18/0.8 (-55.6)</td>
<td><0.01</td>
</tr>
<tr>
<td>Baseline FEV1 (%predicted)</td>
<td>87+14</td>
<td>84+17</td>
<td>>0.10</td>
</tr>
<tr>
<td>Baseline FEV1 <80% no. (%)</td>
<td>8 (10.0%)</td>
<td>26 (13.9%)</td>
<td>0.05</td>
</tr>
<tr>
<td>Baseline FEV1/FVC ratio</td>
<td>86.0 + 13.4</td>
<td>81.0 + 10.4</td>
<td>>0.10</td>
</tr>
<tr>
<td>1 year FEV1 (%predicted)</td>
<td>91.0 + 14.0</td>
<td>86.4 + 15.0</td>
<td>0.07</td>
</tr>
<tr>
<td>1 year FEV1 <80% no. (%)</td>
<td>2.0 (2.5)</td>
<td>20.0 (10.7)</td>
<td>0.05</td>
</tr>
<tr>
<td>1 year FEV1/FVC ratio</td>
<td>88.0 + 13.4</td>
<td>85.0 + 10.4</td>
<td>>0.10</td>
</tr>
</tbody>
</table>

Discussion

To our knowledge this study is the first comparing the medical treatment for asthma and rhinitis between urban and rural areas in Latin America. In both rural and urban areas, there was a higher prevalence of asthma in males. This result is comparable to rural and Urban Chinese children population\(^{21}\) and Spanish population\(^{22}\).

A high exposure to irritants of the respiratory tract favors the chronicity of the inflammation and generates epithelial changes that worsen the picture and make its reversibility difficult\(^{23}\). Clinically this translates into a greater severity of symptoms\(^{24,25}\). We observed that the people located in the urban area needed a greater amount of medicines to achieve a good control of their symptoms, and they also have a greater number of emergency assistance and need for salbutamol than rural group, which indicates that urban population has more severe respiratory symptoms than patients living in the rural area. The reason for this tendency of lower asthma and rhinitis severity in rural areas and a higher tendency of atopy in urban area is unclear \(^{21}\). In previous studies, exposure to agricultural farming and livestock farm conferred protection from asthma\(^4\), may be because the greater exposure to various proteins in a natural way and less contact with various chemicals to which people in the city are usually exposed through air and processed food\(^\)\(^6\). Although these factors were not directly evaluated in this study, we assume that may influence our results: the level of contamination in Medellin is one of the worst in the country and since the geographic conditions of the Aburra Valley, it remains mainly concentrated in Urban area\(^{26}\). In addition, the greater concentration of industries is located in the urban zone, whereas the agriculture and manufacture products is the main source of production in the rural area. According to the national poverty indexes, most of the population has low income; however in our study population more than 90% of the families included had a house made of material and adequate sewage conditions in both groups indicating that basic hygiene services are similar. Taking in consideration that genetic ancestry in both areas is the same\(^{15,16}\), this suggest that environmental factors and maybe cultural factors are more important to explain these
uncontrolled respiratory symptoms, have a lower school performance and their family a great social and economic impact: children with aspects that the patient suffers, the lack of control has for them.

Our results have several implications. In addition to the clinical and economic cost for the health system and the family, together with the greater risk of adverse events. Therefore, the study of the factors that lead to greater severity of asthma and rhinitis is necessary, especially the identification of those factors that may be modifiable and reduce the social and economic impact of the family.

Our study has some limitations. The sociocultural and environmental conditions of each region limit the extrapolation of our results to other populations. However, the results of the ISAAC study indicate that many of the risk factors for asthma are present throughout the world. It is therefore necessary to do similar studies in other populations to evaluate the reproducibility of our results, and identify the main associated factors. Because our study was conducted in children, we do not evaluate whether the greater severity of asthma and rhinitis in the urban area extends to adulthood. Our hypothesis is that yes, since the chronic inflammation at the level of the respiratory tract during infancy could generate changes that would not revert in the adulthood.

Conclusion

Compared with rural area, urban location has important consequences in the severity and control of asthma and rhinitis which are not fully reversed despite the use of increased pharmacotherapy. The identification of the environmental risk factors associated with these results could help to improve the control of asthma in urban and rural areas.

Conflict of interest

There is no conflict of interest

References

Table S1. Pharmacotherapy points according GINA steps.

<table>
<thead>
<tr>
<th>GINA step</th>
<th>First Choice</th>
<th>Second Choice</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>No need continuous control therapy</td>
<td>low dose ICS <2 times for week - SABA >2 times for week</td>
<td>1 point</td>
</tr>
<tr>
<td>Step 2</td>
<td>Low dose ICS</td>
<td>LTRA. Low dose theophylline</td>
<td>2 points</td>
</tr>
<tr>
<td>Step 3</td>
<td>Low dose ICS/LABA</td>
<td>High dose of ICS dose. - Low dose ICS/LABA +LTRA (or +theophylline)</td>
<td>3 points</td>
</tr>
<tr>
<td>Step 4</td>
<td>Medium dose of ICS</td>
<td></td>
<td>4 points</td>
</tr>
<tr>
<td>Step 5</td>
<td>Tiotropium* - Omalizumab - Mepoluzumab</td>
<td>Add low dose OCS</td>
<td>6 points</td>
</tr>
</tbody>
</table>

LTRA: Leukotriene receptor antagonists. SABA: Short-acting beta2-agonist; ICS: inhaled corticosteroids; OCS: Oral corticosteroids; LABA: long-acting beta2-agonist; med: medium dose; OCS: oral corticosteroids. Low, medium, and high dose of the different ICS was defined according to GINA guideline. Tiotropium was only for children over 12 years.

Table S2. Pharmacotherapy points according ARIA steps.

<table>
<thead>
<tr>
<th>ARIA step</th>
<th>First Choice</th>
<th>Second Choice</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mild intermittent</td>
<td>Oral anti-H1 intermittent (<2 days per week)</td>
<td>Intranasal or oral decongestant (<10 days per month)</td>
<td>0 point</td>
</tr>
<tr>
<td>Oral anti-H1 intermittent (>3 days per week)</td>
<td>1 point</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate/severe Intermittent</td>
<td>Intranasal steroid</td>
<td>Local chromone</td>
<td>2 points</td>
</tr>
<tr>
<td>Mild persistent</td>
<td>Intranasal steroid and antiH1</td>
<td>Intranasal-steroid and AntiL</td>
<td>3 points</td>
</tr>
<tr>
<td>Moderate/severe Persistent</td>
<td>Intranasal steroid + antiH1 + antiL</td>
<td>4 points</td>
<td></td>
</tr>
</tbody>
</table>

AntiH1: Antihistamine